

AQ-G257

Generator protection IED

Instruction manual

Table of contents

1 Document information	
1.1 Version 2 revision notes	
1.2 Version 1 revision notes	
2 Abbreviations	
3 General	
4 IED user interface	
4.1 Panel structure	
4.1.1 Local panel structure	
4.2 Configuring user levels and their passwords	15
5 Functions	
5.1 Functions included in AQ-G257	
5.2 Measurements	
5.2.1 Current measurement and scaling in differential applications	
5.2.2 Voltage measurement and scaling	
5.2.3 Power and energy calculation	
5.2.4 Frequency tracking and scaling	
5.3 General menu	
5.4 Protection functions	
5.4.1 General properties of a protection function	
5.4.2 Non-directional overcurrent protection (I>; 50/51)	
5.4.3 Non-directional earth fault protection (I0>; 50N/51N)	
5.4.4 Directional overcurrent protection (Idir>; 67)	
5.4.5 Directional earth fault protection (I0dir>; 67N/32N)	
5.4.6 Negative sequence overcurrent/ phase current reversal/ current unbalance	
(I2>; 46/46R/46L)	
5.4.7 Harmonic overcurrent protection (Ih>; 50H/51H/68H)	
5.4.8 Circuit breaker failure protection (CBFP; 50BF/52BF)	
5.4.9 Overvoltage protection (U>; 59)	
5.4.10 Undervoltage protection (U<; 27)	
5.4.11 Neutral overvoltage protection (U0>; 59N)	
5.4.12 Sequence voltage protection (U1/U2>/<; 47/27P/59PN)	
5.4.13 Overfrequency and underfrequency protection (f>/<; 810/81U)	
5.4.14 Rate-of-change of frequency (df/dt>/<; 81R)	
5.4.15 Power protection (P, Q, S>/<; 32)	
5.4.16 Power factor protection (PF<; 55)	
5.4.17 Machine thermal overload protection (TM>; 49M)	
5.4.18 Underexcitation protection (Q<; 40)	
5.4.19 Underexcitation protection (X<; 40)	
5.4.20 100 % stator earth fault protection (U03rd>; 64S)	
5.4.21 Voltage-restrained overcurrent protection (Iv>; 51V)	
5.4.22 Volts-per-hertz overexcitation protection (V/Hz>; 24)	
5.4.23 Underimpedance protection (Z<; 21U)	
5.4.24 Inadvertend energizing protection (I> U< I.A.E; 50/27)	
5.4.25 Inadvertend energizing protection (I> U< I.A.E; 50/27)	
5.4.26 Pole slip protection (78)	
5.4.27 Generator/transformer differential protection (Idb>/Idi>/I0dHV>/I0dLV>; 87	
87G) 5.4.28 Resistance temperature detectors (RTD)	
5.4.29 Arc fault protection (IArc>/I0Arc>; 50Arc/50NArc)	
5.4.30 Voltage memory	
5.5 Control functions	
5.5.1 Common signals	
5.5.2 Setting group selection	
5.5.3 Object control and monitoring 5.5.4 Indicator object monitoring	
	JZ9

5.5.5 Synchrocheck (ΔV/Δa/Δf; 25)	
5.5.6 Milliampere output control	
5.5.7 Synchronizer ($\Delta V/\Delta a/\Delta f$; 25)	
5.5.8 Vector jump (Δφ; 78)	350
5.5.9 Synchronizer (ΔV/Δa/Δf; 25)	355
5.5.10 Programmable control switch	
5.5.11 Analog input scaling curves	
5.5.12 Logical outputs	
5.5.13 Logical inputs	
5.6 Monitoring functions	
5.6.1 Current transformer supervision	
5.6.2 Voltage transformer supervision (60)	
5.6.3 Circuit breaker wear	
5.6.4 Current total harmonic distortion (THD)	
5.6.5 Voltage total harmonic distortion (THD)	
5.6.6 Disturbance recorder (DR)	
5.6.7 Measurement recorder	
5.6.8 Measurement value recorder	
5.6.9 Running hour counter	
5.7 Programmable stage (PGx>/<; 99)	
6 Communication	
6.1 Connections menu	
6.2 Time synchronization	
6.2.1 Internal	
6.2.2 NTP	
6.2.3 PTP	
6.3 Communication protocols	427
6.3.1 IEC 61850	
6.3.2 Modbus/TCP and Modbus/RTU	
6.3.3 GOOSE	430
6.3.4 IEC 103	432
6.3.5 IEC 101/104	433
6.3.6 SPA	435
6.3.7 DNP3	435
6.3.8 Modbus I/O	437
6.4 Analog fault registers	438
6.5 Real-time measurements to communication	
6.6 Modbus Gateway	441
7 Connections and application examples	
7.1 Connections of AQ-G257	443
7.2 Application examples and their connections	
7.3 Trip circuit supervision (95)	
8 Construction and installation	452
8.1 Construction	452
8.2 CPU module	455
8.3 Current measurement module	
8.4 Voltage measurement module	
8.5 Digital input module (optional)	
8.6 Digital output module (optional)	
8.7 Point sensor arc protection module (optional)	
8.8 RTD input module (optional)	
8.9 Serial RS-232 communication module (optional)	
8.10 LC or RJ45 100 Mbps Ethernet communication module (optional)	
8.11 Double ST 100 Mbps Ethernet communication module (optional)	
8.12 Double RJ45 10/100 Mbps Ethernet communication module (optional)	
8.13 Milliampere (mA) I/O module (optional)	
8.14 Dimensions and installation	
9 Technical data	
9.1 Hardware	

9.1.1 Measurements	
9.1.1.1 Current measurement	
9.1.1.2 Voltage measurement	
9.1.1.3 Power and energy measurement	
9.1.1.4 Frequency measurement	
9.1.2 CPU & Power supply	
9.1.2.1 Auxiliary voltage	
9.1.2.2 CPU communication ports	
9.1.2.3 CPU digital inputs	
9.1.2.4 CPU digital outputs	
9.1.3 Option cards	
9.1.3.1 Digital input module	
9.1.3.2 Digital output module	
9.1.3.3 Point sensor arc protection module	
9.1.3.4 Milliampere module (mA out & mA in)	
9.1.3.5 RTD input module	
9.1.3.6 RS-232 & serial fiber communication module	
9.1.3.7 Double LC 100 Mbps Ethernet communication module	
9.1.3.8 Double ST 100 Mbps Ethernet communication module	
9.1.4 Display	483
9.2 Functions	
9.2.1 Protection functions	
9.2.1.1 Non-directional overcurrent protection (I>; 50/51)	
9.2.1.2 Non-directional earth fault protection (I0>; 50N/51N)	
9.2.1.3 Directional overcurrent protection (Idir>; 67)	
9.2.1.4 Directional earth fault protection (I0dir>; 67N/32N)	
9.2.1.5 Negative sequence overcurrent/ phase current reversal/ current unl	
protection (I2>; 46/46R/46L)	
9.2.1.6 Harmonic overcurrent protection (Ih>; 50H/51H/68H)	
9.2.1.7 Circuit breaker failure protection (CBFP; 50BF/52BF)	
9.2.1.8 Overvoltage protection (U>; 59)	
9.2.1.9 Undervoltage protection (U<; 27)	
9.2.1.10 Neutral overvoltage protection (U0>; 59N)	
9.2.1.11 Sequence voltage protection (U1/U2>/<; 47/27P/59NP)	
9.2.1.12 Overfrequency and underfrequency protection (f>/<; 81O/81U)	
9.2.1.13 Rate-of-change of frequency protection (df/dt>/<; 81R)	
9.2.1.14 Machine thermal overload protection (TM>; 49M)	
9.2.1.15 Power protection (P, Q, S>/<; 32)	
9.2.1.16 Underimpedance protection (Z<; 21U)	
9.2.1.17 Voltage-restrained overcurrent protection (Iv>; 51V)	
9.2.1.18 100 % stator earth fault protection (U03rd>; 64S)	
9.2.1.19 Resistance temperature detectors	
9.2.1.20 Power factor protection (PF<; 55)	
9.2.1.21 Volts-per-hertz overexcitation protection (V/Hz>; 24)	
9.2.1.22 Underexcitation protection (Q<; 40)	
9.2.1.23 Generator/transformer differential protection (Idb>/Idi>/I0dHV>/I0d	
87N/87G)	
9.2.1.24 Arc fault protection (IArc>/I0Arc>; 50Arc/50NArc) (optional)	
9.2.1.25 Voltage memory	
9.2.2 Control functions	
9.2.2.1 Setting group selection	
9.2.2.2 Object control and monitoring	
9.2.2.3 Vector jump (Δφ; 78)	
9.2.2.4 Synchrocheck (ΔV/Δa/Δf; 25)	
9.2.3 Monitoring functions	
9.2.3.1 Current transformer supervision	
9.2.3.2 Voltage transformer supervision (60)	
9.2.3.3 Circuit breaker wear monitoring	
9.2.3.4 Total harmonic distortion	

9.2.3.5 Disturbance recorder	507
9.2.3.6 Event logger	507
9.3 Tests and environmental	
10 Ordering information	
11 Contact and reference information	

Disclaimer

Please read these instructions carefully before using the equipment or taking any other actions with respect to the equipment. Only trained and qualified persons are allowed to perform installation, operation, service or maintenance of the equipment. Such qualified persons have the responsibility to take all appropriate measures, including e.g. use of authentication, encryption, anti-virus programs, safe switching programs etc. necessary to ensure a safe and secure environment and usability of the equipment. The warranty granted to the equipment remains in force only provided that the instructions contained in this document have been strictly complied with.

Nothing contained in this document shall increase the liability or extend the warranty obligations of the manufacturer Arcteq Relays Ltd. The manufacturer expressly disclaims any and all liability for any damages and/or losses caused due to a failure to comply with the instructions contained herein or caused by persons who do not fulfil the aforementioned requirements. Furthermore, the manufacturer shall not be liable for possible errors in this document.

Please note that you must always comply with applicable local legislation and regulations. The manufacturer gives no warranties that the content of this document is in all respects in line with local laws and regulations and assumes no liability for such possible deviations.

You are advised to notify the manufacturer in case you become aware of any errors in this document or of defects in the equipment.

The manufacturer reserves the right to update or amend this document at any time.

Copyright

Copyright © Arcteq Relays Ltd. 2022. All rights reserved.

1 Document information

1.1 Version 2 revision notes

Table. 1.1 - 1. Version 2 revision notes

Revision	2.00		
Date	6.6.2019		
	- New more consistent look.		
	- Improved descriptions generally in many chapters.		
	- Improved readability of a lot of drawings and images.		
	- Updated protection functions included in every IED manual.		
Changes	- Every protection IED type now has connection drawing, application example drawing with function block diagram and application example with wiring.		
	- Added current measurement side selection description to functions with such feature.		
	- Added fault registers to Z< function description.		
	- Added General-menu description.		
Revision	2.01		
Date	6.11.2019		
	- Added description for LED test and button test.		
	- Added display sleep timer description.		
	- Complete rewrite of every chapter.		
Changes	- Improvements to many drawings and formula images.		
	- Order codes revised.		
	- Added double ST 100 Mbps Ethernet communication module and Double RJ45 10/100 Mbps Ethernet communication module descriptions		
Revision	2.02		
Date	7.7.2020		
Changes	- A number of image descriptions improved.		
Revision	2.03		
Date	27.8.2020		

[
	- Terminology consistency improved (e.g. binary inputs are now always called digital inputs).				
	- Tech data modified to be more informative about what type of measurement inputs are used (phase currents/voltages, residual currents/voltages), what component of that measurement is available (RMS, TRMS, peak-to-peak) and possible calculated measurement values (powers, impedances, angles etc.).				
	- Tech data updated: non-directional overcurrent				
	- Tech data updated: non-directional earthfault				
	- Tech data updated: directional earthfault				
	- Tech data updated: current unbalance				
	- Tech data updated: transformer differential				
	- Tech data updated: overfrequency, underfrequency and rate-of-change-of-frequency.				
	- Improvements to many drawings and formula images.				
	- AQ-G257 Functions included list Added: Additional instance of underimpedance, voltage memory, indicator objects, vector jump protection, running hour counter and measurement recorder.				
	- Added "32N" ANSI code to directional earth fault protection modes "unearthed" and "petersen coil grounded".				
	- Added 6th harmonic to harmonic overcurrent protection function.				
	- Fixed reset ratio of under- and overfrequency protection function from 103 % / 97 % to +/- 20 mHz				
	- Fixed reset ratio of rate-of-change-of-frequency protection function from 20 mHz/s to 100 mHz/s.				
	- Changed disturbance recorder maximum digital channel amount from 32 to 95.				
Changes	- Added residual current coarse and fine measurement data to disturbance recorder description.				
	- Event read mode parameter added to Modbus description.				
	- HSO1 and HSO2 connection swapped in arc protection card (was way wrong before).				
	- Updated I01 and I02 rated current range.				
	- Added inches to Dimensions and installation chapter.				
	- Added raising frames, wall mounting bracket, combiflex frame to order code.				
	- Added logical input and logical output function descriptions.				
	- Additions to Abbreviations chapter.				
	- Added button test description to Local panel structure chapter.				
	- Added note to Configuring user levels and passwords chapter that AQ-250 frame units generate a time-stamped event from locking and unlocking user levels.				
	- Added note to Configuring user levels and passwords chapter that user level with a password automatically locks itself after 30 minutes of inactivity.				
	- Added more "Tripped stage" indications and fault types to Measurement value recorder function.				
	- Updated: Digital input activation and release threshold setting ranges and added drop-off delay setting.				
	- Added sample rate to voltage and current measurement tech data.				
	- Fixed overvoltage, undervoltage, neutral overvoltage and sequence voltage stage misspelled IDMT curve formula.				
	- Note added to power protection tech data.				
Revision	2.04				
Date	8.6.2021				

AQ-G257 Instruction manual

Version: 2.08

	- Increased the consistency in terminology			
Changes	- Various image upgrades			
	- Visual update to the order codes			
Revision	2.05			
Date	22.6.2021			
	- Fixed phase current measurement continuous thermal withstand from 30A to 20A.			
Changes	 Fixed lots of timing errors written to registers table. "Prefault" is -200 ms from Start event, "Pretrigger" is -20 ms from trip (or start if fault doensn't progress to trip), "Fault" is start (or trip if fault doesn't progress to trip). 			
	- Added event history technical data			
Revision	2.06			
Date	21.6.2022			
	- Improved descriptions generally in many chapters.			
	- Improved readability of a lot of drawings and images.			
	- Order codes have been revised.			
	- Added pole slip function description.			
	- Added inadvertent energizing function description.			
	- Added additional instance of underimpedance protection.			
	- Added LN mode parameters to all functions (On, Blocked, Test, Test/Blocked, Off).			
	- Added color themes parameter description.			
	- Improved color sleep mode description.			
Changes	- Improved alarm function color behavior description and images.			
	- Added operation time with different measurement values vs setting ratio in instant operation mode to non-directional overcurrent function description.			
	- Added power measurement side selection to power functions.			
	- Added synchrocheck start check parameter description.			
	- Added 30 s pretriggering time for disturbance recorder (AQ-250 devices only).			
	- Added new trip detections and fault types to measurement value recorder.			
	- Added user description parameter descriptions for digital inputs, digital outputs, logical inputs, logical outputs and GOOSE inputs.			
	- Arc point sensor HSO1 and HSO2 position fixed.			
	- Added spare part codes and compatibilities to option cards.			
Revision	2.07			
Date	7.7.2022			
	1			

	- Added voltage THD function description.			
	- Added THD voltage measurements.			
	- Fixed logical input amounts.			
Changes	- Added common signals function description.			
	- Added PTP time synchronization description.			
	- Added Modbus Gateway description.			
	- Added more fault types to Measurement value recorder (VREC) function.			
Revision	2.08			
Date	22.7.2022			
Date	22.7.2022 - Added stage forcing parameter to function descriptions.			
Date				
Date	- Added stage forcing parameter to function descriptions.			
	 Added stage forcing parameter to function descriptions. Fixes to "Real time signals to comm" description. 			

1.2 Version 1 revision notes

Table. 1.2 - 2. Version 1 revision notes

Revision	1.00		
Date	13.4.2016		
Changes	- The first revision for AQ-G257 IED.		
Revision	1.01		
Date	9.2.2017		
Changes	- Order code updated		
Revision	1.02		
Date	4.1.2017		
Changes	 4.1.2017 Measurement value recorder description ZCT connection added to current measurement description Internal harmonics blocking to >,I0>,Idir>,I0dir> function descriptions Non-standard delay curves added Event lists revised on several functions RTD&mA card description improvements Ring-lug CT card option description added Fault view description added New U> and U< function measurement modes documented Vector jump protection description added Power factor protection description added Over/Under/Reverse protection descriptions removed. Replaced with power protection function description. Order code revised 		
Revision	1.03		
Date	14.8.2018		
Changes	 Added mA output option card description and ordercode Added HMI display technical data 		

2 Abbreviations

- AI Analog input
- AR Auto-recloser
- ASDU Application service data unit
- AVR Automatic voltage regulator
- BCD Binary-coded decimal
- CB Circuit breaker
- CBFP Circuit breaker failure protection
- CLPU Cold load pick-up
- CPU Central processing unit
- CT Current transformer
- CTM Current transformer module
- CTS Current transformer supervision
- DG Distributed generation
- DHCP Dynamic Host Configuration Protocol
- DI Digital input
- DO Digital output
- DOL Direct-on-line
- DR Disturbance recorder
- DT Definite time
- FF Fundamental frequency
- FFT Fast Fourier transform
- FTP File Transfer Protocol
- GI General interrogation
- HMI Human-machine interface
- HR Holding register
- HV High voltage
- HW Hardware
- IDMT- Inverse definite minimum time
- IED Intelligent electronic device

- IGBT Insulated-gate bipolar transistor
- I/O Input and output
- IRIG-B Inter-range instruction group, timecode B
- LCD Liquid-crystal display
- LED Light emitting diode
- LV Low voltage
- NC Normally closed
- NO Normally open
- NTP Network Time Protocol
- RMS Root mean square
- RSTP Rapid Spanning Tree Protocol
- RTD Resistance temperature detector
- RTU Remote terminal unit
- SCADA Supervisory control and data acquisition
- SG Setting group
- SOTF Switch-on-to-fault
- SW Software
- THD Total harmonic distortion
- TRMS True root mean square
- VT Voltage transformer
- VTM Voltage transformer module
- VTS Voltage transformer supervision

3 General

The AQ-G257 generator protection IED is a member of the AQ-200 product line. The hardware and software are modular: the hardware modules are assembled and configured according to the application's I/O requirements and the software determines the available functions. This manual describes the specific application of the AQ-G257 generator protection IED. For other AQ-200 series products please consult their respective device manuals.

The AQ-G257 generator protection IED is well-suited for large machines requiring complete generator protection and differential protection. There are up to nine (9) option card slots available for additional I/ O or communication cards for more comprehensive monitoring and control applications. AQ-G257 communicates using various protocols including the IEC 61850 substation communication standard.

4 IED user interface

4.1 Panel structure

The user interface section of an AQ-200 series device is divided into two user interface sections: one for the hardware and the other for the software. You can access the software interface either through the front panel or through the AQtivate freeware software suite.

4.1.1 Local panel structure

The front panel of AQ-250 series devices have multiple LEDs, control buttons and a local RJ-45 Ethernet port for configuration. Each unit is also equipped with an RS-485 serial interface and an RJ-45 Ethernet interface on the back of the device. See the image and list below.

Figure. 4.1.1 - 1. Local panel structure.

- 1. Four (4) default LEDs: "Power", "Error", "Start" (configurable) and "Trip" (configurable).
- 2. Sixteen (16) freely configurable LEDs (red, orange, green) with programmable legend texts.
- 3. Three (3) object control buttons: Choose the controllable object with the **Ctrl** button and control the breaker or other object with the I and the O buttons.
- 4. The L/R button switches between the local and the remote control modes.
- 5. Eight (8) buttons for IED local programming: the four navigation arrows, the **Back** and the **OK** buttons, the **Home** and the password activation buttons).
- 6. Twelve (12) freely configurable function buttons (F1...F12). Each button has a freely configurable LED (red, orange, green).
- 7. One (1) RJ-45 Ethernet port for IED configuration.

When the unit is powered on, the green "Power" LED is lit. When the red "Error" LED is lit, the device has an internal (hardware or software) error that affects the operation of the unit. The activation of the yellow "Start" LED and the red "Trip" LED are based on the setting the user has put in place in the software.

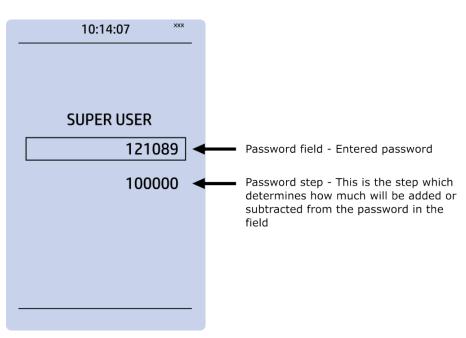
The sixteen freely configurable LEDs are located on the left side of the display. Their activation and color (green, orange, red) are based on the settings the user has put in place in the software.

The view in the screen is freely configurable. Virtual switches and buttons can be added which can be used to change the setting groups or control the device's general logic locally or remotely. The status of the object (circuit breaker, disconnector) can be displayed on the screen. All measured and calculated values regardless of the magnitude catecory (current, voltage, power, energy, frequency, etc.) can be shown on the screen.

Holding the I (object control) button down for five seconds brings up the button test menu. It displays all the physical buttons on the front panel. Pressing any of the listed buttons marks them as tested. When all buttons are marked as having been tested, the device will return back to the default view.

4.2 Configuring user levels and their passwords

As a factory default, no user level is locked with a password in an IED. In order to activate the different user levels, click the Lock button in the device's HMI and set the desired passwords for the different user levels.


NOTE!

Passwords can only be set locally in an HMI.

A number of stars are displayed in the upper right corner of the HMI; these indicate the current user level. The different user levels and their star indicators are as follows (also, see the image below for the HMI view):

- Super user (***)
- Configurator (**)
- Operator (*)
- User ()

10:14:07		ххх
USER	Ð	
OPERATOR	Ð	1
CONFIGURATOR	Ð	<u>[</u>]
SUPER USER	₽	- -
		X

You can set a new password for a user level by selecting the key icon next to the user level's name. After this you can lock the user level by pressing the **Return** key while the lock is selected. If you need to change the password, you can select the key icon again and give a new password. Please note that in order to do this the user level whose password is being changed must be unlocked.

As mentioned above, the access level of the different user levels is indicated by the number of stars. The required access level to change a parameter is indicated with a star (*) symbol if such is required. As a general rule the access levels are divided as follows:

- *User:* Can view any menus and settings but cannot change any settings, nor operate breakers or other equipment.
- *Operator:* Can view any menus and settings but cannot change any settings BUT can operate breakers and other equipment.
- *Configurator:* Can change most settings such as basic protection pick-up levels or time delays, breaker control functions, signal descriptions etc. and can operate breakers and other equipment.
- Super user: Can change any setting and can operate breakers and other equipment.

NOTE!

In AQ-250 frame units unlocking and locking a user level generates a time-stamped event to the event log.

NOTE!

Any user level with a password automatically locks itself after half an hour (30 minutes) of inactivity.

5 Functions

5.1 Functions included in AQ-G257

The AQ-G257 generator protection relay includes the following functions as well as the number of stages in those functions.

Table. 5.1 - 3. Protection functions of AQ-G257.

Name (number of stages)	IEC	ANSI	Description
NOC (4)	> >> >>> >>>>	50/51	Non-directional overcurrent protection
DOC (4)	ldir> ldir>> ldir>>> ldir>>>	67	Directional overcurrent protection
NEF (4)	10> 10>> 10>>> 10>>>	50N/51N	Non-directional earth fault protection
DEF (4)	IOdir> IOdir>> IOdir>>> IOdir>>>	67N/32N	Directional earth fault protection
OV (4)	U> U>> U>>> U>>>	59	Overvoltage protection
UV (4)	U< U<< U<<< U<<<	27	Undervoltage protection
NOV (4)	U0> U0>> U0>>> U0>>>	59N	Neutral overvoltage protection
FRQV (8)	f> f>> f>> f>>> f< f< f<< f<< f<<< f<<<	81O/81U	Overfrequency and underfrequency protection
ROCOF (1)	df/dt>/< (18)	81R	Rate-of-change of frequency
CUB (4)	12> 12>> 12>>> 12>>>	46/46R/46L	Negative sequence overcurrent/ phase current reversal/ current unbalance protection
VUB (4)	U1/U2>/< U1/U2>>/<< U1/U2>>/<< U1/U2>>>/<<	47/27P/59PN	Sequence voltage protection

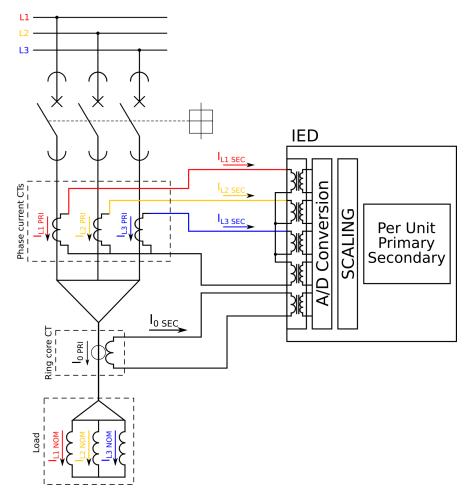
Name (number of stages)	IEC	ANSI	Description
HOC (4)	lh> lh>> lh>>> lh>>>>	50H/51H/68H	Harmonic overcurrent protection
CBFP (1)	CBFP	50BF/52BF	Circuit breaker failure protection
PQS (4)	P, Q, S>/< P, Q, S>>/<< P, Q, S>>/<< P, Q, S>>>/<< P, Q, S>>>/<<	32	Power protection
DIF (1)	ldb>/ldi>/l0dHV>/l0dLV>	87T/87N/87G	Generator/transformer differential protection
TOLM (1)	TM>	49M	Machine thermal overload protection
SEF (1)	U03rd>	64S	100 % stator earth fault protection
UEX (1)	Q<	40	Underexcitation protection
UIM (2)	Z< Z<<	21U	Underimpedance protection
VOC (1)	v>	51V	Voltage-restrained overcurrent protection
IAE (1)	I>U <iae< td=""><td>50/27</td><td>Inadvertent energizing protection</td></iae<>	50/27	Inadvertent energizing protection
OOS (1)	Pslip	78	Pole slip protection
VHZ (1)	V/Hz>	24	Volts-per-hertz overexcitation protection
UPF (1)	PF<	55	Power factor protection
VMEM (1)	-	-	Voltage memory
PGS (1)	PGx>/<	99	Programmable stage
ARC (1)	IArc>/I0Arc>	50Arc/50NArc	Arc fault protection (optional)

Table. 5.1 - 4. Control functions of AQ-G257.

Name	IEC	ANSI	Description
SGS	-	-	Setting group selection
ОВЈ	-	-	Object control and monitoring (10 objects available)
CIN	-	-	Indicator object monitoring (10 indicators available)
VJP	Δφ	78	Vector jump
SYN	ΔV/Δa/Δf	25	Synchrocheck
GSYN	$\Delta V / \Delta a / \Delta f$	25	Synchronizer (optional)

Table. 5.1 - 5. Monitoring functions of AQ-G257.

Name	IEC	ANSI	Description
CTS (2)	-	-	Current transformer supervision
VTS	-	60	Voltage transformer supervision
DR	-	-	Disturbance recorder
THD	-	-	Total harmonic distortion
CBW	-	-	Circuit breaker wear monitor


Name	IEC	ANSI	Description
RHC	-	-	Running hour counter
MR	-	-	Measurement recorder
VREC	-	-	Measurement value recorder

5.2 Measurements

5.2.1 Current measurement and scaling in differential applications

The current measurement module (CT module, or CTM) is used for measuring the currents from current transformers. The measured values are processed into the measurement database and they are used by measurement and protection functions. It is essential to understand the concept of current measurements to be able to get correct measurements.

Figure. 5.2.1 - 2. Current measurement terminology

PRI: The primary current, i.e. the current which flows in the primary circuit and through the primary side of the current transformer.

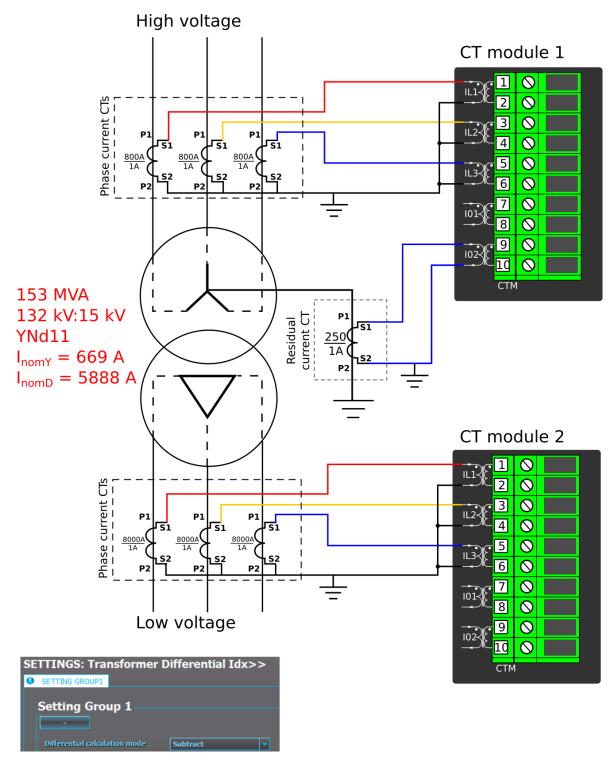
SEC: The secondary current, i.e. the current which the current transformer transforms according to its ratios. This current is measured by the device.

NOM: The nominal primary current of the protected transformer. The nominal current on the HV side differs from that on the LV side according to the transformer voltage ratio. The nominal current is calculated based on the transformer's MVA and the nominal voltage on each winding.

For the measurements to be correct the user needs to ensure that the measurement signals are connected to the correct inputs, that the current direction is connected correctly, and that the scaling is set correctly.

The device calculates the scaling factors based on the set values of the CT primary, the CT secondary and the nominal current. The device measures the secondary current, the current output from the current transformer installed into application's primary circuit. The rated primary and secondary currents of the CT need to be set for the device to "know" the primary and per-unit values. In power transformers, the protected unit's nominal current in both windings is calculated based on the given nominal power (MVA) and the nominal voltage. The settings can only give the apparatus nominal in p.u. (per-unit) when the nominal current is known. Also, knowing what the transformer's nominal current is makes the unit protection much easier and more straightforward to configure. In modern protection devices this scaling calculation is done internally after the current transformer's primary current, secondary current and machine nominal current are set.

🖉 Stage activation 🖆 TrafoModule 🐰 Current 🔛 Sequence 🏦 Su	upporting
• TSTAT • Idx> [87T,87N]	
Trafo Status [TRF]	
INFO ON-LINE DATA REGISTERS INFO EVENTS	
Transformer Characteristics	
Transformer nominal MVA	153 MVA (***
	0.1500.0 [0.1] 132 kV (***
HV side nominal voltage	0.1500.0 [0.1]
LV side nominal voltage	15 kV (****
CT Scaling HV Side	0.1300.0 [0.1]
Nominal current In	669.201 A (***
	1.00025000.000 [0.001]
CT Scaling LV Side	
Nominal current In	5888.973 A (*** 1.00025000.000 [0.001]


Normally, the primary current ratings for phase current transformers are ten amperes to thousands of amperes and their decimal multiples, while the secondary current ratings are 1 A and 5 A. Other, non-standard ratings can be directly connected as the scaling settings are flexible and have large ranges. For example, the ring core current transformer ratings may vary. Ring core current transformers are commonly used for sensitive earth fault protection and their rated secondary may be as low as 0.2 A in some cases.

The following chapter is an example on how to set the scaling of the device measurements for the selected current transformer and nominal load.

Example of CT scaling (application 1)

The following figure presents how CTs are connected to the device's measurement inputs. It also shows the CT ratings and the transformer nominal current. Note that S1 is always connected to an odd connector regardless of the CT direction. The CT direction is selected in the settings of the transformer differential protection function.

Because of the direction of the CTs and because the CTs' P1/S1 side is always wired to the modules's odd inputs, the "Differential calculation mode" setting has to be set to "Subtract" (*Protection* \rightarrow *TrafoModule* \rightarrow *Idx>* [87T,87N] \rightarrow *Settings*). This way the direction of the measured currents are checked correctly from the device's perspective.

The following table presents the initial data of the connection as well as the ratings.

Table. 5.2.1 - 6. Initial data.

High-voltage side CT		Low-voltage side CT			
- CT primary: 800 A	Ring core CT in Input I02	- CT primary: 8000 A			
- CT secondary: 1 A	- 310CT primary: 250 A	- CT secondary: 1 A			
High-voltage side nominal current	- 3I0CT secondary: 1 A	Low-voltage side nominal current			
669 A	5888 A				
- both CTs are pointing through the transformer (HV-S2 and LV-S2 are pointing in the same direction)					

The nominal current for both the HV and LV sides of the protected transformer are calculated based on the values set in the *Transformer characteristics* menu (*Protection* \rightarrow *TrafoModule* \rightarrow *TSTAT* \rightarrow *INFO*). The ratio between the CT modules 1 and 2 can be set in their respective tabs at *Measurement* \rightarrow *Transformers*. The per-unit scaling ("Scale meas. to In") is automatically set to "Object in p.u." in all machine protection devices and it cannot be changed.

Figure. 5.2.1 - 5. Phase CT scaling to machine nominal.

Fransformer Characterist	tics		CT Module 1 CT Module 2		
Transformer nominal HVA	0.1500.0 [0.1]	C ^{entre} l	Phase CT scaling —		
HV side nominal voltage	132 <i>kV</i>	Contraction of the second seco	Scale meas to In	Object In p.u. 💌	
LV side nominal voltage	0.1500.0 [0.1]	C+++.	Phase CT primary	800 A	
Transformer Zk %	0.1500.0 [0.1] 13.6 %	-	Phase CT secondary	0.2 10.0 [0.1]	
Transformer nom freg.	0.0125.00 [0.01] 50 Hz	(***	Nominal current In	669.201 A	(**:
HV side nominal current(pri)	669.2 <i>A</i>	(***	IL1 Polarity		
	0.0150000.00 [0.01]	(***	IL2 Polarity	-	
IV side nominal current(sec)	0.84 A 0.01250.00 [0.01]	(****.	IL3 Polarity		
IV CT nom to TR nom factor	0.84 p.u. 0.01.,250.00 [0.01]	(***	CT scaling factor P/S	800 <i>0.001100000.000 [0.001</i>]	
LV side nominal current(pri)	0.01250.00 [0.01] 5888.97 A 0.0150000.00 [0.01]	(***	CT scaling factor NOM	1.195 <i>0.001 100000.000 [0.001]</i>	
LV side nominal current(sec)	0.0150000.00 [0.01] 0.74 A 0.01250.00 [0.01]	(***	Ipu scaling primary	669.201 0.001100000.000 [0.001]	
LV CT nom to TR nom factor	0.01250.00 [0.01] 0.74 م.ر. 0.01250.00 [0.01]	(***	Ipu scaling secondary	0.837 0.001100000.000[0.001]	

As seen in the image above, device calculates both the HV side nominal current (669.2 A) and the LV side nominal current (5 888.97 A). The nominal current calculations are done according to the following formulas:

HV side nominal current (pri) =
$$\frac{trafo_{nom/3}}{U_{HV}/\sqrt{3}} = \frac{153\ 000\ 000/_3}{132\ 000/\sqrt{3}} \approx 669.201 \text{ A}$$

LV side nominal current (pri) =
$$\frac{trafo_{nom/3}}{U_{LV}/\sqrt{3}} = \frac{153\ 000\ 000/_3}{15\ 000/\sqrt{3}} \approx 5888.97 \text{ A}$$

The HV and LV side nominal current can also be calculated in per unit values as follows:

HV CT nom to TR nom factor =
$$\frac{HV \text{ side nominal current (pri)}}{Phase \text{ CT primary}} = \frac{669.2 \text{ A}}{800 \text{ A}} \approx 0.84 \text{ p. u.}$$

LV CT nom to TR nom factor = $\frac{LV \text{ side nominal current (pri)}}{Phase \text{ CT primary}} = \frac{5888.97 \text{ A}}{8000 \text{ A}} \approx 0.74 \text{ p. u.}$

The secondary nominal current (in amperes) is the result of multiplying the per unit value with the phase CT secondary side current. This current can be used when the unit is commissioned and when the directions of CTs are checked. See the example calculation below:

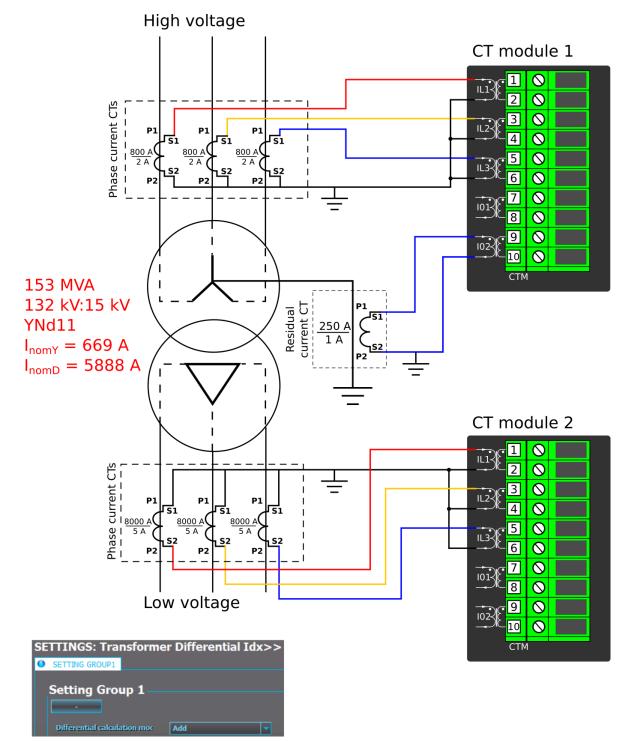
HV side nominal current (sec) = HV CT nom to TR nom factor × Phase CT secondary = 0.84 p.u. × 1 A = 0.84 A LV side nominal current (sec) = LV CT nom to TR nom factor × Phase CT secondary = 0.74 p.u. × 1 A = 0.74 A

In case the phase current CTs are connected to the module via a Holmgren (summing) connection, the use of coarse residual current measurement settings is required: the "I01 CT" settings are set according to the phase current CTs' ratings (800/1 A).

Figure. 5.2.1 - 6. Residual I01 CT scaling (coarse).

Residual I01 CT scaling		
101 CT primary	800 A	
I01 CT secondary	1 A	
I01 Polarity	-	
CT scaling factor P/S	800 <i>0.001100000.000 [0.001</i>]	(-)

The residual current CT is connected to the first CTM directly, which requires the use of sensitive residual current measurement settings: the "Residual I02 CT scaling" settings are set according to the residual current CT's ratings (250/1 A).


Figure. 5.2.1 - 7. Residual IO2 CT scaling (sensitive).

Residual I02 CT scaling				
102 CT primary		250	A	
	0.2025000.00 [0.10]			
IO2 CT secondary			A	
	0.1010.00 [0.10]			
IO2 Polarity	-	-		
CT scaling factor P/S		250		
	0.001100000.000 [0.001]			

Example of CT scaling (application 2)

The following figure presents how the CTs are connected to the device's measurement inputs. It also shows the CT ratings and the transformer nominal current. Note that S1 is always connected to an odd connector regardless of the CT direction. The CT direction is selected in the settings of the transformer differential protection function.

Because of the direction of the CTs and because the CTs' P1/S1 side is always wired to the modules's odd inputs, the "Differential calculation mode" has to be set to "Add" (*Protection* \rightarrow *TrafoModule* \rightarrow *ldx*> [87T,87N] \rightarrow *Settings*). The difference with the first application is that here the CTs point towards the protected object instead of pointing through it.

The following table presents the initial data of the connection as well as the ratings.

Table. 5.2.1 - 7. Initial data.

Machine nominal power: 153 MVA							
Machine high voltage side nominal amplitude: 132 kV							
Machine low voltage side nominal amp	litude: 15 kV						
High voltage side CT		Low voltage side CT					
- CT primary: 800 A	Residual current CT in Input I02	- CT primary: 8000 A					
- CT secondary: 2 A	- 3I0CT primary: 250 A	- CT secondary: 5 A					
High-voltage side nominal current - 3I0CT secondary: 1 A Low-voltage side nominal current							
669 A 5 888 A							
- both CTs are pointing towards the protected object (HV-S2 and LV-S2 are pointing at each other)							

The nominal currents on both the HV and the LV sides are the same as in Application 1. However, the CTs' secondary current levels have been changed to 2 A (on the HV side) and to 5 A (on the LV side). The nominal currents are still calculated the same way:

HV side nominal current (pri) =
$$\frac{trafo_{nom/_3}}{U_{HV}/_{\sqrt{3}}} = \frac{153\ 000\ 000/_3}{132\ 000/_{\sqrt{3}}} \approx 669.201 \text{ A}$$

LV side nominal current (pri) = $\frac{trafo_{nom/3}}{U_{LV}/\sqrt{3}} = \frac{153\ 000\ 000/_3}{15\ 000/\sqrt{3}} \approx 5888.97 \text{ A}$

The HV and LV side nominal current can also be calculated in per unit values as follows:

Phase CT primary

HV CT nom to TR nom factor
$$=$$
 $\frac{HV \ side \ nominal \ current \ (pri)}{Phase \ CT \ primary} = \frac{669.2 \ A}{800 \ A} \approx 0.84 \ p. u.$
LV CT nom to TR nom factor $=$ $\frac{LV \ side \ nominal \ current \ (pri)}{Phase \ CT \ primary} = \frac{5888.97 \ A}{8000 \ A} \approx 0.74 \ p. u.$

The secondary nominal current (in amperes) is the result of multiplying the per unit value with the phase CT secondary side current. This current can be used when the unit is commissioned and when the directions of CTs are checked. In Application 2 it is necessary to inject higher amplitudes to the CTs via the secondary injection tool in order to reach the nominal currents. See the example calculation below:

HV side nominal current (sec)

= HV CT nom to TR nom factor \times Phase CT secondary = 0.84 p.u. \times 2 A = 1.68 A

LV side nominal current (sec)

= LV CT nom to TR nom factor \times Phase CT secondary = 0.74 p.u. \times 5 A = 3.70 A

Settings

Table. 5.2.1 - 8. Settings of the Phase CT scaling.

Name	Unit	Range	Step	Default	Description
Scale measurement to In	-	0: CT nom p.u. 1: Object In p.u.	-	0: CT nom p.u.	The selection of the reference used in the device's per-unit system scaling. Either the set phase current CT primary or the protected object's nominal current. (NOT APPLICBLE IN MACHINE PROTECTION!)
Phase CT primary	A	125000	0.001	100	The rated primary current of the current transformer.
Phase CT secondary	A	0.210	0.001	5	The rated secondary current of the current transformer.
Nominal current	A	125000	0.001	100	The nominal current of the protected object. This setting is only visible if the option "Object In p.u." has been selected in the "Scale meas. to In" setting.
IL1 Polarity	-	0: - 1: Invert	-	0: -	The selection of the first current measurement channel's (IL1) polarity (direction). The default setting is for the positive current to flow from connector 1 to connector 2, with the secondary currents' starpoint pointing towards the line.
IL2 Polarity	-	0: - 1: Invert	-	0: -	The selection of the second current measurement channel's (IL2) polarity (direction). The default setting is for the positive current to flow from connector 3 to connector 4, with the secondary currents' starpoint pointing towards the line.
IL3 Polarity	-	0: - 1: Invert	-	0: -	The selection of the third current measurement channel's (IL3) polarity (direction). The default setting is for the positive current to flow from connector 5 to connector 6, with the secondary currents' starpoint pointing towards the line.
CT scaling factor P/S	-	-	-	-	A feedback value; the calculated scaling factor that is the ratio between the primary current and the secondary current.
CT scaling factor NOM	-	-	-	-	A feedback value; the calculated scaling factor that is the ratio between the set primary current and the set nominal current.
lpu scaling primary	-	-	-	-	A feedback value; the scaling factor for the primary current's per- unit value.
lpu scaling secondary	-	-	-	-	A feedback value; the scaling factor for the secondary current's per- unit value.

Table. 5.2.1 - 9.	Settings of the Residual I01 C	T scaling.

Name	Unit	Range	Step	Default	Description
I01 CT primary	A	0.225000	0.00001	100	The rated primary current of the current transformer.
I01 CT secondary	А	0.110	0.00001	1.0	The rated secondary current of the current transformer.
I01 Polarity	-	0: - 1: Invert	-	0: -	The selection of the coarse residual measurement channel's (I01) polarity (direction). The default setting is for the positive current to flow from connector 7 to connector 8.
CT scaling factor P/S	-	-	-	-	A feedback value; the calculated scaling factor that is the ratio between the primary current and the secondary current.

Table. 5.2.1 - 10. Settings of the Residual IO2 CT scaling.

Name	Unit	Range	Step	Default	Description
I02 CT primary	A	125000	0.00001	100	The rated primary current of the current transformer.

Name	Unit	Range	Step	Default	Description
I02 CT secondary	А	0.00110	0.00001	0.2	The rated secondary current of the current transformer.
I02 Polarity	-	0: - 1: Invert	-	0: -	The selection of the sensitive residual measurement channel's (102) polarity (direction). The default setting is for the positive current to flow from connector 9 to connector 10.
CT scaling factor P/S	-	-	-	-	A feedback value; the calculated scaling factor that is the ratio between the primary current and the secondary current.

Measurements

The following measurements are available in the measured current channels.

Table, 5.2.1 - 11	. Per-unit phase	current measurements.
10010.0.2.1	. I of anne pridoo	our one mouour on one of the

Name	Unit	Range	Step	Description
Phase current ILx ("Pha.curr.ILx")	× In	0.0001250.000	0.001	The RMS current measurement (in p.u.) from each of the phase current channels.
Phase current ILx TRMS ("Pha.curr.ILx TRMS")	× In	0.0001250.000	0.001	The TRMS current (inc. harmonics up to 31 st) measurement (in p.u.) from each of the phase current channels.
Peak-to-peak current ILx ("P-P curr.ILx")	× In	0.000500.000	0.001	The peak-to-peak current measurement (in p.u.) from each of the phase current channels.

Table. 5.2.1 - 12. Primary phase current measurements.

Name	Unit	Range	Step	Description
Primary phase current ILx ("Pri.Pha.curr.ILx")	A	0.0001000000.000	0.001	The primary RMS current measurement from each of the phase current channels.
Primary phase current ILx TRMS ("Pha.curr.ILx TRMS Pri")	A	0.0001000000.000	0.001	The primary TRMS current (inc. harmonics up to 31 st) measurement from each of the phase current channels.

Table. 5.2.1 - 13. Secondary phase current measurements.

Name	Unit	Range	Step	Description
Secondary phase current ILx "Sec.Pha.curr.ILx")	A	0.000300.000	0.001	The primary RMS current measurement from each of the phase current channels.
Secondary phase current ILx TRMS ("Pha.curr.ILx TRMS Sec")	A	0.000300.000	0.001	The primary TRMS current (inc. harmonics up to 31 st) measurement from each of the phase current channels.

Table. 5.2.1 - 14. Phase current angle measurements.

Name	Unit	Range	Step	Description
Phase angle ILx ("Pha.angle ILx")	deg	0.000360.000	0.001	The phase angle measurement from each of the three phase current inputs.

Table, 5.2.1	- 15. Per-	unit residual	current	measurements.

Name	Unit	Range	Step	Description
Residual current l0x ("Res.curr.l0x")	× In	0.0001250.000	0.001	The RMS current measurement (in p.u.) from the residual current channel I01 or I02.
Calculated I0	× In	0.0001250.000	0.001	The RMS current measurement (in p.u.) from the calculated I0 current channel.
Phase current I0x TRMS ("Res.curr.I0x TRMS")	× In	0.0001250.000	0.001	The TRMS current (inc. harmonics up to 31 st) measurement (in p.u.) from the residual current channel I01 or I02.
Peak-to-peak current I0x ("P-P curr.I0x")	× In	0.000500.000	0.001	The peak-to-peak current measurement (in p.u.) from the residual current channel I01 or I02.

Table. 5.2.1 - 16. Primary residual current measurements.

Name	Unit	Range	Step	Description
Primary residual current I01 ("Pri.Res.curr.I0x")	A	0.0001000000.000	0.001	The primary RMS current measurement from the residual current channel I01 or I02.
Primary calculated I0 ("Pri.calc.I0")	A	0.0001000000.000	0.001	The primary RMS current measurement from the calculated current channel I0.
Primary residual current I0x TRMS ("Res.curr.I01 TRMS Pri")	A	0.0001000000.000	0.001	The TRMS current (inc. harmonics up to 31 st) measurement from the primary residual current channel I01 or I02.

Table. 5.2.1 - 17. Secondary residual current measurements.

Name	Unit	Range	Step	Description
Secondary residual current I0x ("Sec.Res.curr.I0x")	A	0.000300.000	0.001	The secondary RMS current measurement from the residual current channel I01 or I02.
Secondary calculated I0 ("Sec.calc.I0")	A	0.000300.000	0.001	The secondary RMS current measurement from the calculated current channel I0.
Secondary residual current I0x TRMS ("Res.curr.I0x TRMS Sec")	A	0.000300.000	0.001	The secondary TRMS current (inc. harmonics up to 31 st) measurement from the secondary residual current channel I01 or I02.

Table. 5.2.1 - 18. Residual current phase angle measurements.

Name	Unit	Range	Step	Description
Residual current angle I0x ("Res.curr.angle I0x")	deg	0.000360.000	0.001	The residual current angle measurement from the I01 or I02 current input.
Calculated I0 angle	deg	0.000360.000	0.001	The calculated residual current angle measurement.

Table. 5.2.1 - 19. Per-unit sequence current measurements.

Name	Unit	Range	Step	Description
Positive sequence current ("Positive sequence curr.")	×In	0.001250.0	0.001	The measurement (in p.u.) from the calculated positive sequence current.
Negative sequence current ("Negative sequence curr.")	×In	0.001250.0	0.001	The measurement (in p.u.) from the calculated negative sequence current.
Zero sequence current ("Zero sequence curr.")	×In	0.001250.0	0.001	The measurement (in p.u.) from the calculated zero sequence current.

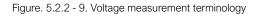
Table. 5.2.1 - 20. Primary sequence current measurements.

Name	Unit	Range	Step	Description
Primary positive sequence current ("Pri.Positive sequence curr.")	A	0.001000000.0	0.001	The primary measurement from the calculated positive sequence current.
Primary negative sequence current ("Pri.Negative sequence curr.")	A	0.001000000.0	0.001	The primary measurement from the calculated negative sequence current.
Primary zero sequence current ("Pri.Zero sequence curr.")	A	0.001000000.0	0.001	The primary measurement from the calculated zero sequence current.

Table. 5.2.1 - 21. Secondary sequence current measurements.

Name	Unit	Range	Step	Description
Secondary positive sequence current ("Sec.Positive sequence curr.")	A	0.000300.000	0.001	The secondary measurement from the calculated positive sequence current.
Secondary negative sequence current ("Sec.Negative sequence curr.")	A	0.000300.000	0.001	The secondary measurement from the calculated negative sequence current.
Secondary zero sequence current ("Sec.Zero sequence curr.")	A	0.000300.000	0.001	The secondary measurement from the calculated zero sequence current.

Table. 5.2.1 - 22. Sequence phase angle measurements.


Name	Unit	Range	Step	Description
Positive sequence current angle ("Positive sequence curr.angle")	deg	0.000360.0	0.001	The calculated positive sequence current angle.
Negative sequence current angle ("Negative sequence curr.angle")	deg	0.000360.0	0.001	The calculated negative sequence current angle.
Zero sequence current angle ("Zero sequence curr.angle")	deg	0.000360.0	0.001	The calculated zero sequence current angle.

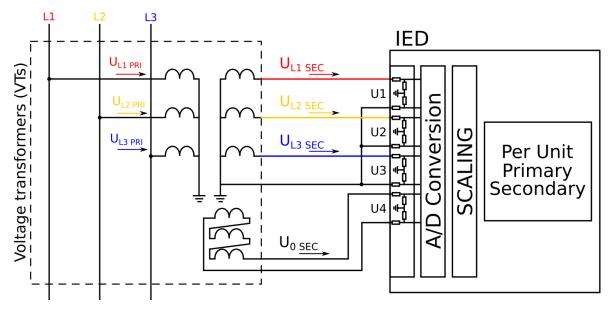

Name	Unit	Range	Step	Default	Description
Harmonics calculation values ("Harm Abs.pr Perc.")	-	0: Percent 1: Absolute	-	0: Percent	Defines whether the harmonics are calculated as percentage or absolute values.
Harmonics display	-	0: Per unit 1: Primary A 2: Secondary A	-	0: Per unit	Defines how the harmonics are displayed: in p.u. values, as primary current values, or as secondary current values.
Maximum harmonics value ("IxxMaximum harmonic")	A	0.0001000000.000	0.001	-	Displays the maximum harmonics value of the selected current input ILx or I0x.
Fundamental frequency ("lxx fundamental")	A	0.0001000000.000	0.001	-	Displays the current value of the fundamental frequency measurement (RMS) from the selected current input ILx or I0x.
Ixx harmonics (2 nd 31 st harmonic)	A	0.0001000000.000	0.001	-	Displays the selected harmonic from the current input ILx or I0x.

Table. 5.2.1 - 23. Harmonic current measurements.

5.2.2 Voltage measurement and scaling

The voltage measurement module (VT module, or VTM) is used for measuring the voltages from voltage transformers. The measured values are processed into the measurement database and they are used by measurement and protection functions (the protection function availability depends of the device type). It is essential to understand the concept of voltage measurements to be able to get correct measurements.

PRI: The primary voltage, i.e. the voltage in the primary circuit which is connected to the primary side of the voltage transformer.

SEC: The secondary voltage, i.e. the voltage which the voltage transformer transforms according to the ratio. This voltage is measured by the device.

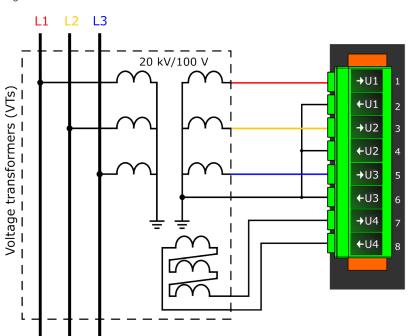
For the measurements to be correct the user needs to ensure that the measurement signals are connected to the correct inputs, that the voltage direction correct, and that the scaling is set correctly.

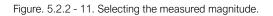
The device calculates the scaling factors based on the set VT primary, and secondary voltage values. The device measures secondary voltages, which are the voltage outputs from the VT installed into the application's primary circuit. The voltage can be measured directly from the system as well (up to 400 V nominal line to neutral voltage). When connecting voltage directly, measuring mode must be set to 3LN+U4 mode. The rated primary and secondary voltages of the VT need to be set for the device to "know" the primary and per-unit values. In modern protection devices this scaling calculation is done internally after the voltage transformer's primary and secondary voltages are set.

Normally, the primary line-to-line voltage rating for VTs is 400 V...60 kV, while the secondary voltage ratings are 100 V...210 V. Non-standard ratings can also be directly connected as the scaling settings are flexible and have large ranges.

Example of VT scaling

The following figure presents how VTs are connected to the device's measurement inputs. It also shows the VT ratings. In the figure below, three line-to-neutral voltages are connected along with the zero sequence voltage; therefore, the 3LN+U4 mode must be selected and the U4 channel must be set as U0. Other possible connections are presented later in this chapter.




Figure. 5.2.2 - 10. Connections.

The following table presents the initial data of the connection.

Table. 5.2.2 - 24	4. Initial data.
-------------------	------------------

Phase voltage VT	Zero sequence voltage VT			
- VT primary: 20 000 V	- U4 VT primary: 20 000 V			
- VT secondary: 100 V	- U4 VT secondary: 100 V			
- the zero sequence voltage is connected similarly to line-to-neutral voltages (+U0).				
- in case wiring is incorrect, all polarities can be individually	switched by 180 degrees in the device.			

If the protection is voltage-based, the supervised voltage can be based either on line-to-line voltages or on line-to-earth voltages. This selection is defined in the "Measured magnitude" of each protection stage menu separately (*Protection* \rightarrow *Voltage* \rightarrow [protection stage menu] \rightarrow *INFO*; see the image below). The number of available protection functions depends on the device type.

-	
U> mode	Activated 🔹
U> condition	Normal 💌
U> Pick-up setting	21000 <i>01e+06[0.1]</i>
Expected operating time	0.02 : <i>01800 [0.005]</i>
Time remaining to trip	0 : <i>01800 [0.005]</i>
Umeas/Uset at the moment	0 <i>01250[0.01]</i>
Measured magnitude	P-P Voltages 🔹

Voltage protection itself is based on the nominal voltage. A 20 000 V nominal voltage equals a 100 % setting in voltage-based protection functions. A 120 % trip setting in the overvoltage stage equals to 24 000 V on the primary level (in this case a 20 % increase equals 4000 V).

Once the settings have been sent to the device, device calculates the scaling factors and displays them for the user. The "VT scaling factor P/S" describes the ratio between the primary voltage and the secondary voltage. The per-unit scaling factors ("VT scaling factor p.u.") for both primary and secondary values are also displayed.

The triggering of a voltage protection stage can be based on one, two, or three voltages (the "Pick-up terms" setting at *Protection* \rightarrow *Voltage* \rightarrow [protection stage menu] \rightarrow *Settings*). Fault loops are either line-to-line or line-to-neutral according to the "Measured magnitude" setting. As a default, the activation of any one voltage trips the voltage protection stage.

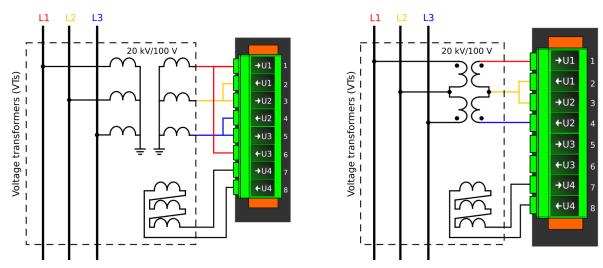
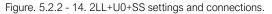
🤗 Stage activation 🔛 Current 🔛 Voltage 🚭 Frequency 🔛	Sequence 能 Supporting]
Protection Settings		
● U> [59]		
Protection Settings		
INFO O SETTINGS SEGISTERS SIO SEVENTS		
Protection Settings		
• SETTING GROUP1		
Pick-up terms	1 voltage	
Pick-up setting Uset	1 voltage 2 voltages 3 voltages	96Un
Delay type	DT	
Definite operating time delay	0.0001800.000 [0.005]	0.04 s
Release Time delay	0.000150.000 [0.005]	0.06 \$
Delayed Pick-up release	Yes	
Op.Time calc reset after release time	Yes	
Continue time calculation during release time	No	

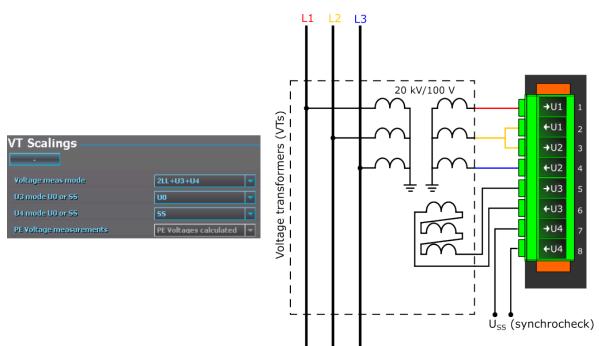
Figure. 5.2.2 - 12. Selecting the operating mode.

There are several different ways to use all four voltage channels. The voltage measurement modes are the following:

- 3LN+U4 (three line-to-neutral voltages and U4 can be used for either zero sequence voltage or synchrochecking)
- 3LL+U4 (three line-to-line voltages and U4 can be used either for zero sequence voltage or synchrochecking)
- 2LL+U3+U4 (two line-to-line voltages and the U3 and the U4 channels can be used for synchrochecking, zero sequence voltage, or for both)

The 3LN+U0 is the most common voltage measurement mode. See below for example connections of voltage line-to-line measurement (3LL on the left, 2LL on the right).


Figure. 5.2.2 - 13. Example connections for voltage line-to-line measurement.

If only two line-to-line voltages are measured, the third one (U_{L31}) is calculated based on the U_{L12} and U_{L23} vectors. When measuring line-to-line voltages, the line-to-neutral voltages can also be calculated as long as the value of U0 is measured and known.

The voltage measurement channel U4 can also be used to measure either the zero sequence voltage (U0) or the side 2 voltage of the circuit breaker (Synchrocheck). If the 2LL+U3+U4 mode is selected, the third channel (U3) can be used for this purpose. Please note that U0 can only be measured by using a single channel.

In the image below is an example of 2LL+U0+SS, that is, two line-to-line measurements with the zero sequence voltage and voltage from side 2 for Synchrocheck. Since U0 is available, line-to-neutral voltages can be calculated.

The image collection below presents the device's behavior when nominal voltage is injected into the device via secondary test equipment. The measurement mode is 3LN+U4 which means that the device is measuring line-to-neutral voltages. The VT scaling has been set to 20 000 : 100 V. The U4 channel measures the zero sequence voltage which has the same ratio (20 000 : 100 V).

Figure. 5.2.2 - 15. Measurement behavior when nominal voltage injected.

Primary Voltage Magnitude System volt ULI mag System volt UL2 mag System volt UL2 mag System volt UL3 mag	11528.3 v 01e+06[0.0] 01e+06[0.0] 11549.1 v 01e+06[0.0] 01e+06[0.0] 01e+06[0.0]	Secondary voltages		57.76 v 57.61 v 57.73 v 0 v	Per-Unit voltages Utfoltpa. Utfoltpa. U390tpa. U990tpa.	0.500[0.01] 0.500[0.01] 0.500[0.01]	1 sLb
Voltage va Angle 57,735 ∨ Frequency 0.0° Frequency 60.000 Hz vb 57,735 ∨ -120.0° 50.000 Hz vb 57,735 ∨ -100.0° 50.000 Hz vc 50,735 ∨ -100.0° 50.000 Hz vc 0.00° 50.000 Hz vc vc 0.00° 50.000 Hz vc vc 0.00° 50.000 Hz vc vc 0.00° v S0.000 Hz sc vc 0.00° v S0.000 Hz sc vc 0.00° v Sc Sc sc	Phase Angles UJ Angle UZ Angle UZ Angle UZ Angle	0360[0.01]	0 wy 240.14 wy 120.03 wy 0 wy		UL 12 UL 23 UL 24 UL 1 UL 2 UL 2 UL 2 UL 25 System UL System		- UOMeasured UL1 - UL2 - UL3 - UL12 - UL12 - UL23 - UL31

The image collection below presents the device's behavior when voltage is injected into the device via secondary test equipment during an earth fault. The measurement mode is 3LN+U4 which means that the device is measuring line-to-neutral voltages. The VT scaling has been set to 20 000 : 100 V. The U4 channel measures the zero sequence voltage which has the same ratio (20 000 : 100 V).

Figure. 5.2.2 - 16. Device behavior when voltage injected during an earth fault.

Primary Voltage Magnitude System volt.01.2 mag System volt.01.2 mag System volt.01.3 mag System volt.01.3 mag		160.89 V 2258.9 V 9585.7 V 126.21 V	Secondary voltages	0500 [0.01] 0500 [0.01] 0500 [0.01]	40.72 v 61.53 v 97.91 v 70.75 v	Per-Unit voltage: Utvolt.par. U2Volt.par. U3Volt.par. U4Volt.par.	5 0.500[0.01] 0.500[0.01] 0.500[0.01]	0.71 лов 1.06 лов 1.7 лов 0.7 лов
Veltage Module Angle Frequency Va 40.825 45.00° 50.000 Hz Vb 61.481 -169.00° 50.000 Hz Vc 97.421 128.21° 50.000 Hz Vz 70.710 135.00° 50.000 Hz Vdc 48.000 V For any state Injection signals	Phase Angles UI Angle U2 Angle U3 Angle U3 Angle		0.360[0.0] 0.360[0.0] 0.360[0.0] 0.360[0.0]	0 day 155.76 day 81.22 day 89.76 day		- UL 12 UL 23 UL 31 UL 1 UL 2 UL 3 UL 3 VISystem		U0Measured UIL1 UIL2 UIL2 UIL2 UIL23 UIL31

Troubleshooting

When the measured voltage values differ from the expected voltage values, the following table offers possible solutions for the problems.

Problem	Check / Resolution
The measured voltage amplitude in all phases does not match the injected voltage.	The scaling settings or the voltage measurement mode may be wrong, check that the settings match with the connected voltage transformer (<i>Measurement</i> \rightarrow <i>Transformers</i> \rightarrow <i>VT Module</i>).
The measured voltage amplitude does not match one of the measured phases./ The calculated U0 is measured even though it should not.	Check the wiring connections between the injection device or the VTs and the device.
The measured voltage amplitudes are OK but the angles are strange./ The voltage unbalance protection trips immediately after activation./ The earth fault protection trips immediately after it is activated and voltage calculated.	The voltages are connected to the measurement module but the order or polarity of one or all phases is incorrect. In device settings, go to <i>Measurement</i> → <i>Phasors</i> and check the "System voltage vectors" diagram. When all connections are correct, the diagram (symmetric feeding) should look like this:

Settings

Table. 5.2.2 - 25. Settings of the VT scaling.

Name	Range	Step	Default	Description
Voltage measurement mode	0: 3LN+U4 1: 3LL+U4 2: 2LL+U3+U4	-	0: 3LN+U4	The device's voltage wiring method. The voltages are scaled according the set voltage measurement mode.

Name	Range	Step	Default	Description
U3 mode U0 or SS	0: Not Used 1: U0 2: SS	-	0: Not Used	The voltage channel U3 can be used to measure zero sequence voltage (U0) or the Synchrocheck voltage (SS). If neither is needed, the (default) option "Not Used" should be active. This setting is only valid if the "2LL+U3+U4" mode is selected.
U0 (U3) Measured from	0: Broken Delta 1: Neutral point 2: Open delta	-	0: Broken delta	Defines how the secondary voltage is scaled to the primary. Does not affect how protection operates, it only affects the displayed primary voltages. This parameter is visible when the "U3 mode U0 or SS" has been set to the "U0" mode.
U4 mode U0 or SS	0: Not Used 1: U0 2: SS	-	0: Not Used	The voltage channel U4 can be used to measure zero sequence voltage (U0) or the Synchrocheck voltage (SS). If neither is needed, the (default) option "Not Used" should be active.
U0 (U4) Measured from	0: Broken Delta 1: Neutral point 2: Open delta	-	0: Broken delta	Defines how the secondary voltage is scaled to the primary. Does not affect how protection operates, it only affects the displayed primary voltages. This parameter is visible when the "U4 mode U0 or SS" has been set to the "U0" mode.
Voltage memory	0: Disabled 1: Activated	-	0: Disabled	Activates the voltage memory. The "Voltage memory" chapter describes the function in more detail.
P-E Voltage measurements	0: No P-E voltages available 1: P-E Voltages calculated 2: P-E Voltages measured	-	-	Indicates whether or not phase-to-earth voltages are available. Also indicates whether P-E voltages are measured from the voltage channels directly or if they are calculated from measured line-to-line and zero sequence voltages.
VT primary	11000000.0V	0.1V	20000.0V	The rated primary voltage of the voltage transformer.
VT secondary	0.2400.0V	0.1V	100.0V	The rated secondary voltage of the voltage transformer.
U3 Res/SS VT primary	11000000V	0.1V	20000.0V	The primary nominal voltage of the connected U0 or SS VT. This setting is only valid if the "2LL+U3+U4" mode is selected.
U3 Res/SS VT secondary	0.2400V	0.1V	100.0V	The secondary nominal voltage of the connected U0 or SS VT. This setting is only valid if the "2LL+U3+U4" mode is selected.
U4 Res/SS VT primary	11000000V	0.1V	20000.0V	The primary nominal voltage of the connected U0 or SS VT.
U4 Res/SS VT secondary	0.2400V	0.1V	100.0V	The secondary nominal voltage of the connected U0 or SS VT.
U1 Polarity	0: - 1: Invert	-	0: -	The selection of the first voltage measurement channel's (U1) polarity (direction). The default setting is for the positive voltage to flow from connector 1 to connector 2, with the secondary voltage's starpoint pointing towards the line.
U2 Polarity	0: - 1: Invert	-	0: -	The selection of the second voltage measurement channel's (U2) polarity (direction). The default setting is for the positive voltage to flow from connector 1 to connector 2, with the secondary voltage's starpoint pointing towards the line.
U3 Polarity	0: - 1: Invert	-	0: -	The selection of the third voltage measurement channel's (U3) polarity (direction). The default setting is for the positive voltage to flow from connector 1 to connector 2, with the secondary voltage's starpoint pointing towards the line.
U4 Polarity	0: - 1: Invert	-	0: -	The selection of the fourth voltage measurement channel's (U4) polarity (direction). The default setting is for the positive voltage to flow from connector 1 to connector 2, with the secondary voltage's starpoint pointing towards the line.
VT scaling factor P/S	-	-	-	A feedback value; the calculated scaling factor that is the ratio between the primary voltage and the secondary voltage.
VT scaling factor p.u. Pri	-	-	-	A feedback value; the scaling factor for the primary voltage's per- unit value.
VT scaling factor p.u. Sec	-	-	-	A feedback value; the scaling factor for the secondary voltage's per- unit value.

Name	Range	Step	Default	Description
U3 VT scaling factor P/S U0/ SS	-	-	-	A feedback value; the scaling factor that is the ratio between the U3 channel's primary and secondary voltages. This setting is only valid if the "2LL+U3+U4" mode is selected.
U3 scaling factor p.u. Pri	-	-	-	A feedback value for channel U3; the scaling factor for the primary voltage's per-unit value. This setting is only valid if the "2LL+U3+U4" mode is selected.
U3 scaling factor p.u. Sec	-	-	-	A feedback value for channel U3; the scaling factor for the secondary voltage's per-unit value. This setting is only valid if the "2LL+U3+U4" mode is selected.
U4 VT scaling factor P/S U0/ SS	-	-	-	A feedback value; the scaling factor that is the ration between the U4 channel's primary and secondary voltages. This setting is only valid is the "2LL+U3+U4" mode is selected.
U4 scaling factor p.u. Pri	-	-	-	A feedback value for channel U4; the scaling factor for the primary voltage's per-unit value. This setting is only valid if the "2LL+U3+U4" mode is selected.
U4 scaling factor p.u. Sec	-	-	-	A feedback value for channel U4; the scaling factor for the secondary voltage's per-unit value. This setting is only valid if the "2LL+U3+U4" mode is selected.

Measurements

The following measurements are available in the measured voltage channels.

Table. 5.2.2 - 26. Per-unit voltage measurements.

Name	Unit	Range	Step	Description
Voltage Ux ("UxVolt p.u.")	×Un	0.00500.0	0.01	The RMS voltage measurement (in p.u.) from each of the voltage channels.
Voltage Ux TRMS ("UxVolt TRMS p.u.")	×Un	0.00500.0	0.01	The TRMS voltage (inc. harmonics up to 31 st) measurement (in p.u.) from each of the voltage channels.

Name	Unit	Range	Step	Description
Secondary voltage Ux ("Ux Volt sec")	V	0.00500.0	0.01	The secondary RMS voltage measurement from each of the voltage channels.
Secondary voltage Ux TRMS ("UxVolt TRMS sec")	V	0.00500.0	0.01	The secondary TRMS voltage (inc. harmonics up to 31 st) measurement from each of the voltage channels.

Table. 5.2.2 - 28. Voltage phase angle measurements.

Name	Unit	Range	Step	Description
Ux Angle	deg	0.00360.00	0.01	The phase angle measurement from each of the four voltage inputs.

Table. 5.2.2 - 29. Per-unit sequence voltage measurements.

Name	Unit	Range	Step	Description
Positive sequence voltage ("Pos.seq.Volt.p.u.")	× Un	0.00500.0	0.01	The measurement (in p.u.) from the calculated positive sequence voltage.

Name	Unit	Range	Step	Description
Negative sequence voltage ("Neg.seq.Volt.p.u.")	×Un	0.00500.0	0.01	The measurement (in p.u.) from the calculated negative sequence voltage.
Zero sequence voltage ("Zero.seq.Volt.p.u.")	×Un	0.00500.0	0.01	The measurement (in p.u.) from the calculated zero sequence voltage.

Table. 5.2.2 - 30. Primary sequence voltage measurements.

Name	Unit	Range	Step	Description
Primary positive sequence voltage ("Pos.seq.Volt.pri")	V	0.001000000.00	0.01	The primary measurement from the calculated positive sequence voltage.
Primary negative sequence voltage ("Neg.seq.Volt.pri")	V	0.001000000.00	0.01	The primary measurement from the calculated negative sequence voltage.
Primary zero sequence voltage ("Zero.seq.Volt.pri")	V	0.001000000.00	0.01	The primary measurement from the calculated zero sequence voltage.

Table. 5.2.2 - 31. Secondary sequence voltage measurements.

Name	Unit	Range	Step	Description
Secondary positive sequence voltage ("Pos.seq.Volt.sec")	V	0.004800.0	0.01	The secondary measurement from the calculated positive sequence voltage.
Secondary negative sequence voltage ("Neg.seq.Volt.sec")	V	0.004800.0	0.01	The secondary measurement from the calculated negative sequence voltage.
Secondary zero sequence voltage ("Zero.seq.Volt.sec")	V	0.004800.0	0.01	The secondary measurement from the calculated zero sequence voltage.

Table. 5.2.2 - 32. Sequence voltage angle measurements.

Name	Unit	Range	Step	Description
Positive sequence voltage angle ("Pos.seq.Volt.Angle")	deg	0.00360.0	0.01	The calculated positive sequence voltage angle.
Negative sequence voltage angle ("Neg.seq.Volt.Angle")	deg	0.00360.0	0.01	The calculated negative sequence voltage angle.
Zero sequence voltage angle ("Zero.seq.Volt.Angle")	deg	0.00360.0	0.01	The calculated zero sequence voltage angle.

Table. 5.2.2 - 33. System primary voltage measurements.

Name	Unit	Range	Step	Description
System voltage magnitude UL12 ("System volt UL12 mag")	V	0.001000000.00	0.01	The primary RMS line-to-line UL12 voltage (measured or calculated). You can also select the row where the unit for this is kV.

Name	Unit	Range	Step	Description
System voltage magnitude UL23 ("System volt UL23 mag")	v	0.001000000.00	0.01	The primary RMS line-to-line UL23 voltage (measured or calculated). You can also select the row where the unit for this is kV.
System voltage magnitude UL31 ("System volt UL31 mag")	v	0.001000000.00	0.01	The primary RMS line-to-line UL31 voltage (measured or calculated). You can also select the row where the unit for this is kV.
System voltage magnitude UL1 ("System volt UL1 mag")	V	0.001000000.00	0.01	The primary RMS line-to-neutral UL1 voltage (measured or calculated). You can also select the row where the unit for this is kV.
System voltage magnitude UL2 ("System volt UL2 mag")	V	0.001000000.00	0.01	The primary RMS line-to-neutral UL2 voltage (measured or calculated). You can also select the row where the unit for this is kV.
System voltage magnitude UL3 ("System volt UL3 mag")	V	0.001000000.00	0.01	The primary RMS line-to-neutral UL3 voltage (measured or calculated). You can also select the row where the unit for this is kV.
System voltage magnitude U0 ("System volt U0 mag")	v	0.001000000.00	0.01	The primary RMS zero sequence U0 voltage (measured or calculated). You can also select the row where the unit for this is kV. There is also a row where the unit is %.
System voltage magnitude U3 ("System volt U3 mag")	v	0.001000000.00	0.01	The primary measured RMS Synchrocheck voltage (SS). This magnitude is displayed only when the "2LL+U3+U4" mode is selected and both U3 and U4 are in use. You can also select the row where the unit for this is kV.
System voltage magnitude U4 ("System volt U4 mag")	v	0.001000000.00	0.01	The primary measured RMS Synchrocheck voltage (SS). This magnitude is displayed only when the "2LL+U3+U4" mode is selected and both U3 and U4 are in use. You can also select the row where the unit for this is kV.

Table. 5.2.2 - 34. Primary system voltage angles.

Name	Unit	Range	Step	Description
System voltage angle UL12 ("System volt UL12 ang")	deg	0.00360.0	0.01	The primary line-to-line angle UL12 (measured or calculated).
System voltage angle UL23 ("System volt UL23 ang")	deg	0.00360.0	0.01	The primary line-to-line angle UL23 (measured or calculated).
System voltage angle UL31 ("System volt UL31 ang")	deg	0.00360.0	0.01	The primary line-to-line angle UL23 (measured or calculated).
System voltage angle UL1 ("System volt UL1 ang")	deg	0.00360.0	0.01	The primary line-to-neutral angle UL1 (measured or calculated).
System voltage angle UL2 ("System volt UL2 ang")	deg	0.00360.0	0.01	The primary line-to-neutral angle UL2 (measured or calculated).
System voltage angle UL3 ("System volt UL3 ang")	deg	0.00360.0	0.01	The primary line-to-neutral angle UL3 (measured or calculated).
System voltage angle U0 ("System volt U0 ang")	deg	0.00360.0	0.01	The primary zero sequence angle U0 (measured or calculated).
System voltage angle U3 ("System volt U3 ang")	deg	0.00360.0	0.01	The primary measured Synchrocheck angle SS. This magnitude is only valid when the "2LL+U3+U4" mode is selected and both U3 and U4 are in use.
System voltage angle U4 ("System volt U4 ang")	deg	0.00360.0	0.01	The primary measured Synchrocheck angle SS. This magnitude is displayed only when the "2LL+U3+U4" mode is selected and both U3 and U4 are in use.

Table. 5.2.2 - 35. Harmonic voltage measurements.

Name	Unit	Range	Step	Description
Harmonics calculation values ("Harm Abs.or Perc.")	-	0: Percent 1: Absolute	-	Defines whether the harmonics are calculated as percentages or absolute values.
Harmonics display	-	0: Per unit 1: Primary V 2: Secondary V	-	Defines how the harmonics are displayed: in p.u. values, as primary voltage values, or as secondary voltage values.

Name	Unit	Range	Step	Description
Maximum harmonics value ("UxMaxH")	V	0.00100000.00	0.01	Displays the maximum harmonics value of the selected voltage input Ux.
Fundamental frequency ("Ux Fund")	V	0.00100000.00	0.01	Displays the voltage value of the fundamental frequency value (RMS) of the selected voltage input Ux.
Ux harmonics (2 nd 31 st harmonic)	V	0.00100000.00	0.01	Displays the selected harmonic from the voltage input Ux.
Ux Amplitude THD	%	0.000100.000	0.001	Amplitude ratio THD voltage. Recognized by IEC.
Ux Power THD	%	0.000100.000	0.001	Power ratio THD voltage. Recognized by the IEEE.

5.2.3 Power and energy calculation

The devices that are equipped with both a voltage and a current measurement card can calculate power, and can therefore have power-based protection and monitoring functions (the number of available functions depends of the device type). In addition to power calculations, energy magnitudes are also calculated.

Power is divided into three magnitudes: apparent power (S), active power (P) and reactive power (Q). Energy measurement calculates magnitudes for active and reactive energy. Energy can flow to the forward direction (exported) or to the reverse direction (imported).

If a unit has more than one CT measurement module, the user can choose which module's current measurement is used by the power calculation.

Line-to-neutral voltages available

Power is calculated from line-to-neutral voltages and phase currents. If line-to-line voltages are connected, the device can calculate line-to-neutral voltages based on the measured zero sequence voltage. The following equations apply for power calculations with the line-to-neutral mode and the line-to-line voltage mode (with U0 connected and measured):

Figure. 5.2.3 - 17. Three-phase power (S) calculation.

$$S_{L1} = U_{L1} \times I_{L1}$$

$$S_{L2} = U_{L2} \times I_{L2}$$

$$S_{L3} = U_{L3} \times I_{L3}$$

$$S = S_{L1} + S_{L2} + S_{L3}$$

Figure. 5.2.3 - 18. Three-phase active power (P) calculation.

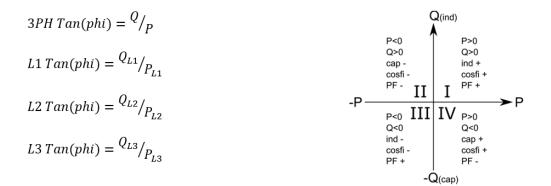
 $P_{L1} = U_{L1} \times I_{L1} \cos \varphi$ $P_{L2} = U_{L2} \times I_{L2} \cos \varphi$ $P_{L3} = U_{L3} \times I_{L3} \cos \varphi$ $P = P_{L1} + P_{L2} + P_{L3}$

In these equations, phi $(\boldsymbol{\phi})$ is the angle difference between voltage and current.

Figure. 5.2.3 - 19. Three-phase reactive power (Q) calculation.

 $Q_{L1} = U_{L1} \times I_{L1} \sin \varphi$ $Q_{L2} = U_{L2} \times I_{L2} \sin \varphi$ $Q_{L3} = U_{L3} \times I_{L3} \sin \varphi$ $Q = Q_{L1} + Q_{L2} + Q_{L3}$

Active power can be to the forward or the reverse direction. The direction of active power can be indicated with the power factor (Cos (ϕ), or Cosine phi), which is calculated according the following formula:


$$3PH Cos(phi) = \frac{P}{S}$$

$$L1 Cos(phi) = \frac{P_{L1}}{S_{L1}}$$

$$L2 Cos(phi) = \frac{P_{L2}}{S_{L2}}$$

$$L3 Cos(phi) = \frac{P_{L3}}{S_{L3}}$$

The direction of reactive power is divided into four quadrants. Reactive power may be inductive or capacitive on both forward and reverse directions. Reactive power quadrant can be indicated with Tan (ϕ) (tangent phi), which is calculated according the following formula:

Power factor calculation is done similarly to the Cosine phi calculation but the polarity is defined by the reactive power direction. Therefore, the power factor is calculated with the following formula:

$$3PH PF = \frac{P}{S} * \frac{Q}{|Q|}$$

$$L1 PF = \frac{P_{L1}}{S_{L1}} * \frac{Q_{L1}}{|Q_{L1}|}$$

$$L2 PF = \frac{P_{L2}}{S_{L2}} * \frac{Q_{L2}}{|Q_{L2}|}$$

$$L3 PF = \frac{P_{L3}}{S_{L3}} * \frac{Q_{L3}}{|Q_{L3}|}$$

© Arcteq Relays Ltd IM00017

Only line-to-line voltages available

If the line-to-line voltages are measured but the zero sequence voltage is not measured or is not otherwise known, the three-phase power calculation is based on Aron's theorem:

$$S = U_{23} \times I_{L1} \cos(30) + U_{31} \times I_{L2} \cos(30)$$
$$P = U_{23} \times I_{L1} \cos(30 - \varphi) + U_{31} \times I_{L2} \cos(30 + \varphi)$$
$$Q = U_{23} \times I_{L1} + \sin(30 - \varphi) + U_{31} \times I_{L2} \sin(30 + \varphi)$$

Both $\cos(\phi)$ and $\tan(\phi)$ are calculated in the same way as in the line-to-neutral mode.

Troubleshooting

Check the "Troubleshooting" section in chapters "Current measurement and scaling" and "Voltage measurement and scaling" for more information. Most power and energy measurement problems are usually related to the same issues (i.e. wiring errors, wrong measurement modes, faulty frequency settings, etc.).

Settings

Table. 5.2.3 - 36. Power and energy measurement settings

Name	Range	Step	Default	Description
Power measurement currents from	0: CT1 1: CT2	-	0: CT1	Defines which current transformer module is used in power and energy calculation.
3ph active energy measurement	0: Disabled 1: Enabled	-	0: Disabled	Enables/disables the active energy measurement.
3ph reactive energy measurement	0: Disabled 1: Enabled	-	0: Disabled	Enables/disables the reactive and apparent energy measurement.
3ph energy megas or kilos	0: Mega 1: Kilo	-	0: Mega	Defines whether energy is measured with the prefix 'kilo' (10^3) or 'mega' (10^6) .
Edit energy values	0: Disabled 1: Enabled	-	0: Disabled	When this parameter is enabled it is possible to manually edit exported and imported active energy values. NOTE: "E 3ph M or k" parameter has to be set to "kilo" for this feature to function.
Invert imp/exp energy directions	0: Not inverted 1: Inverted	-	0: Not inverted	Inverts the direction of imported and exported energy without affecting the direction of power calculation.
Nominal power kVA	0.10500000.00kVA	0.01kVA	100kVA	Defines the nominal power of the protected object.
PQ Quadrant	0: Undefined 1: Q1 Fwd Ind 2: Q2 Rev Cap 3: Q3 Rev Ind 4: Q4 Fwd Cap	-	0: Undefined	Indicates what the power PQ quadrant is at that moment.
VA Quadrant	0: Undefined 1: Q1 Fwd Cap AV 2: Q2 Rev Ind AV 3: Q3 Rev Cap VA 4: Q4 Fwd Ind VA	-	0: Undefined	Indicates what the power VA quadrant is at that moment.

Name	Range	Step	Default	Description
Reset energy calculators ("Reset 3ph Energies")	0: - 1: Reset	-	0: -	Resets the memory of the three-phase energy calculators. Goes automatically back to the "-" state after the reset is finished.
Phase active energy measurement	0: Disabled 1: Enabled	-	0: Disabled	Enables/disables the active energy per phase measurement.
Phase reactive energy measurement	0: Disabled 1: Enabled	-	0: Disabled	Enables/disables the reactive energy per phase measurement.
Phase energies megas or kilos	0: Mega 1: Kilo	-	0: Mega	Defines whether energy (per phase) is measured with the prefix 'kilo' (10^3) or 'mega' (10^6) .
Reset energy calculators (per phase) ("Reset E per phase")	0: - 1: Reset	-	0: -	Resets the memory of the indivisual phase energy calculator. Goes automatically back to the "-" state after the reset is finished.

Table. 5.2.3 - 37. Energy Dose Counter 1 settings

Name	Range	Step	Default	Description
Energy dose counter mode	0: Disabled 1: Activated	-	0: Disabled	Enables/disables energy dose counters generally.
Energy dose counter LN mode	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	- 0: On		Set mode of DOS block. This parameter is visible only when <i>Allow setting of</i> <i>individual LN mode</i> is enabled in <i>General</i> menu.
Energy does counter LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	-	Displays the mode of DOS block. This parameter is visible only when <i>Allow setting of</i> <i>individual LN mode</i> is enabled in <i>General</i> menu.
Clear pulse counter	0: - 1: Clear	-	0: -	Resets the "DC 14 Pulses sent" counters back to zero.
DC 14 enable	0: Disabled 1: Enabled	-	0: Disabled	Enables/disables the energy dose counter 14 individually.
DC 14 Input signal select	0: 3PH.Fwd.Act.EP 1: 3PH.Rev.Avt.EP 2: 3PH.Fwd.React.EQ.CAP 3: 3PH.Fwd.React.EQ.IND 4: 3PH.Rev.React.EQ.CAP 5: 3PH.Rev.React.EQ.IND	-	0: 3PH.Fwd.Act.EP	Selects whether the energy is active or reactive, whether the direction of the energy is forward of reverse, and whether reactive energy is inductive or capacitive.
DC 14 Input signal	-1 × 10 ⁶ 1 × 10 ⁶	0.01	-	The total amount of energy consumed.
DC 14 Pulse magnitude	01800kW/var	0.005kW/ var	1kW/Var	The set pulse size. An energy pulse is given every time the set magnitude is exceeded.
DC 14 Pulse length	01800s	0.005s	1s	The total length of a control pulse.

AQ-G257 Instruction manual

Version: 2.08

Nam	ne	Range	Step	Default	Description
DC1 Pulses sent	4	04 294 967 295	1	-	Indicates the total number of pulses sent.

Table. 5.2.3 - 38. DC	14 Pulse	out settings
-----------------------	----------	--------------

Name	Range	Step	Default	Description
DC 14 Pulse out	OUT1OUTx	-	None selected	The selection of the controlled physical outputs.

Power measurements

The following power calculations are available when the voltage and the current cards are available.

Table. 5.2.3 - 39. Three-phase power calculations.

Name	Unit	Range	Step	Description
3PH Apparent power (S)	kVA	-1x10 ⁶ 1x10 ⁶	0.01	The total three-phase apparent power in kilo-volt-ampere
3PH Active power (P)	kW	-1x10 ⁶ 1x10 ⁶	0.01	The total three-phase active power in kilowatts
3PH Reactive power (Q)	kVar	-1x10 ⁶ 1x10 ⁶	0.01	The total three-phase reactive power in kilovars
3PH Apparent power (S MVA)	MVA	-1x10 ⁵ 1x10 ⁵	0.01	The total three-phase apparent power in megawatts
3PH Active power (P MW)	MW	-1x10 ⁵ 1x10 ⁵	0.01	The total three-phase active power in mewatts
3PH Reactive power (QMVar)	MVar	-1x10 ⁵ 1x10 ⁵	0.01	The total three-phase active power in megavars
3PH Tan(phi)	-	-1x10 ⁶ 1x10 ⁶	0.01	The direction of three-phase active power
3PH Cos(phi)	-	-1x10 ⁶ 1x10 ⁶	0.01	The direction of three-phase reactive power
3PH Power factor	-	-1x10 ⁶ 1x10 ⁶	0.0001	The three-phase power factor

Table. 5.2.3 - 40. Single-phase power calculations (L1...L3).

Name	Unit	Range	Step	Description
Lx Apparent power (S)	kVA	-1x10 ⁶ 1x10 ⁶	0.01	The apparent power of Phase Lx in kilo-volt-amperes
Lx Active power (P)	kW	-1x10 ⁶ 1x10 ⁶	0.01	The active power of Phase Lx in kilowatts
Lx Reactive power (Q)	kVar	-1x10 ⁶ 1x10 ⁶	0.01	The reactive power of Phase Lx kilovars
Lx Tan(phi)	-	-1x10 ⁶ 1x10 ⁶	0.01	The direction of Phase Lx's active power
Lx Cos(phi)	-	-1x10 ⁶ 1x10 ⁶	0.01	The direction of Phase Lx's reactive power
Lx Power factor	-	-1x10 ⁶ 1x10 ⁶	0.0001	The power factor of Phase Lx

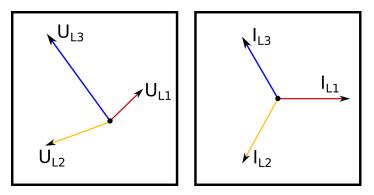
Energy measurements

The following energy calculations are available when the voltage and the current cards are available. Please note that the unit prefix is determined by the user's selection between 'kilo' and 'mega' in "Threephase energy prefix ("E 3ph M or k")" under the general "Power and energy measurement settings".

Table. 5.2.3 - 41. Three-phase energy calculations.

Name	Range	Step	Description
Exported Active Energy (P) (kWh or MWh)	-999 999 995 904.00999 999 995 904.00	0.01	The total amount of exported active energy.
Imported Active Energy (P) (kWh or MWh)	-999 999 995 904.00999 999 995 904.00	0.01	The total amount of imported active energy.
Active Energy (P) Export/Import balance (kWh or MWh)	-999 999 995 904.00999 999 995 904.00	0.01	The sum of imported and exported active energy.
Exported (Q) while Export (P) (kVarh or MVarh)	-999 999 995 904.00999 999 995 904.00	0.01	The total amount of exported reactive energy while active power is exported.
Imported (Q) while Export (P). (kVarh or MVarh)	-999 999 995 904.00999 999 995 904.00	0.01	Total amount of imported reactive energy while active energy is exported.
Reactive energy (Q) balance while export (P) (kVarh or MVarh)	-999 999 995 904.00999 999 995 904.00	0.01	The sum of imported and exported reactive capacitive energy while active power is exported.
Exported (Q) while Import (P) (kVarh or MVarh)	-999 999 995 904.00999 999 995 904.00	0.01	The total amount of exported reactive energy while active energy is imported.
Imported (Q) while Import (P) (kVarh or MVarh)	-999 999 995 904.00999 999 995 904.00	0.01	The total amount of imported reactive energy while active energy is imported.
Reactive energy (Q) balance while Import (P) (kVarh or MVarh)	-999 999 995 904.00999 999 995 904.00	0.01	The sum of imported and exported reactive energy while active energy is imported.
Apparent Energy (S) while Export (P) (kVAh or MVAh)	-999 999 995 904.00999 999 995 904.00	0.01	The total amount of exported apparent energy while active energy is exported.
Apparent Energy (S) while Import (P) (kVAh or MVAh)	-999 999 995 904.00999 999 995 904.00	0.01	The total amount of exported apparent energy while active energy is imported.

Table. 5.2.3 - 42. Single-phase energy calculations (L1...L3).


Name	Range	Step	Description
Export Active Energy Lx (kWh or MWh)	-1x10 ⁹ 1x10 ⁹	0.01	The exported active energy of the phase.
Import Active Energy (kWh or MWh)	-1x10 ⁹ 1x10 ⁹	0.01	The imported active energy of the phase.
Active Energy (P) Export/Import balance (kWh or MWh)	-1x10 ⁹ 1x10 ⁹	0.01	The sum of the phase's imported and exported active energy.
Exported (Q) while Export (P) Lx (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The exported reactive energy of the phase while active energy is exported.
Imported (Q) while Export (P) Lx (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The imported reactive energy of the phase while active energy is exported.
Reactive Energy (Q) balance while Export (P) Lx (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The sum of the phase's imported and exported reactive energy while active energy is exported.
Exported (Q) while Import (P) Lx (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The exported reactive energy of the phase while active energy is imported.
Imported (Q) while Import (P) Lx (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The imported reactive energy of the phase while active energy is imported.

Name	Range	Step	Description
Reactive energy (Q) balance while Import (P) Lx (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The sum of the phase's imported and exported reactive energy while active energy is imported.
Apparent Energy (S) while Export (P) Lx	-1x10 ⁹ 1x10 ⁹	0.01	The apparent energy of the phase while active energy is exported.
Apparent Energy (S) while Import (P) Lx	-1x10 ⁹ 1x10 ⁹	0.01	The apparent energy of the phase while active energy is imported.

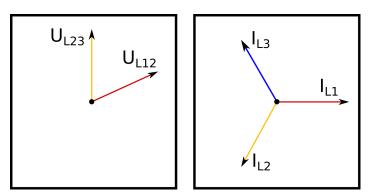
Calculation examples

Here is an example of power calculation. Both wiring methods (line-to-line and line-to-neutral) are checked with the same signal injection. The voltage scaling is set to $20\ 000$: $100\ V$ and the current scaling is set to 1000 : $5\ A$.

Voltages (line-to-neutral):	Currents:
U _{L1} = 40.825 V, 45.00°	I _{L1} = 2.5 A, 0.00°
U _{L2} = 61.481 V, -159.90°	I _{L2} = 2.5 A, -120.00°
U _{L3} = 97.742 V, 126.21°	I _{L3} = 2.5 A, 120.00°

 $S_{L1} = U_{L1} \times I_{L1} = 40.825 \text{ V} \times 2.5 \text{ A} = 102 \text{ VA} \text{ (secondary) } 4.08 \text{ MVA} \text{ (primary)}$

 $P_{L1} = U_{L1} \times I_{L1} \cos \varphi = 40.825 \text{ V} \times 2.5 \text{ A} \cos(45^{\circ} - 0^{\circ}) = 72.2 \text{ W} \text{ (secondary) } 2.89 \text{ MW} \text{ (primary)}$

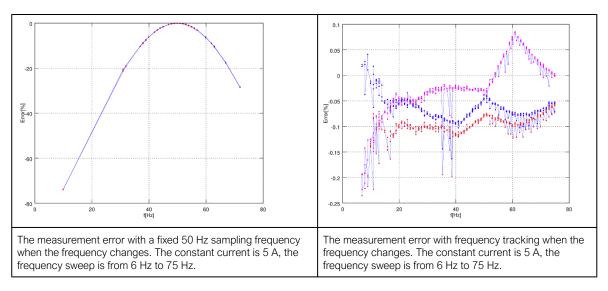

 $Q_{L1} = U_{L1} \times I_{L1} \sin \varphi = 40.825 \text{ V} \times 2.5 \text{ A} \sin(45^\circ - 0^\circ) = 72.2 \text{ var} (\text{secondary}) 2.89 \text{ MVar} (\text{primary})$

$$L1 Tan(phi) = \frac{Q_{L1}}{P_{L1}} = \frac{2.89}{2.89} = 1.00$$
 $L1 Cos(phi) = \frac{P_{L1}}{S_{L1}} = \frac{2.89}{4.08} = 0.71$

Name	Value	Name	Value	Name	Value	Name	Value
L1 (S)	4.08 MVA	L2 (S)	6.15 MVA	L3 (S)	9.77 MVA	3PH (S)	20.00 MVA
L1 (P)	2.89 MW	L2 (P)	4.72 MW	L3 (P)	9.71 MW	3PH (P)	17.32 MW
L1 (Q)	2.89 Mvar	L2 (Q)	-3.94 Mvar	L3 (Q)	1.06 Mvar	3PH (Q)	0.01 Mvar
L1 Tan	1.00	L2 Tan	-0.83	L3 Tan	0.11	3PH Tan	0.00
L1 Cos	0.71	L2 Cos	0.77	L3 Cos	0.99	3PH Cos	0.87

Voltages (line-to-line):	Currents:	
U _{L12} = 100.00 V, 30.00°	I _{L1} = 2.5 A, 0.00°	

Voltages (line-to-line):	Currents:
U _{L23} = 100.00 V, -90.00°	I _{L2} = 2.5 A, -120.00°
	I _{L3} = 2.5 A, 120.00°



 $S = U_{12} \times I_{L1} + U_{23} \times I_{L2}$ $S = 100 \text{ V} \times 2.5 \text{ A} + 100 \text{ V} \times 2.5 \text{ A} = 500 \text{ VA (sec) } 20.00 \text{ MVA (pri)}$ $P = U_{12} \times I_{L1} \cos(-\varphi) + U_{23} \times I_{L2} \cos(\varphi)$ $P = 100 \text{ V} \times 2.5 \text{ A} \cos -(30^{\circ} - 0^{\circ}) + 100 \text{ V} \times 2.5 \text{ A} \cos(270^{\circ} - 240^{\circ}) = 433 \text{ W (sec) } 17.32 \text{ MW (pri)}$ $Q = U_{12} \times I_{L1} + \sin(-\varphi) + U_{23} \times I_{L2} \sin(\varphi)$ $Q = 100 \text{ V} \times 2.5 \text{ A} \sin -(30^{\circ} - 0^{\circ}) + 100 \text{ V} \times 2.5 \text{ A} \sin(270^{\circ} - 240^{\circ}) = 0 \text{ var (sec) } 0 \text{ Mvar (pri)}$ $3PH Tan(phi) = \frac{Q}{P} = \frac{0.01}{17.32} = 0.00 \qquad 3PH Cos(phi) = \frac{P}{S} = \frac{17.32}{20.00} = 0.87$

Name	Values
3PH (S)	20.00 MVA
3PH (P)	17.32 MW
3PH (Q)	0.00 Mvar
3PH Tan	0.00
3PH Cos	0.87

5.2.4 Frequency tracking and scaling

Measurement sampling can be set to the frequency tracking mode or to the fixed userdefined frequency sampling mode. The benefit of frequency tracking is that the measurements are within a pre-defined accuracy range even when the fundamental frequency of the power system changes. Table. 5.2.4 - 43. Frequency tracking effect (FF changes from 6 Hz to 75 Hz).

As the figures above show, the sampling frequency has a major effect on the device's measurement accuracy. If the sampling is not tracked to the system frequency, for example a 10 Hz difference between the measured and the set system frequency can give a measurement error of over 5 %. The figures also show that when the frequency is tracked and the sampling is adjusted according to the detected system frequency, the measurement accuracy has an approximate error of 0.1...- 0.2 % error in the whole frequency range.

AQ -200 series devices have a measurement accuracy that is independent of the system frequency. This has been achieved by adjusting the sample rate of the measurement channels according to the measured system frequency; this way the FFT calculation always has a whole power cycle in the buffer. The measurement accuracy is further improved by Arcteq's patented calibration algorithms that calibrate the analog channels against eight (8) system frequency points for both magnitude and angle. This frequency-dependent correction compensates the frequency dependencies in the used, non-linear measurement hardware and improves the measurement accuracy significantly. Combined, these two methods give an accurate measurement result that is independent of the system frequency.

Troubleshooting

When the measured current, voltage or frequency values differ from the expected values, the following table offers possible solutions for the problems.

Problem	Check / Resolution
The measured current or voltage amplitude is lower than it should be./ The values are "jumping" and are not stable.	The set system frequency may be wrong. Please check that the frequency settings match the local system frequency, or change the measurement mode to "Tracking" (<i>Measurement</i> \rightarrow <i>Frequency</i> \rightarrow "Smpl mode") so the device adjusts the frequency itself.
The frequency readings are wrong.	In Tracking mode the device may interpret the frequency incorrectly if no current is injected into the CT (or voltage into the VT). Please check the frequency measurement settings (<i>Measurement</i> \rightarrow <i>Frequency</i>).

Settings

Table. 5.2.4 - 44. Settings of the frequency tracking.

Name	Range	Step	Default	Description
Sampling mode	0: Fixed 1: Tracking	-	0: Fixed	Defines which measurement sampling mode is in use: the fixed user-defined frequency, or the tracked system frequency.

Name	Range	Step	Default	Description
System nominal frequency	7.00075.000Hz	0.001Hz	50Hz	The user-defined system nominal frequency that is used when the "Sampling mode" setting has been set to "Fixed".
Tracked system frequency	0.00075.000Hz	0.001Hz	-	Displays the rough measured system frequency.
Sampling frequency in use	0.00075.000Hz	0.001Hz	-	Displays the tracking frequency that is in use at that moment.
Frequency reference 1	0: None 1: CT1IL1 2: CT2IL1 3: VT1U1 4: VT2U1	-	1: CT1IL1	The first reference source for frequency tracking.
Frequency reference 2	0: None 1: CT1IL2 2: CT2IL2 3: VT1U2 4: VT2U2	-	1: CT1IL2	The second reference source for frequency tracking.
Frequency reference 3	0: None 1: CT1IL3 2: CT2IL3 3: VT1U3 4: VT2U3	-	1: CT1IL3	The third reference source for frequency tracking.
Frequency tracking quality	0: No trackable channels 1: Reference 1 trackable 2: Reference 2 trackable 3: References 1 & 2 trackable 4: Reference 3 trackable 5: Reference 1 & 3 trackable 6: References 2 & 3 trackable 7: All references trackable	-	-	Defines the frequency tracker quality. If the measured current (or voltage) amplitude is below the threshold, the channel tracking quality is 0 and cannot be used for frequency tracking. If all channels' magnitudes are below the threshold, there are no trackable channels.
Frequency measurement in use	0: No track ch 1: Ref1 2: Ref2 3: Ref3	-	-	Indicates which reference is used at the moment for frequency tracking.
Start behavior	0: Start tracking immediately 1: First nominal or tracked	-	0: Start tracking immediately	Defines the how the tracking starts. Tracking can start immediately, or there can be a set delay time between the receiving of the first trackable channel and the start of the tracking.
Start sampling with	0: Use track frequency 1: Use nom frequency	-	0: Use track frequency	Defines the start of the sampling. Sampling can begin with a previously tracked frequency, or with a user-set nominal frequency.
Use nominal frequency until	01800.000s	0.005s	0.100s	Defines how long the nominal frequency is used after the tracking has started. This setting is only valid when the "Sampling mode" setting is set to "Tracking" and when the "Start behavior" is set to "First nominal or tracked".
Tracked f channel A	0.00075.000Hz	0.001Hz	-	Displays the rough value of the tracked frequency in Channel A.
Tracked f channel B	0.00075.000Hz	0.001Hz	-	Displays the rough value of the tracked frequency in Channel B.

AQ-G257 Instruction manual

Version: 2.08

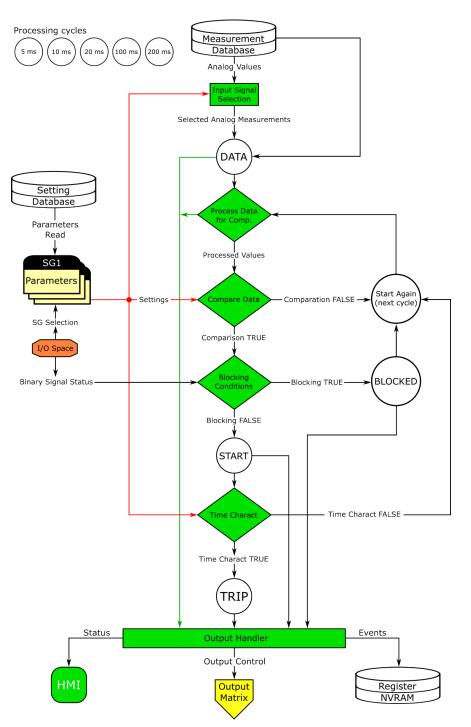
Name	Range	Step	Default	Description
Tracked f channel C	0.00075.000Hz	0.001Hz	-	Displays the rough value of the tracked frequency in Channel C.
Alg f fast	0.00075.000Hz	0.001Hz	-	Frequency measurement built from tracked frequencies and U4 voltage channel samples.
Alg f avg	0.00075.000Hz	0.001Hz	-	Averaged frequency measurement built from tracked frequencies and U4 voltage channel samples.
System measured frequency	0: One f measured 1: Two f measured 2: Three f measured	-	-	Displays the amount of frequencies that are measured.
f.atm. Protections	0.00075.000Hz	0.001Hz	-	Frequency measurement value used by protection functions. When frequency is not measurable this value returns to value set to "System nominal frequency" parameter.
f.atm. Display	0.00075.000Hz	0.001Hz -		Frequency measurement value used in display. When frequency is not measurable this value is "0 Hz".
f measurement from	0: Not measurable 1: Avg Ref 1 2: Avg Ref 2 3: Avg Ref 3 4: Track Ref 1 5: Track Ref 2 6: Track Ref 3 7: Fast Ref 1 8: Fast Ref 2 9: Fast Ref 3	-	-	Displays which reference is used for frequency measurement.
SS1.meas.frqs	0.00075.000Hz	0.001Hz	_	Displays frequency used by "system set" channel 1 and 2.
SS2.meas.frqs	0.00010.000112	0.00112		
SS1f meas.from	0: Not measurable 1: Fast Ref U3 2: Fast Ref U4	-	-	Displays which voltage channel frequency reference is used by "system set" voltage channel.
SS2f meas.from	0: Not measurable 1: Fast Ref U4	-	-	Displays if U4 channel frequency reference is measurable or not when the channel has been set to "system set" mode.

5.3 General menu

The *General* menu consists of basic settings and indications of the device. Additionally, the all activated functions and their status are displayed in the *Protection, Control* and *Monitor* profiles.

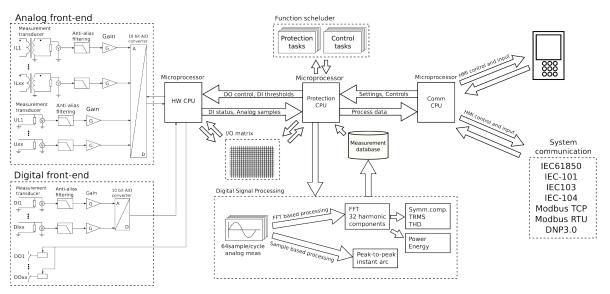
Name	Range	Default	Description
Device name	-	Unitname	The file name uses these fields when loading the .ags configuration file from the
Device location	-	Unitlocation	AQ-200 unit.
Enable stage forcing	0: Disabled 1: Enabled	0: Disabled	When this parameter is enabled it is possible for the user to force the protection, control and monitoring functions to different statuses like START and TRIP. This is done in the function's <i>Info</i> page with the <i>Force status to</i> parameter.

Name	Range	Default	Description			
Allow setting of device mode	0: Prohibited 1: From HMI/setting tool only 2: Allowed	0: Prohibited	Allows global mode to be modified from setting tool, HMI and IEC61850.			
Allow setting of individual LN mode	0: Prohibited 1: From HMI/setting tool only 2: Allowed	0: Prohibited	Allow local modes to be modified from setting tool, HMI and IEC61850.			
System phase rotating order	0: A-B-C 1: A-C-B	0: A-B-C	Allows the user to switch the expected order in which the phase measurements are wired to the unit.			
Language	0: User defined 1: English 2: Finnish 3: Swedish 4: Spanish 5: French 6: German 7: Russian 8: Ukrainian	1: English	Changes the language of the parameter descriptions in the HMI. If the language has been set to "Other" in the settings of the AQtivate setting tool, AQtivate follows the value set into this parameter.			
Clear events	0: - 1: Clear	0: -	Clears the event history recorded in the AQ-200 device.			
Display brightness	08	4	Changes the display brightness. Brightness level 0 turns the display off.			
Display sleep timeout	03600s	0s	If no buttons are pressed after a set time, the display changes the brightness to whatever is set on the "Display sleep brightness" parameter. If set to 0 s, this feature is not in use. When the device is in sleep mode pressing any of the buttons on the front panel of the device will wake the display.			
Display sleep brightness	08	0	Defines the brightness of the display when the set display sleep timeout has elapsed. The brightness level "0" turns the display off.			
Return to default view	03600s	Os	If the user navigates to a menu and gives no input after a period of time defined with this parameter, the unit automatically returns to the default view. If set to 0 s, this feature is not in use.			
LED test	0: - 1: Activated	0: -	When activated, all LEDs are lit up. LEDs with multiple possible colors blink each color.			
Display color theme	0: Light theme 1: Dark theme	0: Light theme	Defines the color theme used in the HMI.			
Reset latches	0: - 1: Reset	0: -	Resets the latched signals in the logic and the matrix. When a reset command is given, the parameter automatically returns back to "-".			
Measurement recorder	0: Disabled 1: Enabled	0: Disabled	Enables the measurement recorder tool, further configured in $Tools \rightarrow Misc \rightarrow Measurement$ recorder.			
Reconfigure mimic	0: - 1: Reconfigure	0: -	Reloads the mimic to the unit.			


Table. 5.3 - 46. The General menu read-only parameters

Name	Description	
Serial number	The unique serial number identification of the unit.	
Firmware version The firmware software version of the unit.		
Hardware configuration	The order code identification of the unit.	
UTC time	The UTC time value which the device's clock uses.	

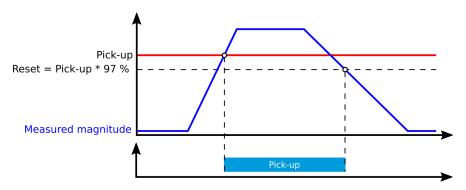
5.4 Protection functions


5.4.1 General properties of a protection function

The following flowchart describes the basic structure of any protection function. The basic structure is composed of analog measurement values being compared to the pick-up values and operating time characteristics.

The protection function is run in a completely digital environment with a protection CPU microprocessor which also processes the analog signals transformed into the digital form.

Figure. 5.4.1 - 20. Principle diagram of the protection relay platform.



In the following chapters the common functionalities of protection functions are described. If a protection function deviates from this basic structure, the difference is described in the corresponding chapter of the manual.

Pick-up

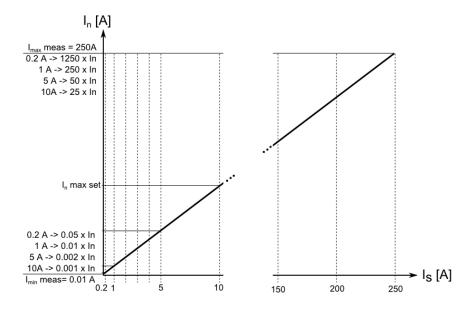

The X_{set} parameter defines the pick-up level of the function, and this in turn defines the maximum or minimum allowed measured magnitude (in per unit, absolute or percentage value) before the function takes action. The function constantly calculates the ratio between the pick-up parameter set by the user and the measured magnitude (X_m). The reset ratio of 97 % is built into the function and is always relative to the X_{set} value. If a function's pick-up characteristics vary from this description, they are defined in the function section in the manual.

Figure. 5.4.1 - 21. Pick up and reset.

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if a blocking condition is not active.

The I_n magnitude refers to the user set nominal current which can range from 0.2...10 A, typically 0.2 A, 1A or 5 A. With its own current measurement card, the IED will measure secondary currents from 0.001 A up to 250 A. To this relation the pick-up setting in secondary amperes will vary.

Function blocking

The blocking signals are checked in the beginning of each program cycle. A blocking signal is received from the blocking matrix for the function dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when pick-up element activates, a BLOCKED signal is generated and the function will not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time stamped blocking event with information of the startup current values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the device's common and global testing mode is activated.

The variables users can set are binary signals from the system. The blocking signal needs to reach the IED minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for trip signal and for the release of the function in case the pick-up element is reset before the trip time has been reached. There are three basic operating modes available for the function:

- Instant operation: activates the trip signal with no additional time delay simultaneously with the start signal.
- Definite time operation (DT): activates the trip signal after a user-defined time delay regardless of the measured current as long as the current is above or below the *X*_{set} value and thus the pick-up element is active (independent time characteristics).

 Inverse definite minimum time (IDMT): activates the trip signal after a time which is in relation to the set pick-up value X_{set} and the measured value X_m (dependent time characteristics).

Both IEC and IEEE/ANSI standard characteristics as well as user settable parameters are available for the IDMT operation. Please note that in the IDMT mode *Definite (Min)* operating time delay is also determines the minimum time for protection tripping (see the figure below). If this function is not desired the parameter should be set to 0 seconds.

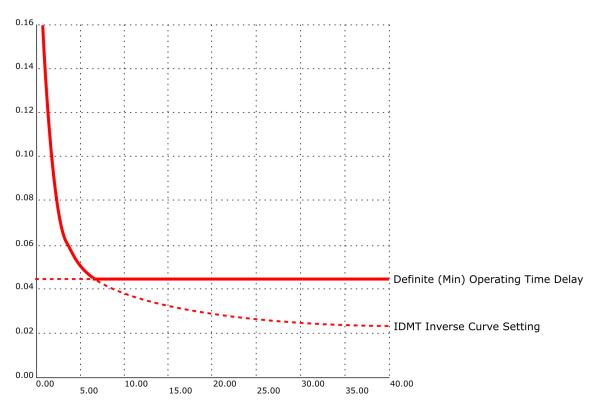


Figure. 5.4.1 - 23. Operating time delay: Definite (Min) and the minimum for tripping.

Table. 5.4.1 - 47. Operating time characteristics setting parameters (general).

Name	Range	Step	Default	Description
Delay type	0: DT 1: IDMT	-	0: DT	Selects the delay type for the time counter. The selection is made between dependent (IDMT) and independent (DT) characteristics.
Definite (min) operating time delay	0.0001800.000s	0.005s	0.040s	 When the "Delay type" parameter is set to "DT", this parameter acts as the expected operating time for the protection function. When set to 0 s, the stage operates instantaneously without any additional delay. When the parameter is set to 0.0051800 s, the stage operates as independent delayed. When the "Delay type" parameter has been set to "IDMT", this parameter can be used to determine the minimum operating time for the protection function. Example of this is presented in the figure above.
Delay curve series	0: IEC 1: IEEE	-	0: IEC	Selects whether the delay curve series for an IDMT operation follows either IEC or IEEE/ANSI standard defined characteristics. This setting is active and visible when the "Delay type" parameter is set to "IDMT".

Name	Range	Step	Default	Description
				Selects the IEC standard delay characteristics.
Delay characteristics IEC	0: NI 1: EI 2: VI 3: LTI 4: Param	-	0: NI	The options include the following: Normally Inverse ("NI"), Extremely Inverse ("EI"), Very Inverse ("VI") and Long Time Inverse ("LTI") characteristics. Additionally, the "Param" option allows the tuning of the constants A and B which then allows the setting of characteristics following the same formula as the IEC curves mentioned here.
				This setting is active and visible when the "Delay type" parameter is set to "IDMT" and the "Delay curve series" parameter is set to "IEC".
				Selects the IEEE and ANSI standard delay characteristics.
Delay characteristics IEEE	0: ANSI NI 1: ANSI VI 2: ANSI EI 3: ANSI LTI 4: IEEE MI 5: IEEE VI 6: IEEE EI 7: Param	-	0: ANSI NI	The options for ANSI include the following: Normal Inverse ("ANSI NI"), Very Inverse ("ANSI VI"), Extremely inverse ("ANSI EI"), Long time inverse ("ANSI LTI") characteristics. IEEE: Moderately Inverse ("IEEE MI"), Very Inverse ("IEEE VI"), Extremely Inverse ("IEEE EI") characteristics. Additionally, the "Param" option allows the tuning of the constants A, B and C which then allows the setting of characteristics following the same formula as the IEEE curves mentioned here.
				This setting is active and visible when the "Delay type" parameter is set to "IDMT" and the "Delay curve series" parameter is set to "IEEE".
Time dial				Defines the time dial/multiplier setting for IDMT characteristics.
setting k	0.0125.00s	0.01s	0.05s	This setting is active and visible when the "Delay type" parameter is set to "IDMT".
				Defines the Constant A for IEC/IEEE characteristics.
A	0.0000250.0000	0.0001	0.0860	This setting is active and visible when the "Delay type" parameter is set to "IDMT" and the "Delay characteristic" parameter is set to "Param".
				Defines the Constant B for IEC/IEEE characteristics.
В	0.00005.0000	0.0001	0.1850	This setting is active and visible when the "Delay type" parameter is set to "IDMT" and the "Delay characteristic" parameter is set to "Param".
				Defines the Constant C for IEEE characteristics.
С	0.0000250.0000	0.0001	0.0200	This setting is active and visible when the "Delay type" parameter is set to "IDMT" and the "Delay characteristic" parameter is set to "Param".

AQ-G257 Instruction manual

Figure. 5.4.1 - 24. Inverse operating time formulas for IEC and IEEE standards.

IEC			IEEE/ANSI			
$t = \frac{kA}{\left(\frac{I_m}{I_{set}}\right)^B}$	-1		$t = k \left(\frac{A}{\left(\frac{I_m}{I_{set}}\right)^C - 1} + B \right)$			
t = Operating delay (s)			t = Operating delay (s)			
<i>k</i> = Time dial setting			<i>k</i> = Time dial setting			
<i>I_m</i> = Measured maximum cur	rent		<i>I_m</i> = Measured maximum	current		
<i>I_{set}</i> = Pick-up setting			I_{set} = Pick-up setting			
A = Operating characteristics	constant		A = Operating characteristics constant			
B = Operating characteristics			B = Operating characteristics constant			
			<i>C</i> = Operating characteri		stant	
Standard delays IEC constant			Standard delays ANSI constants			
Туре	A	B	Туре	A	B	C
Normally Inverse (NI)	0,14 80	0,02	Normally Inverse (NI)	8,934	0,1797 0,0982	2,094
Extremely Inverse (EI) Very Inverse (VI)	13,5	2	Very Inverse (VI) Extremely Inverse (EI)	3,922 5.64	0.02434	2
Long Time Inverse (<i>LTI</i>)	13,5	1	Long Time Inverse (LTI)	5,614	2,186	1
	120	-	Standard delays IEEE co	nstants	-	-
			Туре	A	B	C
			Moderately Inverse (<i>MI</i>)	0,0515	0,114	0,02
			Very Inverse (VI)	19,61	0,491	2
			Extremely Inverse (EI)	28,2	0,1217	Z

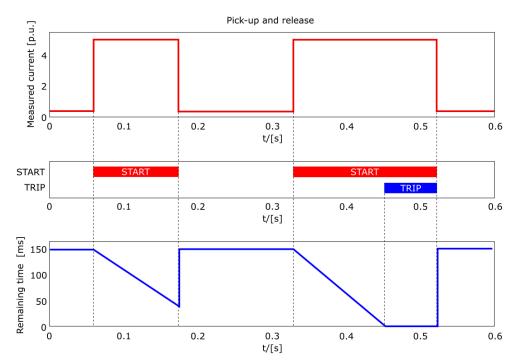
Non-standard delay characteristics

In addition to the previously mentioned delay characteristics, some functions also have delay characteristics that deviate from the IEC or IEEE standards. These functions are the following:

- overcurrent stages
- residual overcurrent stages
- directional overcurrent stages
- directional residual overcurrent stages.

The setting parameters and their ranges are documented in the chapters of the respective function blocks.

Table. 5.4.1 - 48. Inverse operating time formulas for nonstandard characteristics.


RI-type	RD-type	
Used to get time grading with mechanical relays	Mostly used in earth fault protection which grants selective tripping even in non- directional protection	
$t = \frac{k}{0.339 - 0.236 * \frac{I_{set}}{I_m}}$	$t = 5.8 - 1.35 * \ln\left(\frac{I_m}{k * I_{set}}\right)$	
t = Operating delay (s)	t = Operating delay (s)	
<i>k</i> = Time dial setting	<i>k</i> = Time dial setting	
Im = Measured maximum current	I _m = Measured maximum current	
<i>I_{set}</i> = Pick-up setting	Iset = Pick-up setting	

Name	Range	Step	Default	Description
Delayed pick-up release	0: No 1: Yes	-	1: Yes	Resetting characteristics selection (either time-delayed or instant) after the pick-up element is released. If activated, the START signal is reset after a set release time delay.
Release time delay	0.000150.000s	0.005s	0.06s	Resetting time. The time allowed between pick-ups if the pick-up has not led into a trip operation. If the "Delayed pick-up release" setting is active, the START signal is held on for the duration of the timer.
Op.Time calculation reset after release time	0: No 1: Yes	-	1: Yes	Operating timer resetting characteristics selection. When active, the operating time counter is reset after a set release time if the pick-up element is not activated during this time. When disabled, the operating time counter is reset directly after the pick-up element is reset.
Continue time calculation during release time	0: No 1: Yes	-	0: No	Time calculation characteristics selection. If activated, the operating time counter continues until a set release time even if the pick-up element is reset.

Table. 5.4.1 - 49. Setting parameters for reset time characteristics.

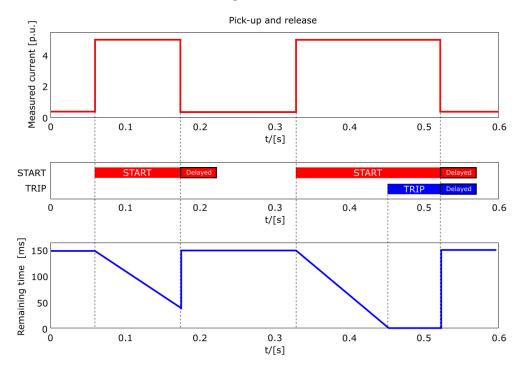
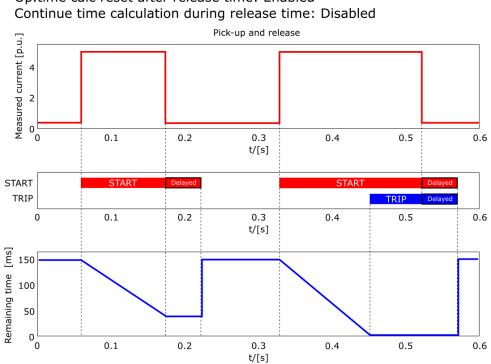
The behavior of the stages with different release time configurations are presented in the figures below.

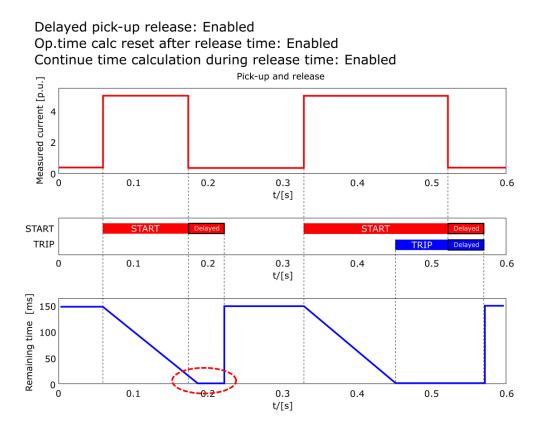
Figure. 5.4.1 - 25. No delayed pick-up release.

Delayed pick-up release: Disabled

Figure. 5.4.1 - 26. Delayed pick-up release, delay counter is reset at signal drop-off.

Delayed pick-up release: Enabled Op.time calc reset after release time: Disabled Continue time calculation during release time: Disabled


Figure. 5.4.1 - 27. Delayed pick-up release, delay counter value is held during the release time.

Delayed pick-up release: Enabled Op.time calc reset after release time: Enabled Continue time calculation during release time: Disabled

© Arcteq Relays Ltd IM00017

Figure. 5.4.1 - 28. Delayed pick-up release, delay counter value is decreasing during the release time.

The resetting characteristics can be set according to the application. The default setting is delayed 60 ms and the time calculation is held during the release time.

When using the release delay option where the operating time counter is calculating the operating time during the release time, the function will not trip if the input signal is not activated again during the release time counting.

Stage forcing

It is possible to test the logic, event processing and the operation of the relay's protection system by controlling the state of the protection functions manually without injecting any current into the device with stage forcing. To enable *Stage forcing* set the *Enable stage forcing* to ENABLED in the *General* menu. After this it is possible to control the status of a protection function (Normal, Start, Trip, Blocked etc.) in the *Info* page of the function.

NOTE!

When *Stage forcing* is enabled protection functions will also change state through user input. Injected currents/voltages also affect the behavior of the device. Regardless, it is recommended to disable *Stage Forcing* after testing has ended.

5.4.2 Non-directional overcurrent protection (I>; 50/51)

The non-directional overcurrent function is used for instant and time-delayed overcurrent and shortcircuit protection. The number of stages in the function depends on the relay model. The operating decisions are based on phase current magnitude, constantly measured by the function. The available

phase current magnitudes are equal to RMS values, to TRMS values (including harmonics up to 32nd), or to peak-to-peak values. The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

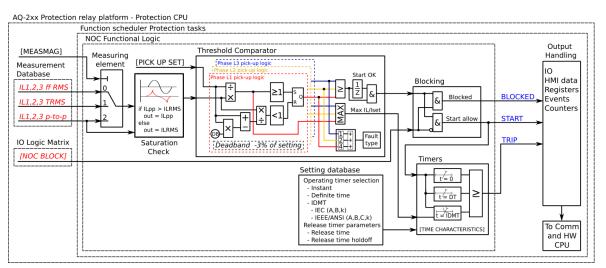
The non-directional overcurrent function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode. In time-delayed mode the operation can be selected between definite time (DT) mode and inverse definite minimum time (IDMT) mode. The IDMT operation supports both IEC and ANSI standard time delays as well as custom parameters. The function includes CT saturation checking which allows the function to start and operate accurately during CT saturation.

The operational logic consists of the following:

- input magnitude selection
- input magnitude processing
- saturation check
- threshold comparator
- block signal check
- time delay characteristics
- output processing.

The basic design of the protection function is the three-pole operation.


The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed current magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the non-directional overcurrent function.

Figure. 5.4.2 - 29. Simplified function block diagram of the I> function.

Measured input

The function block uses analog current measurement values. However, when the peak-to-peak mode is selected for the function's "Measured magnitude" setting, the values are taken directly from the samples. The user can select the monitored magnitude to be equal either to RMS values, to TRMS values from the whole harmonic specter of 32 components, or to peak-to-peak values. A -20ms averaged value of the selected magnitude is used for pre-fault data registering.

Table. 5.4.2 - 50. Measurement inputs of the I> function.

Signal	Description	Time base
IL1RMS	RMS measurement of phase L1 (A) current	5ms
IL2RMS	RMS measurement of phase L2 (B) current	5ms
IL3RMS	RMS measurement of phase L3 (C) current	5ms
IL1TRMS	TRMS measurement of phase L1 (A) current	5ms
IL2TRMS	TRMS measurement of phase L2 (B) current	5ms
IL3TRMS	TRMS measurement of phase L3 (C) current	5ms
IL1PP	Peak-to-peak measurement of phase L1 (A) current	5ms
IL2PP	Peak-to-peak measurement of phase L2 (B) current	5ms
IL3PP	Peak-to-peak measurement of phase L3 (C) current	5ms

The selection of the used AI channel is made with a setting parameter. In all possible input channel variations the pre-fault condition is presented with a 20 ms averaged history value from -20 ms from START or TRIP event.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
Setting control from comm bus	1: Disabled 2: Allowed	1: Disabled	Activating this parameter allows changing the pick-up level of the protection stage via SCADA.
I> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	0: On	Set mode of NOC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

Table. 5.4.2 - 51. General settings of the function.

AQ-G257 Instruction manual

Version: 2.08

Name	Range	Default	Description
I> force status to	0: Normal 1: Start 2: Trip 3: Blocked 4: Start A 5: Start B 6: Start C 7: Trip A 8: Trip B 9: Trip C 10: Start AB 11: Start BC 12: Start CA 13: Start ABC 14: Trip BC 16: Trip CA 17: Trip ABC	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Measured magnitude	1: RMS 2: TRMS 3: Peak- to-peak	1: RMS	Defines which available measured magnitude is used by the function.
Measurement side	1: Side 1 2: Side 2	1: Side 1	Defines which current measurement module is used by the function.

Pick-up

The *I_{set}* setting parameter controls the pick-up of the I> function. This defines the maximum allowed measured current before action from the function. The function constantly calculates the ratio between the *I_{set}* and the measured magnitude (*I_m*) for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the *I_{set}* value. The setting value is common for all measured phases, and when the *I_m* exceeds the *I_{set}* value (in single, dual or all phases) it triggers the pick-up operation of the function.

Table. 5.4.2 - 52. Pick-up settings.

N	ame	Description	Range	Step	Default
Iset		Pick-up setting	0.1050.00×In	0.01×I _n	1.20×I _n

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table 542-53	Information displ	ayed by the function.
10010.0.4.2 00.	innormation alopi	ayea by the fullotion.

Name	Range	Step	Description	
I> LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of NOC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
l> condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays status of the protection function.	
I> phases condition	0: Normal 1: Start A 2: Start B 3: Start C 4: Trip A 5: Trip B 6: Trip C 7: Start AB 8: Start BC 9: Start CA 10: Start ABC 11: Trip AB 12: Trip BC 13: Trip CA 14: Trip ABC	-	Displays the status of phases individually.	
Expected operating time	-1800.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured highest phase current value. If the measured current changes during a fault, the expected operating time changes accordingly.	
Time remaining to trip	0.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.	
I _{meas} /I _{set} at the moment	0.001250.00	0.01	The ratio between the highest measured phase current and the pick-up value.	

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. Additionally, the non-directional overcurrent function includes an internal inrush harmonic blocking option which is applied according to the parameters set by the user. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

Table. 5.4.2 - 54.	Internal inrush	harmonic h	olockina	settinas
10010.0.4.2 04.	internal infusit		JIOCINING	settings.

Name	Range	Step	Default	Description
Inrush harmonic blocking (internal- only trip)	0: No 1: Yes	-	0: No	Enables and disables the 2 nd harmonic blocking.
2 nd harmonic blocking limit (Iharm/ Ifund)	0.1050.00%lfund	0.01%lfund	0.01%l _{fund}	Defines the limit of the 2 nd harmonic blocking.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a-time stamped blocking event with information of the startup current values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT) and inverse definite minimum time delay (IDMT). For detailed information on these delay types please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

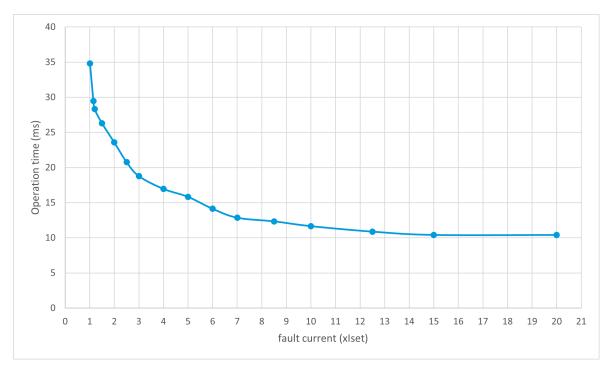


Figure. 5.4.2 - 30. Typical operation time delays with different current to setting ratios in instant operation mode.

Events and registers

The non-directional overcurrent function (abbreviated "NOC" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers four (4) independent stages; the events are segregated for each stage operation.

The events triggered by the function are recorded with a time stamp and with process data values.

Table. 5.4.2 - 55.	Event messages.
--------------------	-----------------

Event block name	Event names
NOC1	Start ON
NOC1	Start OFF
NOC1	Trip ON
NOC1	Trip OFF

Event block name	Event names
NOC1	Block ON
NOC1	Block OFF
NOC1	Phase A Start ON
NOC1	Phase A Start OFF
NOC1	Phase B Start ON
NOC1	Phase B Start OFF
NOC1	Phase C Start ON
NOC1	Phase C Start OFF
NOC1	Phase A Trip ON
NOC1	Phase A Trip OFF
NOC1	Phase B Trip ON
NOC1	Phase B Trip OFF
NOC1	Phase C Trip ON
NOC1	Phase C Trip OFF
NOC2	Start ON
NOC2	Start OFF
NOC2	Trip ON
NOC2	Trip OFF
NOC2	Block ON
NOC2	Block OFF
NOC2	Phase A Start ON
NOC2	Phase A Start OFF
NOC2	Phase B Start ON
NOC2	Phase B Start OFF
NOC2	Phase C Start ON
NOC2	Phase C Start OFF
NOC2	Phase A Trip ON
NOC2	Phase A Trip OFF
NOC2	Phase B Trip ON
NOC2	Phase B Trip OFF
NOC2	Phase C Trip ON
NOC2	Phase C Trip OFF
NOC3	Start ON
NOC3	Start OFF
NOC3	Trip ON
NOC3	Trip OFF
NOC3	Block ON
NOC3	Block OFF

AQ-G257 Instruction manual

Version: 2.08

Event block name	Event names
NOC3	Phase A Start ON
NOC3	Phase A Start OFF
NOC3	Phase B Start ON
NOC3	Phase B Start OFF
NOC3	Phase C Start ON
NOC3	Phase C Start OFF
NOC3	Phase A Trip ON
NOC3	Phase A Trip OFF
NOC3	Phase B Trip ON
NOC3	Phase B Trip OFF
NOC3	Phase C Trip ON
NOC3	Phase C Trip OFF
NOC4	Start ON
NOC4	Start OFF
NOC4	Trip ON
NOC4	Trip OFF
NOC4	Block ON
NOC4	Block OFF
NOC4	Phase A Start ON
NOC4	Phase A Start OFF
NOC4	Phase B Start ON
NOC4	Phase B Start OFF
NOC4	Phase C Start ON
NOC4	Phase C Start OFF
NOC4	Phase A Trip ON
NOC4	Phase A Trip OFF
NOC4	Phase B Trip ON
NOC4	Phase B Trip OFF
NOC4	Phase C Trip ON
NOC4	Phase C Trip OFF

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.2 - 56. Register content.

Date and time	Event	Fault type	Pre-trigger current	Fault current	Pre-fault current	Trip time remaining	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	L1-EL1-L2-L3	Start/Trip -20ms current	Start/ Trip current	Start -200ms current	0 ms1800s	Setting group 18 active

5.4.3 Non-directional earth fault protection (I0>; 50N/51N)

The non-directional earth fault function is used for instant and time-delayed earth fault protection. The number of stages in the function depend on the device model. The operating characteristics are based on the selected neutral current magnitudes which the function measures constantly. The available analog measurement channels are I01 and I02 (residual current measurement) and I0Calc (residual current calculated from phase current). The user can select these channels to use RMS values, TRMS

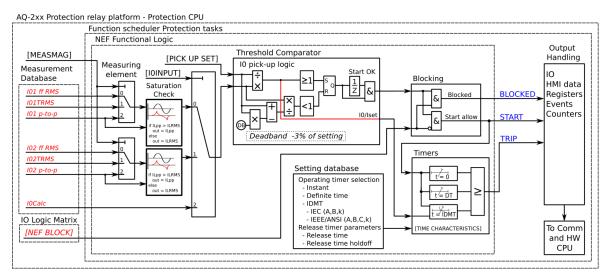
values (including harmonics up to 32nd), or peak-to-peak values. The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

The non-directional earth fault function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode. In the time-delayed mode the operation can be selected for definite time (DT) or for inverse definite minimum time (IDMT); the IDMT operation supports both IEC and ANSI standard time delays as well as custom parameters. The function includes the checking of CT saturation which allows the function to start and operate accurately even during CT saturation.

The operational logic consists of the following:

- input magnitude selection
- input magnitude processing
- saturation check
- threshold comparator
- block signal check
- time delay characteristics
- output processing.


The inputs for the function are the following:

- operating mode selections
- setting parameters
- · digital inputs and logic signals
- measured and pre-processed current magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the non-directional earth fault function.

Figure. 5.4.3 - 31. Simplified function block diagram of the I0> fucntion.

Measured input

The function block uses analog current measurement values. The user can select the monitored magnitude to be equal either to RMS values, to TRMS values, or to peak-to-peak values. TRMS mode uses values from the whole harmonic spectrum of 32 components. Peak-to-peak mode picks measurement values directly from the samples. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

Table. 5.4.3 - 57. Measurement inputs of the IO> function.

Signal	Description	Time base
I01RMS	RMS measurement of coarse residual current measurement input I01	5 ms
I01TRMS	TRMS measurement of coarse residual current measurement input I01	5 ms
I01PP	Peak-to-peak measurement of coarse residual current measurement input I01	5 ms
I02RMS	RMS measurement of sensitive residual current measurement input I02	5 ms
I02TRMS	TRMS measurement of coarse sensitive current measurement input I02	5 ms
102PP	Peak-to-peak measurement of sensitive residual current measurement input 102	5 ms
I0Calc	RMS value of the calculated zero sequence current from the three phase currents	5 ms

The selection of the used AI channel is made with a setting parameter. In all possible input channel variations the pre-fault condition is presented with a 20 ms averaged history value from -20 ms from a START or TRIP event.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.4.3 - 58. General settings of the function.	

Name	Range	Default	Description
Setting control from comm bus	1: Disabled 2: Allowed	1: Disabled	Activating this parameter permits changing the pick-up level of the protection stage via SCADA.

Name	Range	Default	Description
I0> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of NEF block. This parameter is visible only when Allow setting of individual LN mode is enabled in General menu.
IO> force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Measured magnitude	1: RMS 2: TRMS 3: Peak- to-peak	1: RMS	Defines which available measured magnitude is used by the function. This parameter is available when "Input selection" has been set to "I01" or "I02".
Measurement side	1: Side 1 2: Side 2	1: Side 1	Defines which current measurement module is used by the function.
Input selection	1: I01 2: I02 3: I0Calc	1: 101	Defines which measured residual current is used by the function.

Pick-up

The IO_{set} setting parameter controls the the pick-up of the IO> function. This defines the maximum allowed measured current before action from the function. The function constantly calculates the ratio between the IO_{set} and the measured magnitude (I_m) for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the IO_{set} value. The setting value is common for all measured phases. When the I_m exceeds the IO_{set} value (in single, dual or all phases) it triggers the pick-up operation of the function.

Table. 5.4.3 - 59. Pick-up settings.

Name	Description	Range	Step	Default
10 _{set}	Pick-up setting	$0.000140.00 imes I_n$	$0.0001 \times I_n$	1.20 × I _n

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table. 5.4.3 - 60. Information displayed by the function.

Name	Name Range Step		Description
10> LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of NEF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

Name	Range	Step	Description
I0> condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays status of the protection function.
Detected I0 angle	-360.00360.00 deg	0.01 deg	Angle of I0 against reference. If phase voltages are available, positive sequence voltage angle is used as reference. If voltages are not available, positive sequence current angle is used as reference.
Detected fault type	0: - 1: A-G-R 2: B-G-F 3: C-G-R 4: A-G-F 5: B-G-R 6: C-G-F	-	Displays the detected fault type and direction of previous fault. "A/B/C" stand for one of the three phases. "G" stands for "ground". "F" stands for "forward" direction and "R" stands for "reverse" direction.
Expected operating time	-1800.0001800.000 s	0.005 s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured current value. If the measured current changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	0.0001800.000 s	0.005 s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
I _{meas} /I _{set} at the moment	0.001250.00	0.01	The ratio between the measured current and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. Additionally, non-directional earth fault protection includes an internal inrush harmonic blocking option which is applied according to the parameters set by the user. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

Table. 5.4.3 - 61. Internal inrush harmonic blocking settings.

Name	Name Description		Step	Default
Inrush harmonic blocking (internal-only trip)	2 nd harmonic blocking enable/ disable	0: No 1: Yes	-	0: No
2 nd harmonic block limit (lharm/lfund)	2 nd harmonic blocking limit	0.1050.00%lfund	0.01%l _{fund}	0.01%l _{fund}

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup current values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT) and inverse definite minimum time delay (IDMT). For detailed information on these delay types please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

Events and registers

The non-directional earth fault function (abbreviated "NEF" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers four (4) independent stages; the events are segregated for each stage operation.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
NEF1	Start ON
NEF1	Start OFF
NEF1	Trip ON
NEF1	Trip OFF
NEF1	Block ON
NEF1	Block OFF
NEF2	Start ON
NEF2	Start OFF
NEF2	Trip ON
NEF2	Trip OFF
NEF2	Block ON
NEF2	Block OFF
NEF3	Start ON
NEF3	Start OFF
NEF3	Trip ON
NEF3	Trip OFF
NEF3	Block ON
NEF3	Block OFF
NEF4	Start ON
NEF4	Start OFF
NEF4	Trip ON
NEF4	Trip OFF
NEF4	Block ON
NEF4	Block OFF

Table. 5.4.3 - 62. Event messages.

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.3 - 63. Register content.

Date and time	Event	Fault type	Pre-trigger current	Fault current	Pre-fault current	Trip time remaining	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	A-G- RC-G- F	Start/trip -20 ms current	Start/Trip current	Start -200ms current	0 ms1800s	Setting group 18 active

5.4.4 Directional overcurrent protection (Idir>; 67)

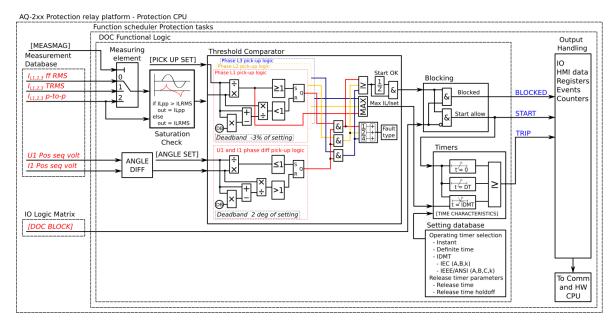
The directional overcurrent function is used for instant and time-delayed overcurrent and short-circuits. A device with both voltage and current protection modules can have four (4) available stages of the function (ldir>, ldir>>, ldir>>>, ldir>>>). The operating decisions are based on phase current magnitudes which the function constantly measures. The selectable monitored phase current magnitudes are equal to RMS values, to TRMS values (including harmonics up to 31st), or to peak-to-peak values. The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

The directional overcurrent function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode. In time-delayed mode the operation can be selected between definite time (DT) mode and inverse definite minimum time (IDMT). The IDMT operation supports both IEC and ANSI standard time delays as well as custom parameters. The function includes CT saturation checking which allows the function to start and operate accurately during CT saturation.

The operational logic consists of the following:

- input magnitude selection
- input magnitude and angle processing
- saturation check
- threshold comparator
- block signal check
- time delay characteristics
- output processing.


The basic design of the protection function is the three-pole operation.

The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed current magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the directional overcurrent function.

Measured input

The function block uses analog current measurement values. The user can select the monitored magnitude to be equal either to RMS values, to TRMS values, or to peak-to-peak values. TRMS mode uses values from the whole harmonic spectrum of 32 components. Peak-to-peak mode picks measurement values directly from the samples. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

The fault current angle is based on the comparison between the positive sequence voltage U_1 and the positive sequence current I_1 . If the positive sequence voltage is not available (three line-to-line voltages but no U_0), the voltage angle is based on a faulty phase line-to-line voltage. If the voltage drops below 1 V in the secondary side during a fault, the voltage memory is used for 0.5 seconds. After that the reference angle of voltage is forced to 0° .

Signal	Description	Time base
IL1RMS	RMS measurement of phase L1 (A) current	5ms
IL2RMS	RMS measurement of phase L2 (B) current	5ms
IL3RMS	RMS measurement of phase L3 (C) current	5ms
IL1TRMS	TRMS measurement of phase L1 (A) current	5ms
IL2TRMS	TRMS measurement of phase L2 (B) current	5ms
IL3TRMS	TRMS measurement of phase L3 (C) current	5ms
IL1PP	Peak-to-peak measurement of phase L1 (A) current	5ms
IL2PP	Peak-to-peak measurement of phase L2 (B) current	5ms
IL3PP	Peak-to-peak measurement of phase L3 (C) current	5ms
U1RMS	RMS measurement of voltage U1/V	5ms
U ₂ RMS	RMS measurement of voltage U ₂ /V	5ms
U ₃ RMS	RMS measurement of voltage U ₃ /V	5ms
U4RMS	RMS measurement of voltage U4/V	5ms

Table. 5.4.4 - 64. Measurement inputs of the Idir> function.

The selection of the used AI channel is made with a setting parameter. In all possible input channel variations the pre-fault condition is presented with a 20 ms averaged history value from -20 ms from START or TRIP event.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table	544	- 65	General	settinas	of the	function.
rabic.	J	00.	Ocherai	Soungs		function.

Name	Range	Default	Description	
ldir> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of DOC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
ldir> force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.	
Measured magnitude	1: RMS 2: TRMS 3: Peak- to-peak	1: RMS	Defines which available measured magnitude is used by the function.	
Measurement side	1: Side 1 2: Side 2	1: Side 1	Defines which current measurement module is used by the function. Visible if the unit has more than one current measurement module.	

Pick-up

The I_{set} setting parameter controls the pick-up of the I> function. This defines the maximum allowed measured current before action from the function. The function constantly calculates the ratio between the I_{set} and the measured magnitude (I_m) for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the I_{set} value. The setting value is common for all measured phases, and when the I_m exceeds the I_{set} value (in single, dual or all phases) it triggers the pick-up operation of the function.

The trip characteristic can be set to directional or non-directional. In the non-directional mode only the pick-up value of the positive sequence current magnitude must be fulfilled in order for the function to trip. In the directional mode the fault must also be in the monitored direction to fulfill the terms to trip. By default, the tripping area is $\pm 88^{\circ}$ (176°). The reference angle is based on the calculated positive sequence voltage U_1 angle. If the U_1 voltage is not available and only line-to-line voltages are measured, the reference angle is based on a healthy line-to-line voltage. During a short-circuit the reference angle is based on impedance calculation.

If the voltage drops below 1 V in the secondary side, the angle memory is used for 0.5 seconds. The angle memory forces the reference angle to be equal to the value measured or calculated before the fault. The angle memory captures the measured voltage angle 100 ms before the fault starts. After 0.5 seconds the angle memory is no longer used, and the reference angle is forced to 0°. The inbuilt reset ratio for the tripping area angle is 2°.

Table. 5.4.4 - 66. Pick-up settings.

Name	Description	Range	Step	Default
Characteristic direction	Switches between directional and non-directional overcurrent mode.	Directional Non-directional	-	Directional
Operating sector size (+ / -)	Pick-up area size in degrees.	±1.0170.0°	0.1°	±88°
Operating sector center	Turns the operating sector	-180.0180.0°	0.1°	0°
Pick-up setting I _{set}	Pick-up setting	0.1040.00×I _n	0.01×I _n	1.20×I _n

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

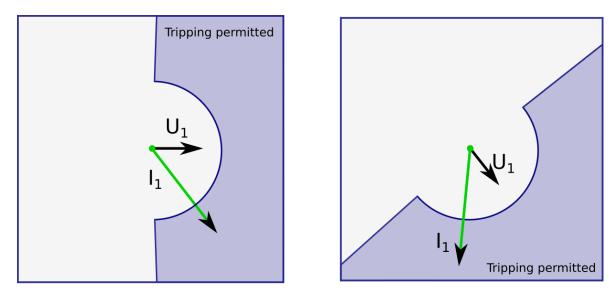


Figure. 5.4.4 - 33. Angle tracking of the Idir> function ($3LN/3LL + U_0 \mod e$).

Please note in the picture above that the tripping area is linked to the angle of the positive sequence voltage U_1 . The angle of the positive sequence current I_1 is compared to U_1 angle, and if the fault is in the correct direction, it is possible to perform a trip when the amplitude of I_{L1} , I_{L2} or I_{L3} increases above the pick-up limit.

If the 3LL mode is used without the U_0 measurement in a single-phase fault situation, the voltage reference comes from the healthy phase and the current reference from the faulty phase. In a short-circuit the angle comes from impedance calculation.

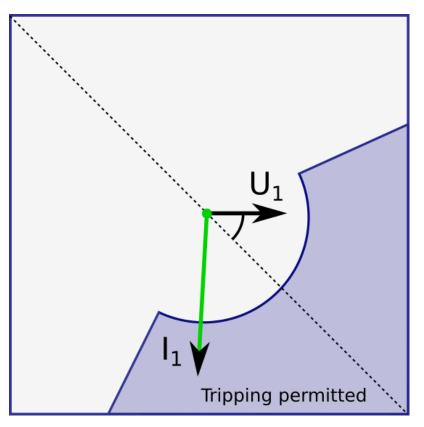
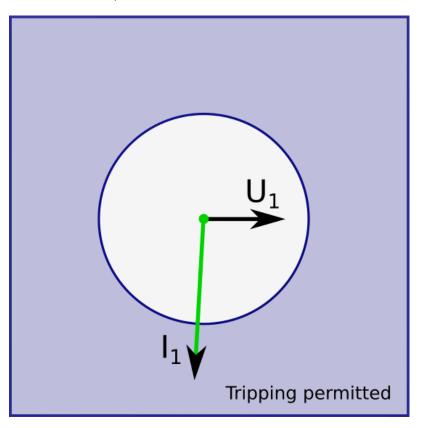



Figure. 5.4.4 - 34. Operation sector area when the sector center has been set to -45 degrees.

Figure. 5.4.4 - 35. When Idir> function has been set to "Non-directional" the function works basically just like a traditional non-directional overcurrent protection function.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table. 5.4.4 - 67. Information displayed by the function.	Table. 5.4.4 - 67.	Information displayed	by the function.
---	--------------------	-----------------------	------------------

Name	Range	Step	Description
ldir> LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of DOC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Operating angle now	-360.00360.00deg	0.01deg	The positive sequence current angle in relation to the positive sequence voltage.
Expected operating time	0.0001800.00s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the highest measured phase current value. If the measured current changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.00s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
I _{meas} /I _{set} at the moment	0.001250.00lm/lset	0.011 _m /l _{set}	The ratio between the highest measured phase current and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. Additionally, the non-directional overcurrent function includes an internal inrush harmonic blocking option which is applied according to the parameters set by the user. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

Table. 5.4.4 - 68. Internal inrush harmonic blocking settings.

Name	Description	Range	Step	Default
Inrush harmonic blocking (internal- only trip)	Enables and disables the 2 nd harmonic blocking.	0: No 1: Yes	-	0: No
2 nd harmonic blocking limit (lharm/ lfund)	The 2 nd harmonic blocking limit.	0.1050.00%l _{fund}	0.01%l _{fund}	0.01%l _{fund}

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup current values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT) and inverse definite minimum time delay (IDMT). For detailed information on these delay types please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

Events and registers

The directional overcurrent function (abbreviated "DOC" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers four (4) independent stages; the events are segregated for each stage operation.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
DOC1	Start ON
DOC1	Start OFF
DOC1	Trip ON
DOC1	Trip OFF
DOC1	Block ON
DOC1	Block OFF
DOC1	No voltage, Blocking ON
DOC1	Voltage measurable, Blocking OFF
DOC1	Measuring live angle ON
DOC1	Measuring live angle OFF
DOC1	Using voltmem ON
DOC1	Using voltmem OFF
DOC2	Start ON
DOC2	Start OFF
DOC2	Trip ON
DOC2	Trip OFF
DOC2	Block ON
DOC2	Block OFF
DOC2	No voltage, Blocking ON
DOC2	Voltage measurable, Blocking OFF
DOC2	Measuring live angle ON
DOC2	Measuring live angle OFF
DOC2	Using voltmem ON
DOC2	Using voltmem OFF

Table. 5.4.4 - 69. Event messages.

Event block name	Event names
DOC3	Start ON
DOC3	Start OFF
DOC3	Trip ON
DOC3	Trip OFF
DOC3	Block ON
DOC3	Block OFF
DOC3	No voltage, Blocking ON
DOC3	Voltage measurable, Blocking OFF
DOC3	Measuring live angle ON
DOC3	Measuring live angle OFF
DOC3	Using voltmem ON
DOC3	Using voltmem OFF
DOC4	Start ON
DOC4	Start OFF
DOC4	Trip ON
DOC4	Trip OFF
DOC4	Block ON
DOC4	Block OFF
DOC4	No voltage, Blocking ON
DOC4	Voltage measurable, Blocking OFF
DOC4	Measuring live angle ON
DOC4	Measuring live angle OFF
DOC4	Using voltmem ON
DOC4	Using voltmem OFF

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Register name	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Fault type	L1-EL1-L2-L3
Pre-trigger current	Start/Trip -20ms current
Fault current	Start/Trip current
Pre-fault current	Start -200ms averages
Trip time remaining	0s1800s
Used SG	Setting group 18 active

Table. 5.4.4 - 70. Register content.

Register name	Description		
Operating angle	0250°		

5.4.5 Directional earth fault protection (I0dir>; 67N/32N)

The directional earth fault function is used for instant and time-delayed earth fault protection. A device with both voltage and current protection modules can have four (4) stages in the function (I0dir>, I0dir>>, I0dir>>>). The operating decisions are based on selected neutral current and voltage magnitudes which the function constantly measures. The available residual current

magnitudes are RMS values, TRMS values (including harmonics up to 31st), or peak-to-peak values that come from inputs I01 or I02 (residual current measurement) or from I0Calc (residual current calculated from phase current measurements). The current angle is compared to the angle of measured or calculated zero sequence voltage. A certain amount of zero sequence voltage has to be present to activate the trip. The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

The directional earth fault function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode. In the time-delayed mode the operation can be selected for definite time (DT) or for inverse definite minimum time (IDMT); the IDMT operation supports both IEC and ANSI standard time delays as well as custom parameters.

The operational logic consists of the following:

- input magnitude selection
- input magnitude processing
- threshold comparator
- angle check
- block signal check
- time delay characteristics
- output processing.

The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed current magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the directional earth fault function.

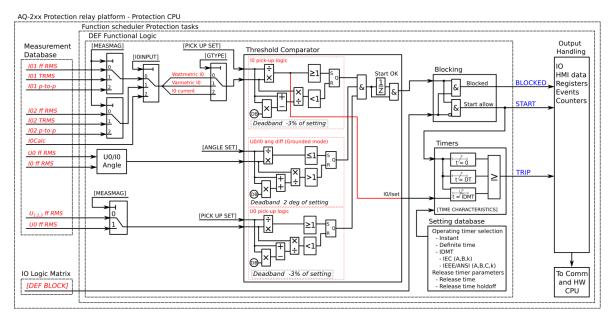


Figure. 5.4.5 - 36. Simplified function block diagram of the I0dir> function.

Measured input

The function block uses analog current measurement values. The user can select the monitored magnitude to be equal either to RMS values, to TRMS values, or to peak-to-peak values. TRMS mode uses values from the whole harmonic spectrum of 32 components. Peak-to-peak mode picks measurement values directly from the samples. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

The fault current angle is based on comparing the neutral voltage U_0 angle to the residual current I_0 angle. Both I_0 and U_0 must be above the squelch limit to be able to detect the angle. The squelch limit for the I_0 current is 0.01 x I_n and for the U_0 voltage 0.01 x U_n .

Signal	Description	Time base
I01RMS	RMS measurement of coarse residual current measurement input I01	5ms
I01TRMS	TRMS measurement of coarse residual current measurement input I01	5ms
I01PP	Peak-to-peak measurement of coarse residual current measurement input I01	5ms
I02RMS	RMS measurement of sensitive residual current measurement input I02	
I02TRMS	TRMS measurement of coarse sensitive current measurement input I02	5ms
I02PP	Peak-to-peak measurement of sensitive residual current measurement input I02	5ms
I0Calc	RMS value of the calculated residual current from the three phase currents	5ms
UORMS	RMS measurement of zero sequence voltage measurement input U0	5ms
U0Calc	RMS value of the calculated zero sequence voltage from the three phase voltages	5ms

Table. 5.4.5 - 71. Measurement inputs of the IOdir> function.

The selection of the used AI channel is made with a setting parameter. In all possible input channel variations the pre-fault condition is presented with a 20 ms averaged history value from -20 ms from a START or TRIP event.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
I0dir> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of DEF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I0dir> force status to	0: Normal 1: Start 2: Trip 3: Blocked 4: Unearthed Start 5: Unearthed Trip 6: Compensated Start 7: Compensated Trip	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
U0 directional phase	1: U0 2: -U0	1: U0	If the connected neutral voltage polarity is opposite to the connected residual current, this parameter can swap the angle reference.
U0> Meas input select	1: Select 2: U0 Calculated 3: U3 Input 4: U4 Input	1: Select	Defines which available neutral voltage measurement is used. Available neutral voltages depend on measurement settings (<i>Measurements</i> \rightarrow <i>Transformers</i> \rightarrow <i>VT module</i>).
Measured magnitude	1: RMS 2: TRMS 3: Peak-to- peak	1: RMS	Defines which available measured magnitude is used by the function. This parameter is available when "Input selection" has been set to "I01" or "I02".
Measurement side	1: Side 1 2: Side 2	1: Side 1	Defines which current measurement module is used by the function.
Input selection	1: I01 2: I02 3: I0Calc	1: 101	Defines which measured residual current is used by the function.

Table. 5.4.5 - 72. General settings of the function.

Pick-up

The the pick-up of the l0dir> function is controlled by the I_{0set} setting parameter and the U_{0set} setting parameter. The former defines the maximum allowed measured current, while the latter defines the maximum allowed measured voltage and checks the angle difference before action from the function. The function constantly calculates the ratio between the I_{0set} and the U_{0set} and the measured magnitudes (I_m and U_m). The reset ratio of 97 % is built into the function and is always relative to the I_{0set} (or U_{0set}) value. When the I_m exceeds the I_{0set} value it triggers the pick-up operation of the function.

Table. 5.4.5 - 73. Pick-up settings.

Name	Description	Range	Step	Default
10 _{set}	Pick-up setting	0.00540.00×I _n	0.001×I _n	1.20×I _n
U0 _{set}	Pick-up setting	175%U _n	0.01%U _n	20%Un
Grounding type	Network grounding method	1: Unearthed [32N Var] 2: Petersen coil GND [32N Watt] 3: Grounded [67N] 4: I0 _{Cos} & I0 _{Sin} broad range with MCD [32N Var/ Watt]	-	1: Unearthed
Multi-criteria detection	Activation of detecting healthy or unhealthy feeder by analyzing symmetrical components of currents and voltages. Visible when earthing type is set to $10_{Cos} \& 10_{Sin}$ broad range mode.	1: Not used 2: Used	-	1: Not used
Unearthed/ Compensated border angle	Dividing the angle between unearthed and compensated tripping (see description later in this document). Visible when earthing type is set to $10_{Cos} \& 10_{Sin}$ broad range mode.	-45.090°	0.1°	45°
Angle	Tripping area size (earthed network)	±45.0135.0°	0.1°	±88°
Angle offset	Protection area direction (earthed network)	0.0360.0°	0.1°	0.0°
Angle blinder	I0 angle blinder (Petersen coil earthed)	-90.00.0°	0.1°	-90°

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Unearthed network

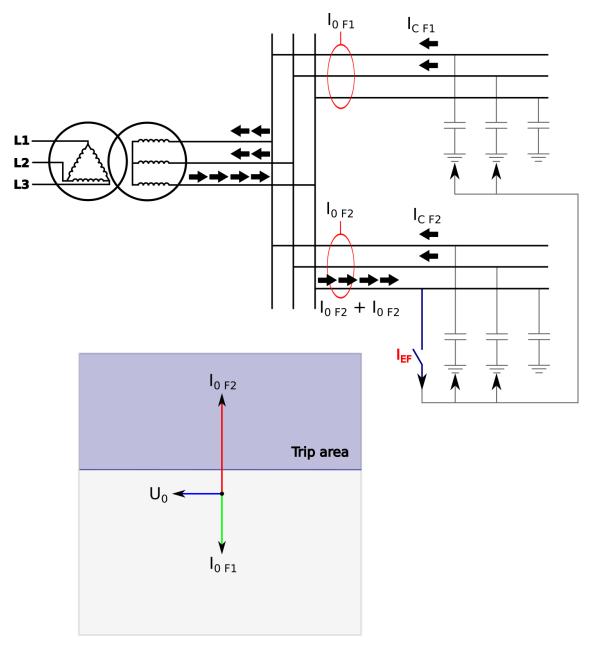
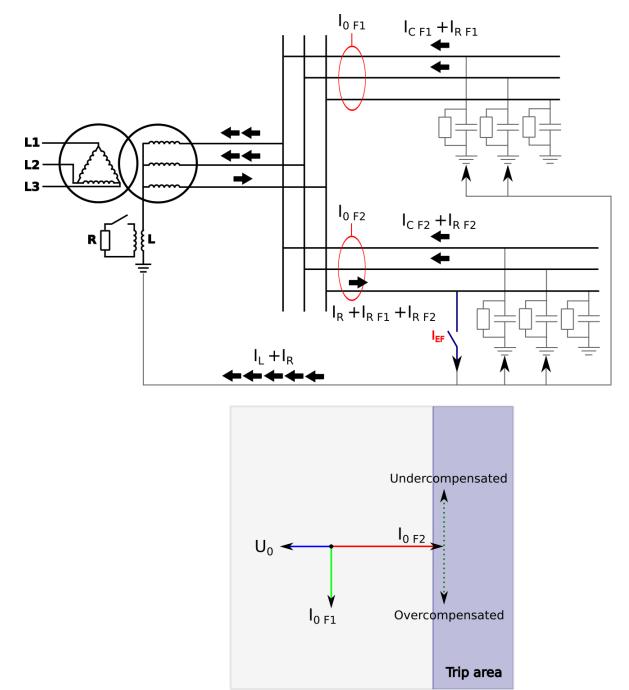


Figure. 5.4.5 - 37. Angle tracking of IOdir> function (unearthed network model) (32N)

When the unearthed (capacitive) network mode is chosen, the device expects the fault current to be lagging zero sequence voltage by 90 degrees. Healthy phases of healthy feeders produce capacitive current during earth fault just like a faulty feeder but the current is floating towards the busbar and through an incoming transformer or a earthing transformer and into a faulty feeder. Healthy feeders do not trip since capacitive current is floating to the opposite direction and selective tripping can be ensured.

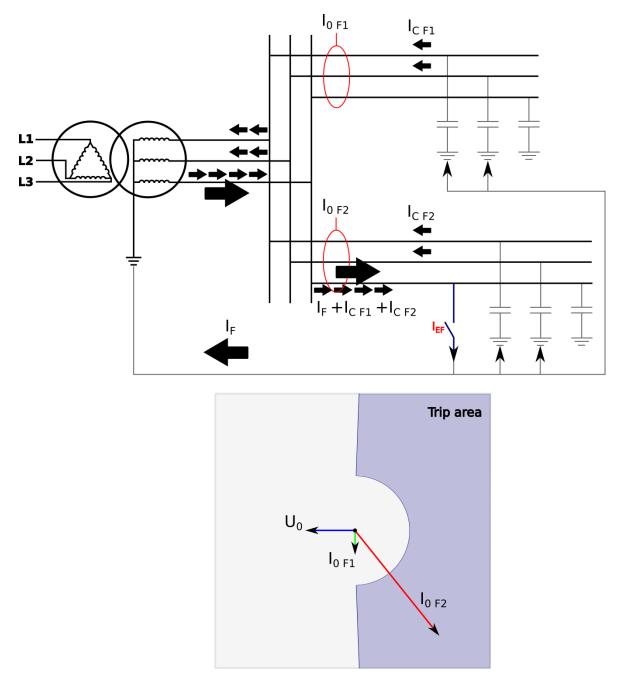

The amplitude of the fault current depends on the capacitance of the network. The outgoing feeders are the sources for capacitive currents. The bigger the network the greater the capacitive current during a fault. Each outgoing feeder produces capacitance according to the zero sequence capacitive reactance of the line (ohms per kilometer). It is normal that in cable networks fault currents are higher than in overhead lines.

The resistance of the fault affects the size of the voltage drop during a fault. In direct earth fault the zero sequence voltage amplitude is equal to the system's line-to-earth voltage. In direct earth fault the voltage of a faulty phase drops close to zero and healthy phase voltages increase to the amplitude of line-to-line voltages.

Petersen coil earthed (Compensated) network (32N)

There are many benefits to a Petersen coil earthed network. The amount of automatic reclosing is highly decreased and the maintenance of the breakers is therefore diminished. Arc faults die on their own, and cables and equipment suffer less damage. In emergency situations a line with an earth fault can be used for a specific time.

Figure. 5.4.5 - 38. Angle tracking of IOdir> function (Petersen coil earthed network model).

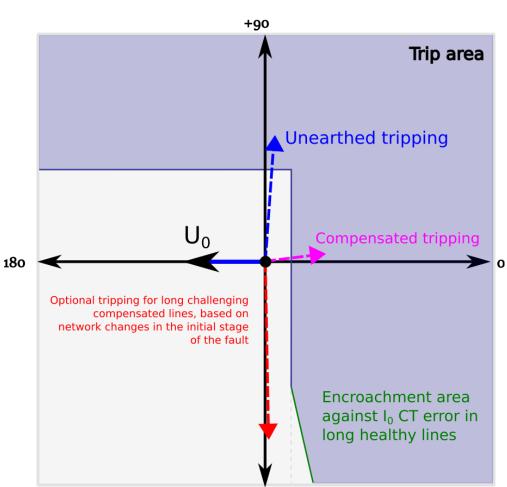


When the Petersen coil earthed (compensated) network mode is chosen, the device expects the fault current to be in the opposite direction to the zero sequence voltage. Healthy phases of both healthy and faulty feeders produce a capacitive current similar to the unearthed network. The inductance of the Petersen coil compensates the capacitive current and therefore the residual current in a fault location is close to zero. The size of the inductance is chosen according to the prospective earth fault current of the network. The desired compensation grade is achieved when the K factor is close to 1.0 and the network is fully compensated. The network is overcompensated when the K factor is greater than 1.0, and undercompensated when the K factor is smaller than 1.0.

The inductance connected to the star point of an incoming transformer or -as in most cases- to a earthing transformer compensates the capacitance of the network; however, this prevents the capacitive fault current to be measured. The fault detection is handled by connecting the resistance in parallel with the inductance. This resistance includes the amplitude of the fault current. In undercompensated or overcompensated situations the resistive component does not change during the fault; therefore, selective tripping is ensured even when the network is slightly undercompensated or overcompensated.

Directly earthed or small impedance network (67N)

Figure. 5.4.5 - 39. Angle tracking of IOdir> function (directly earthed or small impedance network).


In a directly earthed network the amplitude of a single-phase fault current is similar to the amplitude of a short-circuit current. Directly earthed or small impedance network schemes are normal in transmission, distribution and industry.

The phase angle setting of the tripping area is adjustable as is the base direction of the area (angle offset).

Broad range mode with multi-criteria detection for unearthed and compensated networks

When detecting earth faults in compensated long-distance cables and overhead lines, it is in some cases difficult to distinguish between a healthy and a faulty feeder. Merely measuring the angle and the magnitude of residual voltage and currents is not always enough, as changes in symmetrical components of phase currents and voltages are also needed. Additionally, when protecting feeders from earth faults, two modes are used depending on the network status (unearthed or compensated). When changing between these two statuses the setting group must be changed, and especially with distributed compensation the change may be difficult or impossible to arrange. Finally, in a compensated network protection the relay with traditional algorithms may sporadically detect an earth fault in a long healthy feeder due to CT errors. For all these reasons, Arcteq has developed an improved alternative to these traditional directional earth fault protections.

Figure. 5.4.5 - 40. Angle tracking of the I0dir> function (broad range mode).

New broadrange mode

-90

The new broad range mode is capable of detecting an earth fault directionally in both unearthed and compensated networks not only by combining the two stages together but by using a new multi-criteria detection. This optional additional tripping condition for compensated networks uses Arcteq's patented, high-resolution intermittent earth fault algorithm with added symmetrical component calculation of phase currents and voltages. If this mode is activated, the alarming criteria is comprised of a measured residual current in the fourth quadrant and the symmetrical components of voltages and currents detecting a fault. No extra parameterization is required compared to the traditional method. The multi-criteria algorithm can be tested with COMTRADE files supplied by Arcteq. The function requires a connection of three-phase currents, residual current and residual voltage to operate correctly.

To avoid unnecessary alarms the user can add an encroachment area against I0 CT errors in compensated long healthy lines.

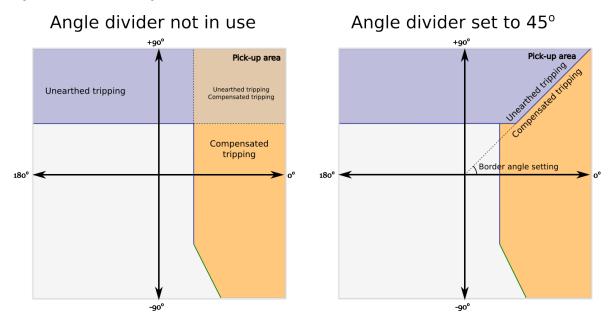


Figure. 5.4.5 - 41. Effect of angle divider when in use and when disabled.

To receive a more accurate indication as to whether the fault was in a compensated or an unearthed network the angle divider can divide the area which would otherwise be overlapped between the two network models. By default the setting is 45 degrees. When the divider is disabled the angle is set to zero degrees.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
l0dir> LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	1: On	Set mode of NOC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I0dir> condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays the status of the protection function.

Table. 5.4.5 - 74. Information displayed by the fu	inction.

AQ-G257 Instruction manual

Version: 2.08

Name	Range	Step	Description	
U0> Measuring now	0: No U0 avail! 1: U0Calc 2: U3 Input 3: U4 Input	-	Displays which voltage channel is used by the function. If no voltage channel has been selected the function defaults to calculated residual voltage if line-to-neutral voltages have been connected to device. If no channel is set to "U0" mode and line-to-line voltages are connected, no residual voltage is available and "No U0 avail!" will be displayed.	
U0> Pick-up setting	0.01 000 000V	0.1V	The required residual voltage on the primary side for the relay to trip.	
Detected U0/ I0 angle (fi)	-360.00360.00deg	0.01deg	The angle in degrees between the monitored residual voltage and the current.	
10 Magnitude	0.000250.000×10 _n	0.001×10 _n	The per-unit-value of the monitored residual current.	
I0 Wattmetric I0xCos(fi)	-250.000250.000×10 _n	0.001×10 _n	The wattmetric per-unit-value of the monitored residual current.	
I0 Varmetric I0xSin(fi)	-250.000250.000×10 _n	0.001×10 _n	The varmetric per-unit-value of the monitored residual current.	
I0 direction now	0: Undefined 1: Forward 2: Reverse	-	The detected direction of the residual current.	
10 meas/ 10 set now	-250.000250.000×10 _n	0.001×10 _n	The ratio between the monitored residual current and the pick-up value.	
U0 measurement now	0.000500.000%U0 _n	0.001%U0 _n	The measured voltage in the chosen voltage channel.	
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured current value. If the measured current changes during a fault, the expected operating time changes accordingly.	
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.	

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. Additionally, the directional earth fault protection function includes an internal inrush harmonic blocking option which is applied according to the parameters set by the user. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

Table. 5.4.5 - 75. Internal inrush harmonic blocking settings.

Name	Description	Range	Step	Default
Inrush harmonic blocking (internal- only trip)	Enables and disables the 2 nd harmonic blocking.	0: No 1: Yes	-	0: No
2 nd harmonic blocking limit (lharm/ lfund)	The 2 nd harmonic blocking limit.	0.1050.00%l _{fund}	0.01%l _{fund}	0.01%l _{fund}

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pickup signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup current values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT) and inverse definite minimum time delay (IDMT). For detailed information on these delay types please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

Events and registers

The directional overcurrent function (abbreviated "DEF" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers four (4) independent stages; the events are segregated for each stage operation.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event name
DEF1	Start ON
DEF1	Start OFF
DEF1	Trip ON
DEF1	Trip OFF
DEF1	Block ON
DEF1	Block OFF
DEF1	I0Cosfi Start ON
DEF1	I0Cosfi Start OFF
DEF1	I0Sinfi Start ON
DEF1	I0Sinfi Start OFF
DEF1	I0Cosfi Trip ON
DEF1	I0Cosfi Trip OFF
DEF1	I0Sinfi Trip ON
DEF1	I0Sinfi Trip OFF
DEF2	Start ON
DEF2	Start OFF
DEF2	Trip ON
DEF2	Trip OFF
DEF2	Block ON
DEF2	Block OFF

Table. 5.4.5 - 76. Event messages.

AQ-G257 Instruction manual

Version: 2.08

Event block name	Event name
DEF2	I0Cosfi Start ON
DEF2	I0Cosfi Start OF
DEF2	I0Sinfi Start ON
DEF2	I0Sinfi Start OFF
DEF2	I0Cosfi Trip ON
DEF2	I0Cosfi Trip OFF
DEF2	I0Sinfi Trip ON
DEF2	I0Sinfi Trip OFF
DEF3	Start ON
DEF3	Start OFF
DEF3	Trip ON
DEF3	Trip OFF
DEF3	Block ON
DEF3	Block OFF
DEF3	I0Cosfi Start ON
DEF3	I0Cosfi Start OFF
DEF3	I0Sinfi Start ON
DEF3	I0Sinfi Start OFF
DEF3	I0Cosfi Trip ON
DEF3	I0Cosfi Trip OFF
DEF3	I0Sinfi Trip ON
DEF3	I0Sinfi Trip OFF
DEF4	Start ON
DEF4	Start OFF
DEF4	Trip ON
DEF4	Trip OFF
DEF4	Block ON
DEF4	Block OFF
DEF4	I0Cosfi Start ON
DEF4	I0Cosfi Start OFF
DEF4	I0Sinfi Start ON
DEF4	I0Sinfi Start OFF
DEF4	I0Cosfi Trip ON
DEF4	I0Cosfi Trip OFF
DEF4	I0Sinfi Trip ON
DEF4	I0Sinfi Trip OFF

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Register	Description
Event	Event name
Date and time	dd.mm.yyyy hh:mm:ss.mss
Io pre-triggering current	Start/Trip -20ms current
I ₀ fault current	Start/Trip current
Fault capacitive I0	Start/Trip capacitive current
Fault resistive I0	Start/Trip resistive current
Fault U ₀ (%)	Start/Trip voltage (percentage of nominal)
Fault U ₀ (V)	Start/Trip voltage (in Volts)
I ₀ fault angle	0360°
Trip time remaining	0 ms1800s
Used SG	Setting group 18 active
Network GND	Unearthed, Petersen coil earthed, Earthed network
lo pre-fault current	Start -200ms current

5.4.6 Negative sequence overcurrent/ phase current reversal/ current unbalance protection (I2>; 46/46R/46L)

The current unbalance function is used for instant and time-delayed unbalanced network protection and for detecting broken conductors. The number of stages in the function depends on the relay model. The operating decisions are based on negative and positive sequence current magnitudes which the function constantly measures. In the broken conductor mode (I2/I1) the minimum allowed loading current is also monitored in the phase current magnitudes.

There are two possible operating modes available: the I2 mode monitors the negative sequence current, while the I2/I1 mode monitors the ratio between the negative sequence current and the positive sequence current. The relay calculates the symmetrical component magnitudes in use from the phase current inputs I_{L1} , I_{L2} and I_{L3} . The zero sequence current is also recorded into the registers as well as the angles of the positive, negative and zero sequence currents in order to better verify any fault cases. The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

The current unbalance function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode. In time-delayed mode the operation can be selected between definite time (DT) or inverse definite minimum time (IDMT). The IDMT operation supports both IEC and ANSI standard time delays as well as custom parameters.

The operational logic consists of the following:

- input magnitude selelction
- input magnitude processing

AQ-G257 Instruction manual

Version: 2.08

- threshold comparator
- block signal check
- time delay characteristics
- output processing.

The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed current magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the current unbalance function.

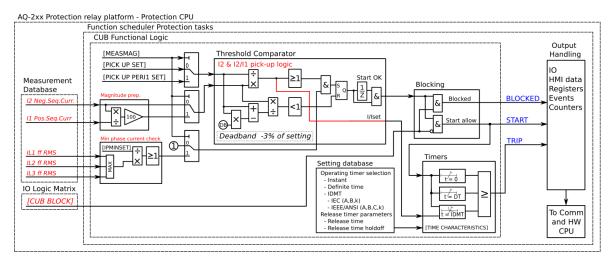


Figure. 5.4.6 - 42. Simplified function block diagram of the I2> function.

Measured input

The function block uses analog current measurement values and always uses calculated positive and negative sequence currents. In the broken conductor mode (I2/I1) the function also uses the RMS values of all phase currents to check the minimum current. Zero sequence and component sequence angles are used for fault registering and for fault analysis processing. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

Signal	Description	Time base
11	Positive sequence current magnitude	5 ms
12	Negative sequence current magnitude	5 ms
IZ	Zero sequence current magnitude	5 ms
I1 ANG	Positive sequence current angle	5 ms
I2 ANG	Negative sequence current angle	5 ms

Signal	Description	Time base
IZ ANG	Zero sequence current angle	5 ms
IL1RMS	Phase L1 (A) measured RMS current	5 ms
IL2RMS	Phase L2 (B) measured RMS current	5 ms
IL3RMS	Phase L3 (C) measured RMS current	5 ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
I2> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of CUB block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I2> force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Measurement side	1: Side 1 2: Side 2	1: Side 1	Defines which current measurement module is used by the function. Visible if the unit has more than one current measurement module.
Measured magnitude	1: l2pu 2: l2/l1	1: I2pu	Defines whether the ratio between the positive and the negative sequence currents are supervised or whether only the negative sequence is used in detecting unbalance.

Pick-up

The setting parameters I_{2set} and I_2/I_{1set} control the the pick-up of the I2> function. They define the maximum allowed measured negative sequence current or the negative/positive sequence current ratio before action from the function. The function constantly calculates the ratio between the I_{set} and the measured magnitude (I_m). The reset ratio of 97 % is built into the function and is always relative to the I_{sset} value. The reset ratio is the same for both modes.

Table. 5.4.6 - 80. Pick-up settings.

Name	Description	Range	Step	Default
l2set	Pick-up setting for I2 mode.	0.0140.00×In	0.01×In	0.2×In
I2/I1set	Pick-up setting for I2/I1 mode	1200%	0.01%	20%

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table.	5.4.6 -	81.	Information	displayed	by the	function.
rubic.	0.4.0	01.	mormation	alsplayed	by the	function.

Name	Range	Step	Description
l2> LN behaviour	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	-	Displays the mode of CUB block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I2> condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays the status of the protection function.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup current values and its fault type to be issued.

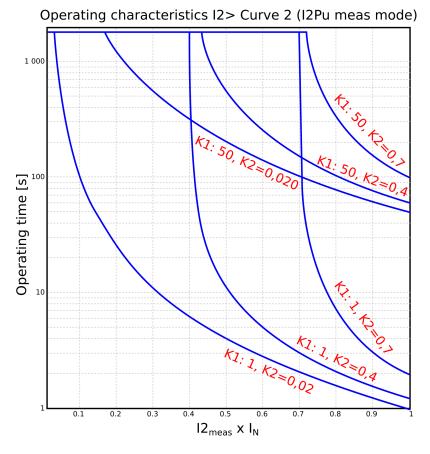
The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for TRIP signal and also for the release of the function in case the pick-up element is reset before the trip time has been reached. There are three basic operating modes available for the function:

- Instant operation: gives the TRIP signal with no additional time delay simultaneously with the start signal.
- Definite time operation (DT): gives the TRIP signal after a user-defined time delay regardless
 of the measured current as long as the current is above or below the *i_{set}* value and thus the
 pick-up element is active (independent time characteristics).
- Inverse definite minimum time (IDMT): gives the TRIP signal after a time which is in relation to the set pick-up value *l_{set}* and the measured current *l_m* (dependent time characteristics).


Both IEC and IEEE/ANSI standard characteristics as well as user settable parameters are available for the IDMT operation.

Unique to the current unbalance protection is the availability of the "Curve2" delay which follows the formula below:

$$t = \frac{k}{I_{2meas}^2 - I_{set}^2}$$

- t = Operating time
- *I_{2meas}* = Calculated negative sequence
- *k* = Constant k value (user settable delay multiplier)
- *I_{set}*= Pick-up setting of the function

Figure. 5.4.6 - 43. Operation characteristics curve for I2> Curve2.

For a more detailed description on the time characteristics and their setting parameters, please refer to the "General properties of a protection function" chapter and its "Operating time characteristics for trip and reset" section.

The user can reset characteristics through the application. The default setting is a 60 ms delay; the time calculation is held during the release time.

In the release delay option the operating time counter calculates the operating time during the release. When using this option the function does not trip if the input signal is not re-activated while the release time count is on-going.

Events and registers

The current unbalance function (abbreviated "CUB" in event block names) generates events and registers from the status changes in START, TRIP, and BLOCKED. The user can select the status ON or OFF for messages in the main event buffer. The function offers four (4) independent stages; the events are segregated for each stage operation.

The triggering event of the function (START, TRIP or BLOCKED) is recorded with a time stamp and with process data values.

Table. 5.4.6 - 82. Event messages.

Event block name	Event names
CUB1	Start ON
CUB1	Start OFF
CUB1	Trip ON
CUB1	Trip OFF
CUB1	Block ON
CUB1	Block OFF
CUB2	Start ON
CUB2	Start OFF
CUB2	Trip ON
CUB2	Trip OFF
CUB2	Block ON
CUB2	Block OFF
CUB3	Start ON
CUB3	Start OFF
CUB3	Trip ON
CUB3	Trip OFF
CUB3	Block ON
CUB3	Block OFF
CUB4	Start ON
CUB4	Start OFF
CUB4	Trip ON
CUB4	Trip OFF
CUB4	Block ON
CUB4	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.6 - 83. Register content.

Date and time	Event	Pre-trigger current	Fault current	Pre-fault current	Fault currents	Trip time remaining	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	Start/Trip -20ms current	Start/Trip current	Start -200ms current	I1, I2, IZ mag. and ang.	0 ms1800s	Setting group 18 active

5.4.7 Harmonic overcurrent protection (Ih>; 50H/51H/68H)

The harmonic overcurrent function is used for non-directional instant and time-delayed overcurrent detection and clearing. The number of stages in the function depends on the relay model. The function constantly measures the selected harmonic component of the selected measurement channels, the value being either absolute value or relative to the RMS value. The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

The non-directional harmonic overcurrent function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode. Either START or TRIP signal can be used when the instant mode is selected to block other protection stages. In time-delayed mode the operation can be selected between definite time (DT) mode and inverse definite minimum time (IDMT) mode. The START signal can be used to block other stages; if the situation lasts longer, the TRIP signal can be used on other actions as time-delayed. The IDMT operation supports both IEC and ANSI standard time delays as well as custom parameters.

The operational logic consists of the following:

- input magnitude selection
- input magnitude processing
- saturation check
- threshold comparator
- block signal check
- time delay characteristics
- output processing.

The basic design of the protection function is the three-pole operation.

The inputs of the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- · measured and pre-processed current magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the non-directional harmonic overcurrent function.

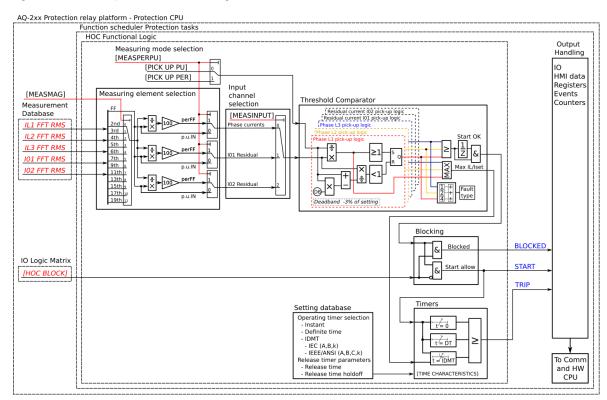


Figure. 5.4.7 - 44. Simplified function block diagram of the Ih> function.

Measured input

The function block uses analog current measurement values from phase or residual currents. Each measurement input of the function block uses RMS values and harmonic components of the selected current input. The user can select the monitored magnitude to be equal to the per-unit RMS values of the harmonic component, or to the harmonic component percentage content compared to the RMS values. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

Table. 5.4.7 - 84. Measurement inputs of the Ih> function.

Signal	Description	Time base
IL1FFT	The magnitudes (RMS) of phase L1 (A) current components: - Fundamental - 2 nd harmonic - 3 rd harmonic - 4 th harmonic - 5 th harmonic - 6 th harmonic - 7 th harmonic - 11 th harmonic - 13 th harmonic - 15 th harmonic - 15 th harmonic - 15 th harmonic - 19 th harmonic.	5 ms

Signal	Description	Time base
IL2FFT	The magnitudes (RMS) of phase L2 (B) current components: - Fundamental - 2 nd harmonic - 3 rd harmonic - 4 th harmonic - 5 th harmonic - 6 th harmonic - 7 th harmonic - 9 th harmonic - 11 th harmonic - 13 th harmonic - 15 th harmonic - 15 th harmonic - 15 th harmonic - 15 th harmonic - 19 th harmonic	5 ms
IL3FFT	The magnitudes (RMS) of phase L3 (C) current components: - Fundamental - 2 nd harmonic - 3 rd harmonic - 4 th harmonic - 5 th harmonic - 6 th harmonic - 7 th harmonic - 9 th harmonic - 11 th harmonic - 13 th harmonic - 15 th harmonic - 15 th harmonic - 19 th harmonic - 19 th harmonic.	5 ms
I01FFT	The magnitudes (RMS) of residual I0 ₁ current components: - Fundamental - 2 nd harmonic - 3 rd harmonic - 4 th harmonic - 5 th harmonic - 6 th harmonic - 7 th harmonic - 9 th harmonic - 11 th harmonic - 13 th harmonic - 15 th harmonic - 15 th harmonic - 19 th harmonic - 19 th harmonic.	5 ms

AQ-G257 Instruction manual

Version: 2.08

Signal	Description	Time base
I02FFT	Description The magnitudes (RMS) of residual I02 current components: - Fundamental - 2 nd harmonic - 3 rd harmonic - 4 th harmonic - 5 th harmonic - 6 th harmonic - 7 th harmonic - 9 th harmonic - 11 th harmonic - 13 th harmonic - 15 th harmonic - 17 th harmonic	5 ms
I02FFT	- 5 th harmonic - 6 th harmonic - 7 th harmonic - 9 th harmonic - 11 th harmonic - 13 th harmonic - 15 th harmonic	5 ms

The selection of the used AI channel, the monitored harmonic, and the monitoring type (per unit or percentage of fundamental frequency) are made with setting parameters. In all possible input channel variations the pre-fault condition is presented with a 20 ms averaged history value from -20 ms from START or TRIP event.

General settings

The function can be set to monitor the ratio between the measured harmonic and either the measured fundamental component or the per unit value of the harmonic current. The user must select the correct measurement input.

Name	Range	Default	Description
lh> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of HOC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
lh> force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
lh> measurement side	1: Side 1 2: Side 2	1: Side 1	Defines which current measurement module is used by the function. Visible if the unit has more than one current measurement module.

Table. 5.4.7 - 85. Operating mode selection settings.

Name	Range	Default	Description			
Harmonic selection	2 nd harmonic 3 rd harmonic 4 th harmonic 5 th harmonic 7 th harmonic 11 th harmonic 13 th harmonic 15 th harmonic 15 th harmonic 15 th harmonic 15 th harmonic	2 nd harmonic	Selection of the monitored harmonic component.			
Per unit or relative	× I _n Ih/IL	× I _n	Selection of the monitored harmonic mode. Either directly per unit $x I_n$ or in relation to the fundamental frequency magnitude.			
Measurement input	IL1/IL2/ IL3 I01 I02	IL1/IL2/ IL3	Selection of the measurement input (either phase current or residual current).			

Each function stage provides these same settings. Multiple stages of the function can be set to operate independently of each other.

Pick-up

The setting parameter Ih_{set} per unit or Ih/IL (depending on the selected operating mode) controls the pick-up of the Ih> function. This defines the maximum allowed measured current before action from the function. The function constantly calculates the ratio between the Ih_{set} per unitor Ih/IL and the measured magnitude (I_m) for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the Ih_{set} per unit or Ih/ILvalue. The setting value is common for all measured phases, and when the I_m exceeds the I_{set} value (in single, dual or all phases) it triggers the pick-up operation of the function.

Table. 5.4.7 - 86. Pick-up settings.

Name	Range	Step	Default	Description
Ih _{set} pu	0.052.00×I _n	0.01×I _n	0.20×In	Pick-up setting (per unit monitoring)
lh/IL	5.00200.00%	0.01%	20.00%	Pick-up setting (percentage monitoring)

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
lh> behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of HOC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
lh> condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays the status of the protection function.
Ih meas/ Ih set now	0.00100000.00I _m /I _{set}	0.011 _m /I _{set}	The ratio between the monitored residual current and the pick-up value.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured voltage value. If the measured voltage changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.

Table. 5.4.7 - 87. Information displayed by the function.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup current values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT) and inverse definite minimum time delay (IDMT). For detailed information on these delay types please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

Events and registers

The harmonic overcurrent function (abbreviated "HOC" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers four (4) independent stages; the events are segregated for each stage operation.

The events triggered by the function are recorded with a time stamp and with process data values.

Table. 5.4.7 - 88. Event description.

Event block name	Event names
HOC1	Start ON
HOC1	Start OFF
HOC1	Trip ON
HOC1	Trip OFF
HOC1	Block ON
HOC1	Block OFF
HOC2	Start ON
HOC2	Start OFF
HOC2	Trip ON
HOC2	Trip OFF
HOC2	Block ON
HOC2	Block OFF
НОС3	Start ON
НОС3	Start OFF
НОС3	Trip ON
НОС3	Trip OFF
НОС3	Block ON
НОС3	Block OFF
HOC4	Start ON
HOC4	Start OFF
HOC4	Trip ON
HOC4	Trip OFF
HOC4	Block ON
HOC4	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.7 - 89. Register content.

Date and time	Event	Fault type	Pre-trigger current	Fault current	Pre-fault current	Trip time remaining	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	L1-GL1-L2-L3	Start/Trip -20ms current	Start/Trip current	Start -200ms current	0 ms1800s	Setting group 18 active

5.4.8 Circuit breaker failure protection (CBFP; 50BF/52BF)

The circuit breaker failure protection function is used for monitoring the circuit breaker operation after it has received a TRIP signal. The function can also be used to retrip a failing breaker; if the retrip fails, an incomer breaker can be tripped by using the function's CBFP output. The retrip functionality can be disabled if the breaker does not have two trip coils.

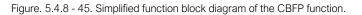
The function can be triggered by the following:

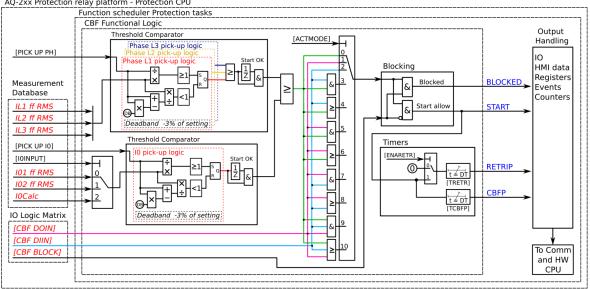
- overcurrent (phase and residual)
- digital output monitor
- digital signal
- any combination of the above-mentioned triggers.

In the current-dependent mode the function constantly measures phase current magnitudes and the selected residual current. In the signal-dependent mode any of the device's binary signals (trips, starts, logical signals etc.) can be used to trigger the function. In the digital output-dependent mode the function monitors the status of the selected output relay control signal. The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

The circuit breaker failure protection function uses a total of eight (8) separate setting groups which can be selected from one common source. Additionally, the function's operating mode can be changed via setting group selection.

The operational logic consists of the following:


- input magnitude processing
- input magnitude selection
- threshold comparator
- block signal check
- time delay characteristics
- output processing.


The inputs of the function are the following:

- operating mode selections
- setting parameters
- digital input signals
- measured and pre-processed current magnitudes.

The function's outputs are CBFP START, RETRIP, CBFP ACT and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the two (2) output signals. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counters for RETRIP, CBFP, CBFP START and BLOCKED events.

The following figure presents a simplified function block diagram of the circuit breaker failure protection function.

AQ-2xx Protection relay platform - Protection CPU

Measured input

The function block uses analog current measurement values. It always uses the RMS magnitude of the current measurement input. The user can select I01, I02 or the calculated I0 for the residual current measurement. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

Table. 5.4.8 - 90. Measurement inputs of the CBFP function.

Signal	Description	Time base
IL1RMS	RMS measurement of phase L1 (A) current	5ms
IL2RMS	RMS measurement of phase L2 (B) current	5ms
IL3RMS	RMS measurement of phase L3 (C) current	5ms
I01RMS	RMS measurement of residual input I01	5ms
I02RMS	RMS measurement of residual input I02	5ms
I0Calc	Calculated residual current from the phase current inputs	5ms
DOIN	Monitors digital output relay status	5ms
DIIN	Monitors digital input status	5ms

The selection of the used AI channel is made with a setting parameter. In all possible input channel variations the pre-fault condition is presented with a 20 ms averaged history value from -20 ms from START or TRIP event.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.4.8 - 91. CBFP monitoring signal definitions.

Name	Description
Signal in monitor	Defines which TRIP events of the used protection functions trigger the CBFP countdown. For the CBFP function to monitor the signals selected here, the "Operation mode selection" parameter must be set to a mode that includes signals (e.g. "Signals only", "Signals or DO", "Current and signals and DO").
Trip monitor	Defines which output relay of the used protection functions trigger the CBFP countdown. For the CBFP function to monitor the output relays selected here, the "Operation mode selection" parameter must be set to a mode that includes digital outputs (e.g. "DO only", "Current and DO", "Current or signals or DO").

Table. 5.4.8 - 92. General settings of the function.

Name	Range	Default	Description
CBFP LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of CBF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
CBFP force status to	0: Normal 1: Start 2: ReTrip 3: CBFP 4: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Measurement side	1: Side 1 2: Side 2	1: Side 1	Defines which current measurement module is used by the function.

Pick-up

The setting parameters I_{set} and IO_{set} control the pick-up and the activation of the current-dependent CBFP function. They define the minimum allowed measured current before action from the function. The function constantly calculates the ratio between the I_{set} or the IO_{set} and the measured magnitude (I_m) for each of the three phases and the selected residual current input. The reset ratio of 97 % is built into the function and is always relative to the I_{set} value. The setting value is common for all measured phases. When the I_m exceeds the I_{set} value (in single, dual or all phases) it triggers the pick-up operation of the function.

 Table. 5.4.8 - 93. Operating mode and input signals selection.

	Name	Range	Step	Default	Description
IC)Input	0: Not in use 1: I01 2: I02 3: I0Calc	-	0: Not in use	Selects the residual current monitoring source, which can be either from the two separate residual measurements (I01 and I02) or from the phase current's calculated residual current.

Name	Range	Step	Default	Description
Actmode	0: Current only 1: DO only 2: Signals only 3: Current and DO 4: Current or DO 5: Current and signals 6: Current or signals 7: Signals and DO 8: Signals or DO 9: Current or DO or signals 10: Current and DO and Signals	-	0: Current only	Selects the operating mode. The mode can be dependent on current measurement, binary signal status, output relay status ("DO"), or a combination of the three.

Table. 5.4.8 - 94. Pick-up settings.

Name	Range	Step	Default	Description
I _{set}	0.0140.00×I _n	0.01×I _n	0.20×I _n	The pick-up threshold for the phase current measurement. This setting limit defines the upper limit for the phase current pick-up element.
10 _{set}	0.00540.000×In	0.001×I _n	1.200×I _n	The pick-up threshold for the residual current measurement. This setting limit defines the upper limit for the phase current pick-up element.

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active. There is no delay between the activation of the monitored signal and the activation of the pick-up when using binary signals.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table 548-95	Information displayed by the functio	n
10010. 0. 1.0 00.	internation dioplayed by the failette	

Name	Range	Description
CBFP LN behaviour	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	Displays the mode of CBF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
CBFP condition	0: Normal 1: Start 2: ReTrip 3: CBFP On 4: Blocked	Displays status of the protection function.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup current values and its fault type to be issued.

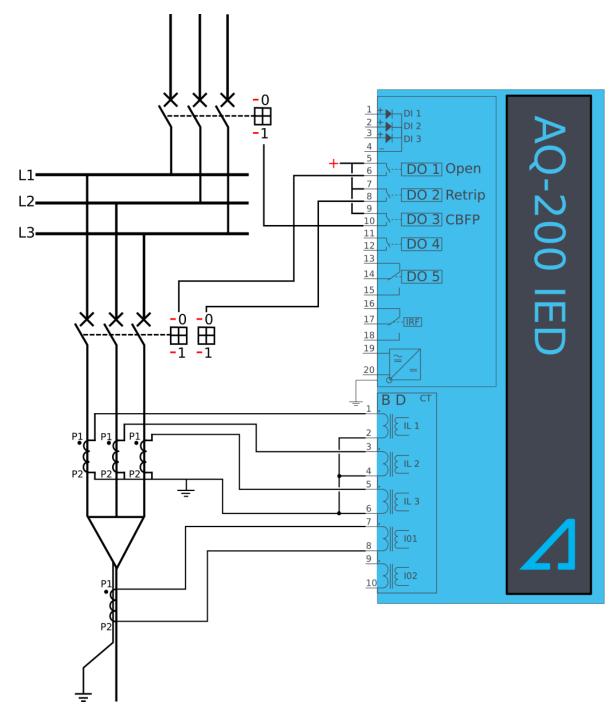
The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

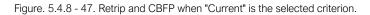
Operating time characteristics

The operating timers' behavior during a function can be set depending on the application. The same pick-up signal starts both timers. When retrip is used the time grading should be set as follows: the sum of specific times (i.e. the retrip time, the expected operating time, and the pick-up conditions' release time) is shorter the set CBFP time. This way, when retripping another breaker coil clears the fault, any unnecessary function triggers are avoided.

The following table presents the setting parameters for the function's operating time characteristics.


Table. 5.4.8 - 96. Setting parameters for operating time characteristics.

Name	Range	Step	Default	Description
Retrip	0: No 1: Yes	-	1: Yes	Retrip enabled or disabled. When the retrip is disabled, the output will not be visible and the TRetr setting parameter will not be available.
Retrip time delay	0.0001800.000s	0.005s	0.100s	Retrip start the timer. This setting defines how long the starting condition has to last before a RETRIP signal is activated.
CBFP	0.0001800.000s	0.005s	0.200s	CBFP starts the timer. This setting defines how long the starting condition has to last before the CBFP signal is activated.


The following figures present some typical cases of the CBFP function.

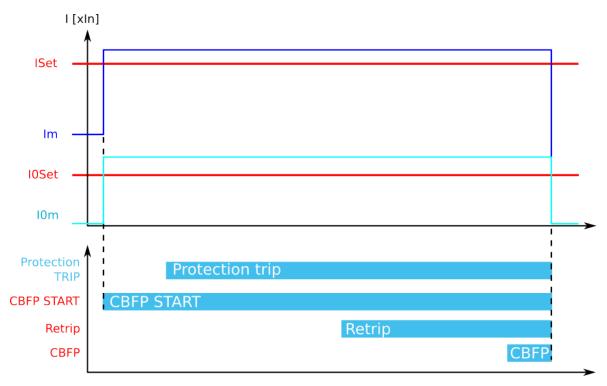
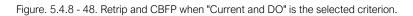
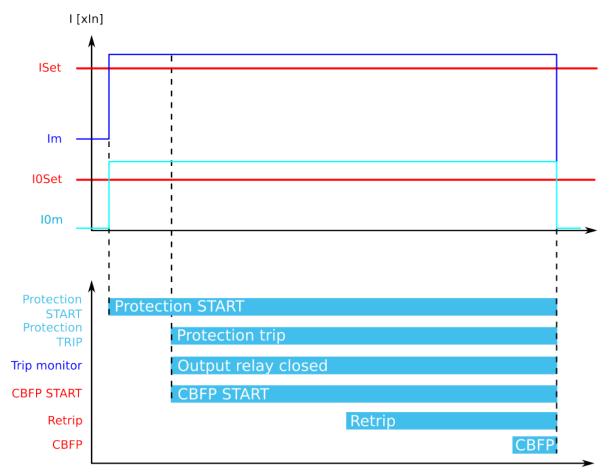
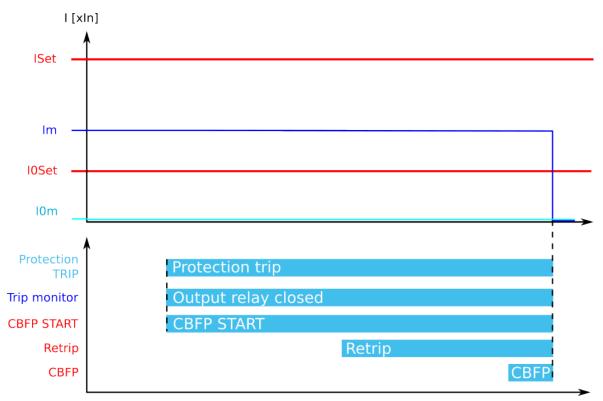

Trip, Retrip and CBFP in the device configuration

Figure. 5.4.8 - 46. Wiring diagram when Trip, Retrip and CBFP are configured to the device.

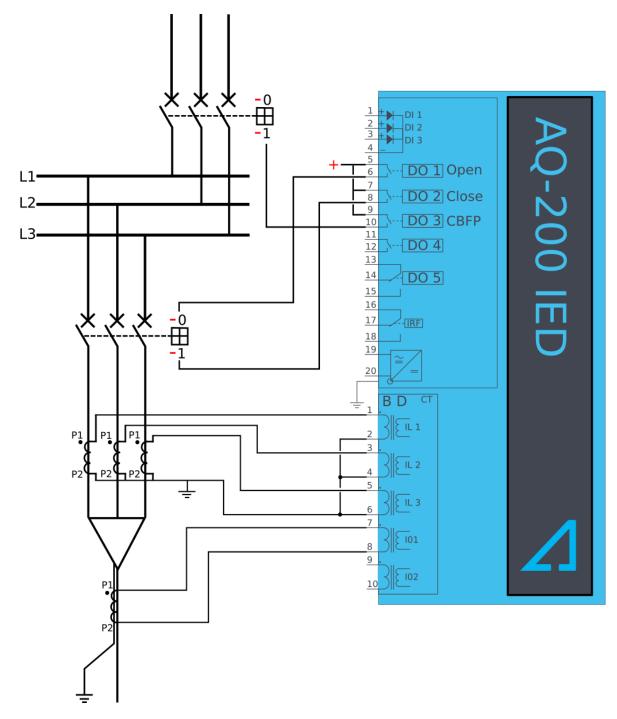


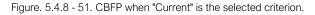

The retrip functionality can be used in applications whose circuit breaker has a retrip or a redundant trip coil available. The TRIP signal is normally wired to the breaker's trip coil from the device's trip output. The retrip is wired from its own device output contact in parallel with the circuit breaker's redundant trip coil. The CBFP signal is normally wired from its device output contact to the incomer breaker. Below are a few operational cases regarding the various applications.




When the current threshold setting of *I_{set}* and/or *IO_{set}* is exceeded, the current-based protection is activated and the counters for RETRIP and CBFP start calculating the set operating time. The tripping of the primary protection stage is not monitored in this configuration. Therefore, if the current is not reduced below the setting limit, a RETRIP signal is sent to the redundant trip coil. If the current is not reduced within the set time limit, the function also sends a CBFP signal to the incomer breaker. If the primary protection function clears the fault, both counters (RETRIP and CBFP) are reset as soon as the measured current is below the threshold settings.

When the current threshold setting of *I_{set}* and/or *I0_{set}* is exceeded, the current-based protection is activated. At the same time, the counters for RETRIP and CBFP are halted until the monitored output contact is controlled (that is, until the primary protection operates). When the tripping signal reaches the primary protection stage, the RETRIP and CBFP counters start calculating the set operating time. The tripping of the primary protection stage is constantly monitored in this configuration. If the current is not reduced below the setting limit or the primary stage tripping signal is not reset, a RETRIP signal is sent to the redundant trip coil. If the retripping fails and the current is not reduced below the setting limit or the primary protection function clears the fault, both counters (RETRIP and CBFP) are reset as soon as the measured current is below the threshold settings or the tripping signal is reset. This configuration allows the CBFP to be controlled with current-based functions alone, and other function trips can be excluded from the CBFP functionality.




When the current threshold setting of *I_{set}* and/or *I0_{set}* is exceeded, or the TRIP signal reaches the primary protection stage, the function starts counting down towards the RETRIP and CBFP signals. The tripping of the primary protection stage is constantly monitored in this configuration regardless of the current's status. The pick-up of the CBFP is active unless the current is reduced below the setting limit and the primary stage tripping signal is reset. If either of these conditions is met (i.e. the current is above the limit or the signal is active) for the duration of the set RETRIP time delay, a RETRIP signal is sent to the redundant trip coil. If either of the conditions is active for the duration of the set CBFP time delay, a CBFP signal is sent to the incomer breaker. If the primary protection function clears the fault, both counters (RETRIP and CBFP) are reset as soon as the measured current is below the threshold settings and the tripping signal is reset. This configuration allows the CBFP to be controlled with current-based functions alone, with added security from current monitoring. Other function trips can also be included in the CBFP functionality.

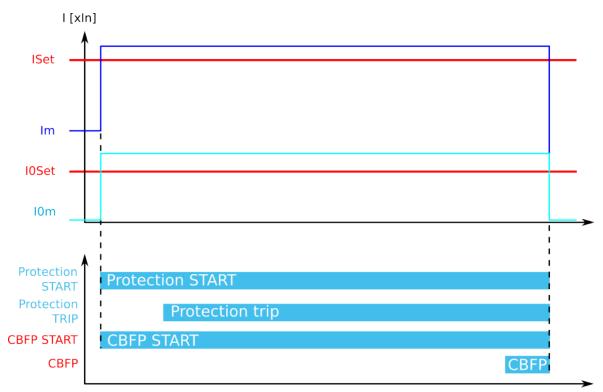
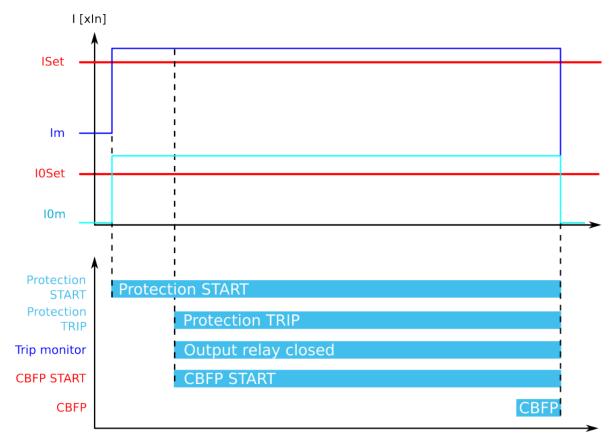
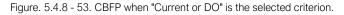
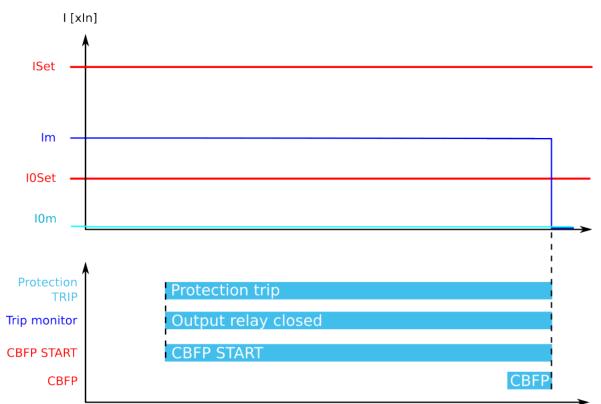

Trip and CBFP in the device configuration

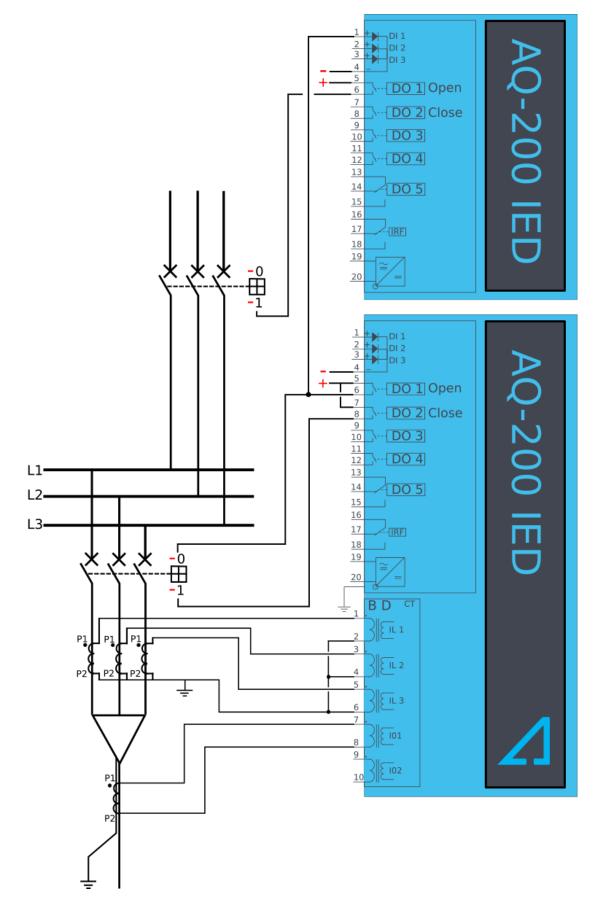
Figure. 5.4.8 - 50. Wiring diagram when Trip and CBFP are configured to the device.


Probably the most common application is when the device's trip output controls the circuit breaker trip coil, while one dedicated CBFP contact controls the CBFP function. Below are a few operational cases regarding the various applications and settings of the CBFP function.




When the current threshold setting of *l_{set}* and/or *l0_{set}* is exceeded, the current-based protection is activated and the counter for CBFP starts calculating the set operating time. The tripping of the primary protection stage is not monitored in this configuration. Therefore, if the current is not reduced below the setting limit, a CBFP signal is sent to the incomer breaker. If the primary protection function clears the fault, the counter for CBFP resets as soon as the measured current is below the threshold settings.

When the current threshold setting of *I_{set}* and/or *I0_{set}* is exceeded, the current-based protection is activated. At the same time, the counter for CBFP is halted until the monitored output contact is controlled (that is, until the primary protection operates). When the tripping signal reaches the primary protection stage, the CBFP counter starts calculating the set operating time. The tripping of the primary protection stage is constantly monitored in this configuration. If the current is not reduced below the setting limit or the primary stage tripping signal is not reset, a CBFP signal is sent to the incomer breaker. The time delay counter for CBFP is reset as soon as the measured current is below the threshold settings or the tripping signal is reset. This configuration allows the CBFP to be controlled by current-based functions alone, and other function trips can be excluded from the CBFP functionality.



When the current threshold setting of *I_{set}* and/or *IO_{set}* is exceeded, or the TRIP signal reaches the primary protection stage, the function starts counting down towards the CBFP signal. The tripping of the primary protection stage is constantly monitored in this configuration regardless of the current's status. The pick-up of the CBFP is active unless the current is reduced below the setting limit and the primary stage tripping signal is reset. If either of these conditions is met (i.e. the current is above the limit or the signal is active) for the duration of the set CBFP time delay, a CBFP signal is sent to the incomer breaker. The time delay counter for CBFP is reset as soon as the measured current is below the threshold settings and the tripping signal is reset. This configuration allows the CBFP to be controlled by current-based functions alone, with added security from current monitoring. Other function trips can also be included to the CBFP functionality.

Device configuration as a dedicated CBFP unit

Figure. 5.4.8 - 54. Wiring diagram when the device is configured as a dedicated CBFP unit.

Some applications require a dedicated circuit breaker protection unit. When the CBFP function is configured to operate with a digital input signal, it can be used in these applications. When a device is used for this purpose, the tripping signal is wired to the device's digital input and the device's own TRIP signal is used only for the CBFP purpose. In this application's incomer the RETRIP and CBFP signals are also available with different sets of requirements. The RETRIP signal can be used for tripping the section's feeder breaker and the CBFP signal for tripping the incomer. The following example does not use retripping and the CBFP signal is used as the incomer trip from the outgoing breaker trip signal. The TRIP signal can also be transported between different devices by using GOOSE messages.

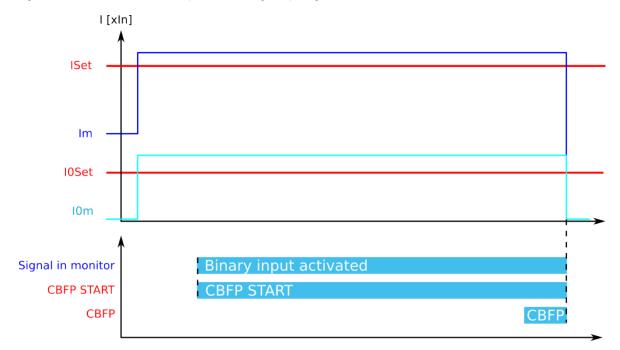


Figure. 5.4.8 - 55. Dedicated CBFP operation from digital input signal.

In this mode the CBFP operates only from a digital input signal. Both current and output relay monitoring can be used. The counter for the CBFP signal begins when the digital input is activated. If the counter is active until the CBFP counter is used, the device issues a CBFP command to the incomer breaker. In this application the device tripping signals from all outgoing feeders can be connected to one, dedicated CBFP device which operates either on current-based protection or on all possible faults' CBFP protection.

Events and registers

The circuit breaker failure protection function (abbreviated "CBF" in event block names) generates events and registers from the status changes in RETRIP, in CBFP-activated and CBFP-blocked signals, as well as in internal pick-up comparators. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
CBF1	Start ON
CBF1	Start OFF
CBF1	Retrip ON
CBF1	Retrip OFF

Table. 5.4.8 - 97. Event messages.

Event block name	Event names
CBF1	CBFP ON
CBF1	CBFP OFF
CBF1	Block ON
CBF1	Block OFF
CBF1	DO monitor ON
CBF1	DO monitor OFF
CBF1	Signal ON
CBF1	Signal OFF
CBF1	Phase current ON
CBF1	Phase current OFF
CBF1	Res current ON
CBF1	Res current OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for ACTIVATED, BLOCKED, etc. The table below presents the structure of the function's register content.

Table. 5.4.8 - 98. Register content.

Date and time	Event	Max phase current	Residual current	Time to RETR	Time to CBFP	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	Highest phase current	I01, I02 channel or calculated residual current	Time remaining to retrip activation	Time remaining to CBFP activation	Setting group 18 active

5.4.9 Overvoltage protection (U>; 59)

The overvoltage function is used for instant and time-delayed overvoltage protection. Each device with a voltage protection module has four (4) available stages of the function (U>, U>>, U>>, U>>>, U>>>>). The function constantly measures phase voltage magnitudes or line-to-line magnitudes. Overvoltage protection is based on line-to-line RMS measurement or to line-to-neutral RMS measurement (as the user selects). If the protection is based on line-to-line voltage, overvoltage protection is not affected by earth faults in isolated or compensated networks. The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

The overvoltage function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode. In time-delayed mode the operation can be selected between definite time (DT) mode and inverse definite minimum time (IDMT).

The operational logic consists of the following:

- input magnitude selection
- input magnitude processing
- threshold comparator
- block signal check

- time delay characteristics
- output processing.

The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed voltage magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the overvoltage function.

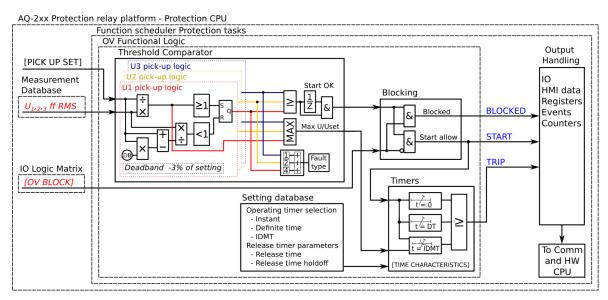


Figure. 5.4.9 - 56. Simplified function block diagram of the U> function.

Measured input

The function block uses analog voltage measurement values. The monitored magnitudes are equal to RMS values. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

Table.	5.4.9 -	99.	Measurement	input	of	the	U>	function.

Signal	Description	Time base
U _{L12} RMS	RMS measurement of voltage UL12/V	5ms
U _{L23} RMS	RMS measurement of voltage UL23/V	5ms
U _{L31} RMS	RMS measurement of voltage U_{L31}/V	5ms
U _{L1} RMS	RMS measurement of voltage UL1/V	5ms
U _{L2} RMS	RMS measurement of voltage UL2/V	5ms
U _{L3} RMS	RMS measurement of voltage UL3/V	5ms

Table. 5.4.9 - 100. Measured magnitude selection settings.

Name	Description	Range	Step	Default
Measured magnitude	Selection of phase-to-phase or phase-to-earth voltages. Additionally, the U3 or U4 input can be assigned as the voltage channel to be supervised.	0: P-P voltages 1: P-E voltages 2: U3 input (2LL-U3SS) 3: U4 input (SS)	-	0: P-P voltages

The selection of the AI channel in use is made with a setting parameter. In all possible input channel variations the pre-fault condition is presented with a 20 ms averaged history value from -20 ms from START or TRIP event.

Figure. 5.4.9 - 57. Selectable measurement magnitudes with 3LN+U4 VT connection.

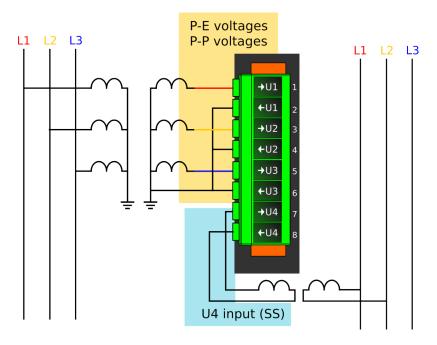
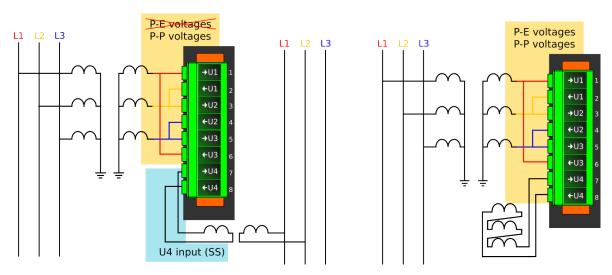
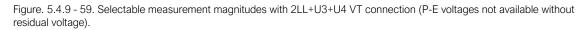
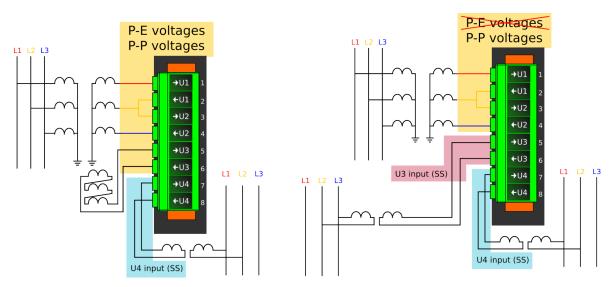





Figure. 5.4.9 - 58. Selectable measurement magnitudes with 3LL+U4 VT connection (P-E voltages not available without residual voltage).

P-P Voltages and *P-E Voltages* selections follow phase-to-neutral or phase-to-phase voltages in the first three voltage channels (or two first voltage channels in the 2LL+U3+U4 mode). *U4 input* selection follows the voltage in Channel 4. *U3Input* selection only follows the voltage in Channel 3 if the 2LL+U3+U4 mode is in use.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
U> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	0: On	Set mode of OV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U> force status to			Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Table. 5.4.9 - 101. General settings of the function.

Pick-up

The U_{set} setting parameter controls the pick-up of the U> function. This defines the maximum allowed measured voltage before action from the function. The function constantly calculates the ratio between the U_{set} and the measured magnitude (U_m) for each of the three voltages. The reset ratio of 97 % is built into the function and is always relative to the U_{set} value. The setting value is common for all measured amplitudes, and when the U_m exceeds the U_{set} value (in single, dual or all voltages) it triggers the pick-up operation of the function.

Table. 5.4.9 - 102. Pick-up settings.

Name	Description	on Range		Default
Operation mode	Pick-up criteria selection	0: 1 voltage 1: 2 voltages 2: 3 voltages	-	0: 1 voltage
Uset	Pick-up setting	50.00150.00%U _n	0.01%U _n	105%U _n

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
U> LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of OV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U< pick- up setting	0.01 000 000.0V	0.1V	The primary voltage required for tripping. The displayed pick-up voltage level depends on the pick-up setting and the voltage transformer settings.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured voltage value. If the measured voltage changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
UA(B) _{meas} /U _{set} at the moment	0.001250.00Um/Uset	0.01Um/Uset	The ratio between UA or UAB voltage and the pick-up value.
U _{B(c)} _{meas} /U _{set} at the moment	0.001250.00Um/Uset	0.01Um/Uset	The ratio between U_{B} or U_{BC} voltage and the pick-up value.
U _{C(A)} _{meas} /U _{set} at the moment	0.001250.00U _m /U _{set}	0.01U _m /U _{set}	The ratio between U_{C} or U_{CA} voltage and the pick-up value.
U _{meas} /U _{set} at the moment	0.001250.00U _m /U _{set}	0.01U _m /U _{set}	The ratio between the measured voltage and the pick-up value.

Table. 5.4.9 - 103. Information displayed by the function.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup voltage values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for TRIP signal and also for the release of the function in case the pick-up element is reset before the trip time has been reached. There are three basic operating modes available for the function:

- Instant operation: gives the TRIP signal with no additional time delay simultaneously with the START signal.
- Definite time operation (DT): gives the TRIP signal after a user-defined time delay regardless
 of the measured voltage as long as the voltage is above the Uset value and thus the pick-up
 element is active (independent time characteristics).
- Inverse definite minimum time (IDMT): gives the TRIP signal after a time which is in relation to the set pick-up voltage Uset and the measured voltage Um (dependent time characteristics).

The IDMT function follows this formula:

$$t = \frac{k}{\left(\frac{Um}{Us}\right)^a - 1}$$

Where:

- *t* = operating time
- *k* = time dial setting
- *U_m* = measured voltage
- U_s = pick-up setting
- *a* = IDMT Multiplier setting

The following table presents the setting parameters for the function's time characteristics.

Name	Range	Step	Default	Description
Delay type	1: DT 2: IDMT	-	1: DT	Selection of the delay type time counter. The selection possibilities are dependent (IDMT, Inverse Definite Minimum Time) and independent (DT, Definite Time) characteristics.

Name	Range	Step	Default	Description
Definite			0.040s	Definite time operating delay. The setting is active and visible when DT is the selected delay type.
operating time delay	0.000800.000s	0.005s		When set to 0.000 s, the stage operates as instant stage without added delay. When the parameter is set to 0.0051800 s, the stage operates as independent delayed.
Time dial	0.0160.00s	0.01s	0.05s	This setting is active and visible when IDMT is the selected delay type.
setting k	0.0100.005	0.015	0.005	Time dial/multiplier setting for IDMT characteristics.
IDMT	0.0125.00s	0.01s	1.00s	This setting is active and visible when IDMT is the selected delay type.
Multiplier	0.0120.005	0.015	1.005	IDMT time multiplier in the $U_{\text{m}}/U_{\text{set}}$ power.

Table. 5.4.9 - 105. Setting parameters for reset time characteristics.

Name	Range	Step	Default	Description
Release time delay	0.000150.000s	0.005s	0.06s	Resetting time. The time allowed between pick-ups if the pick-up has not led to a trip operation. During this time the START signal is held on for the timers if the delayed pick-up release is active.
Delayed pick-up release	1: No 2: Yes	-	1: Yes	Resetting characteristics selection either as time-delayed or as instant after the pick-up element is released. If activated the START signal is reset after the set release time delay.
Time calc reset after release time	1: No 2: Yes	-	2: Yes	Operating timer resetting characteristics selection. When active, the operating time counter is reset after a set release time if the pick-up element is not activated during this time. When disabled, the operating time counter is reset directly after the pick-up element is reset.
Continue time calculation during release time	1: No 2: Yes	-	1: No	Time calculation characteristics selection. If activated, the operating time counter is continuing until a set release time has passed even if the pick-up element is reset.

The user can reset characteristics through the application. The default setting is a 60 ms delay; the time calculation is held during the release time.

In the release delay option the operating time counter calculates the operating time during the release. When using this option the function does not trip if the input signal is not re-activated while the release time count is on-going.

Events and registers

The overvoltage function (abbreviated "OV" in event block names) generates events and registers from the status changes in START, TRIP, and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers four (4) independent stages; the events are segregated for each stage operation.

The events triggered by the function are recorded with a time stamp and with process data values.

Table. 5.4.9 - 106. Event messages

Event block name	Event names
OV1	Start ON
OV1	Start OFF
OV1	Trip ON
OV1	Trip OFF

Event block name	Event names
OV1	Block ON
OV1	Block OFF
OV2	Start ON
OV2	Start OFF
OV2	Trip ON
OV2	Trip OFF
OV2	Block ON
OV2	Block OFF
OV3	Start ON
OV3	Start OFF
OV3	Trip ON
OV3	Trip OFF
OV3	Block ON
OV3	Block OFF
OV4	Start ON
OV4	Start OFF
OV4	Trip ON
OV4	Trip OFF
OV4	Block ON
OV4	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.9 - 107. Register content.

Date and time	Event	Fault type	Pre-trigger voltage	Fault voltage	Pre-fault voltage	Trip time remaining	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	L1-E L1-L2-L3	Start/Trip -20ms voltage	Start/Trip voltage	Start -200ms voltage	0 s1800s	Setting group 18 active

5.4.10 Undervoltage protection (U<; 27)

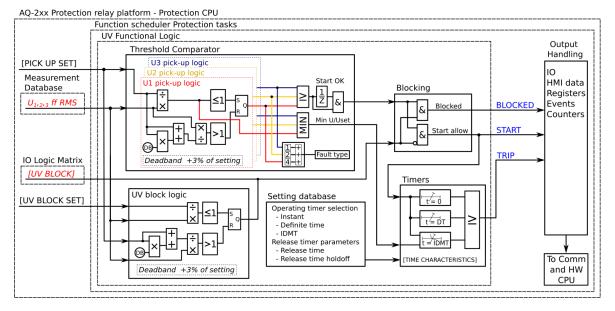
The undervoltage function is used for instant and time-delayed undervoltage protection. Each device with a voltage protection module has four (4) available stages of the function (U>, U>>, U>>>, U>>>>). The function constantly measures phase voltage magnitudes or line-to-line voltage magnitudes. Undervoltage protection is based on line-to-line voltages or to line-to-neutral voltages (as the user selects). If the protection is based on line-to-line voltage, undervoltage protection is not affected by earth faults in isolated or compensated networks. Undervoltage protection has two blocking stages: internal blocking (based on voltage measurement and low voltage), or external blocking (e.g. during voltage transformer fuse failure). The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

The undervoltage function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode. In time-delayed mode the operation can be selected between definite time (DT) mode and inverse definite minimum time (IDMT).

The operational logic consists of the following:

- · input magnitude selection
- input magnitude processing
- threshold comparator
- two block signal checks (undervoltage block or stage external signal)
- time delay characteristics
- output processing.


The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed voltage magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and **BLOCKED** events.

The following figure presents a simplified function block diagram of the undervoltage function.

Figure. 5.4.10 - 60. Simplified function block diagram of the U< function.

Measured input

The function block uses analog voltage measurement values. The monitored voltage magnitudes are equal to RMS values. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

Table. 5.4.10 - 108. Measurement inputs of the U< function.

Signal	Description	Time base
U _{L12} RMS	RMS measurement of voltage UL12/V	5ms
U _{L23} RMS	RMS measurement of voltage UL23/V 5ms	
U _{L31} RMS	RMS measurement of voltage U_{L31}/V	5ms
U _{L1} RMS	RMS measurement of voltage U _{L1} /V 5ms	
UL2RMS RMS measurement of voltage UL2/V 5ms		5ms
U _{L3} RMS	RMS measurement of voltage UL3/V	5ms

Table. 5.4.10 - 109. Measured magnitude selection settings.

Name	Description	Range	Step	Default
Measured magnitude	Selection of P-P or P-E voltages. Additionally, the U3 or U4 input can be assigned as the voltage channel to be supervised.	0: P-P voltages 1: P-E voltages 2: U3 input (2LL-U3SS) 3: U4 input (SS)	-	0: P-P voltages

The selection of the AI channel in use is made with a setting parameter. In all possible input channel variations the pre-fault condition is presented with a 20 ms averaged history value from -20 ms from START or TRIP event.

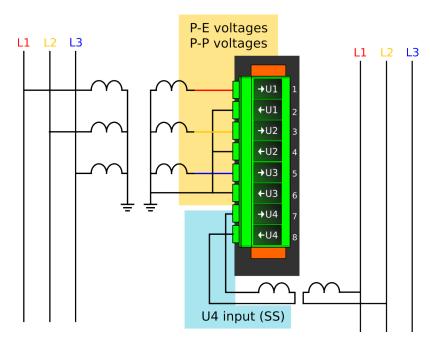


Figure. 5.4.10 - 61. Selectable measurement magnitudes with 3LN+U4 VT connection.

Figure. 5.4.10 - 62. Selectable measurement magnitudes with 3LL+U4 VT connection (P-E voltages not available without residual voltage).

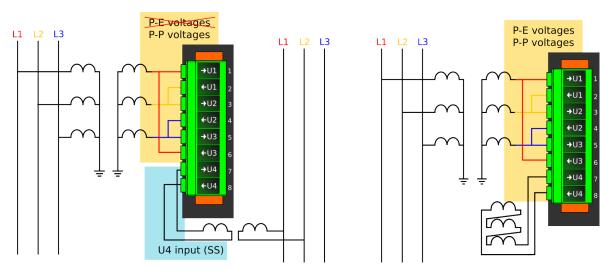
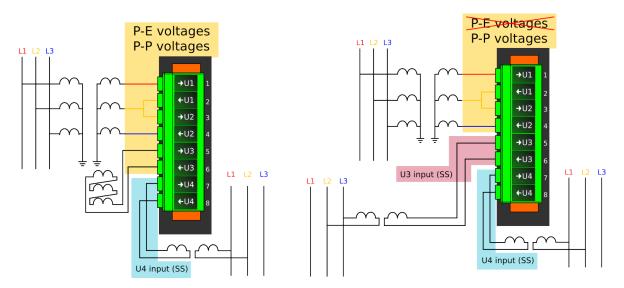



Figure. 5.4.10 - 63. Selectable measurement magnitudes with 2LL+U4 VT connection (P-E voltages not available without residual voltage).

P-P Voltages and *P-E Voltages* selections follow phase-to-neutral or phase-to-phase voltages in the first three voltage channels (or two first voltage channels in the 2LL+U3+U4 mode). *U4 input* selection follows the voltage in Channel 4. *U3Input* selection only follows the voltage in Channel 3 if the 2LL+U3+U4 mode is in use.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
U< LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	0: On	Set mode of UV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

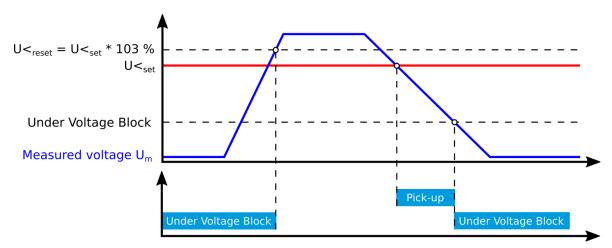
Table. 5.4.10 - 110. General settings of the function.

Name	Range	Default	Description
U< force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up

The U_{set} setting parameter controls the pick-up of the U< function. This defines the minimum allowed measured voltage before action from the function. The function constantly calculates the ratio between the U_{set} and the measured magnitude (U_m) for each of the three voltages. The reset ratio of 103 % is built into the function and is always relative to the U_{set} value. The setting value is common for all measured amplitudes, and when the U_m exceeds the U_{set} value (in single, dual or all voltages) it triggers the pick-up operation of the function.

Table. 5.4.10 - 111. Pick-up settings.


Name	Description	Range	Step	Default
U _{set}	Pick-up setting	0.00120.00%U _n	0.01%U _n	60%U _n
U Block setting	Block setting. If set to zero, blocking is not in use. The operation is explained in the next chapter.	0.00100.00%U _n	0.01%U _n	10%U _n

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Using Block setting to prevent nuisance trips

It is recommended to use the *Block setting* parameter to prevent the relay from tripping in a situation where the network is de-energized. When the measured voltage drops below the set value, the relay does not give a tripping signal. If the measured voltage has dropped below the *Block setting* parameter, the blocking continues until all of the line voltages have increased above the U< pick-up setting. Please see the image below for a visualization of this function. If the block level is set to zero (0), blocking is not in use.

Figure. 5.4.10 - 64. Example of the block setting operation.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
U< LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of UV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U< pick- up setting	0.01 000 000.0V	0.1V	The primary voltage required for tripping. The displayed pick-up voltage level depends on the pick-up setting and the voltage transformer settings.
U< block setting	0.01 000 000.0V	0.1V	The primary voltage level required for trip blocking. If the measured voltage is below this value, the network is considered de-energized and the function will not trip. To deactivate the blocking the measured voltage must exceed the pick-up setting value.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured voltage value. If the measured voltage changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
U _{A(B)} _{meas} /U _{set} at the moment	0.001250.00Um/Uset	0.01Um/Uset	The ratio between U_{A} or U_{AB} voltage and the pick-up value.
U _{B(c)} _{meas} /U _{set} at the moment	0.001250.00Um/Uset	0.01U _m /U _{set}	The ratio between U_B or U_BC voltage and the pick-up value.
UC(A) _{meas} /U _{set} at the moment	0.001250.00Um/Uset	0.01Um/Uset	The ratio between U _C or U _{CA} voltage and the pick-up value.
U _{meas} /U _{set} at the moment	0.001250.00U _m /U _{set}	0.01U _m /U _{set}	The ratio between the lowest measured phase or line voltage and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup voltage values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for TRIP signal and also for the release of the function in case the pick-up element is reset before the trip time has been reached. There are three basic operating modes available for the function:

- Instant operation: gives the TRIP signal with no additional time delay simultaneously with the START signal.
- Definite time operation (DT): gives the TRIP signal after a user-defined time delay regardless of the measured voltage as long as the voltage is above the *U*_{set} value and thus the pick-up element is active (independent time characteristics).
- Inverse definite minimum time (IDMT): gives the TRIP signal after a time which is in relation to the set pick-up voltage Uset and the measured voltage Um (dependent time characteristics).

The IDMT function follows this formula:

$$t = \frac{k}{1 - \left(\frac{Um}{Us}\right)^a}$$

Where:

- t = operating time
- *k* = time dial setting
- *U_m* = measured voltage
- U_s = pick-up setting
- *a* = IDMT multiplier setting

The following table presents the setting parameters for the function's time characteristics.

Table. 5.4.10 - 113. Setting parameters for operating time characteristics.

Name	Range	Step	Default	Description	
Delay type	1: DT 2: IDMT	-	1: DT	Selection of the delay type time counter. The selection possibilities are dependent (IDMT, Inverse Definite Minimum Time) and independent (DT, Definite Time) characteristics.	
Definite operating time delay	0.0001800.000s	0.005s	0.040s	Definite time operating delay. This setting is active and visible when DT is the selected delay type.When set to 0.000 s, the stage operates as instant stage without added delay. When the parameter is set to 0.0051800 s, the stage operates as independent delayed.	
Time dial setting k	0.0160.00s	0.01s	0.05s	This setting is active and visible when IDMT is the selected delay type. Time dial/multiplier setting for IDMT characteristics.	
IDMT Multiplier	0.0125.00s	0.01s	1.00s	This setting is active and visible when IDMT is the selected delay type. IDMT time multiplier in the U_m/U_{set} power.	

Name	Range	Step	Default	Description		
Release time delay	0.000150.000s	0.005s	0.06s	Resetting time. The time allowed between pick-ups if the pick-up has not led to a trip operation. During this time the START signal is held on for the timers if the delayed pick-up release is active.		
Delayed pick-up release	1: No 2: Yes	-	2: Yes	Resetting characteristics selection, either time-delayed or instant after the pick-up element is released. If activated, the START signal is rese after a set release time delay.		
Time calc reset after release time	1: No 2: Yes	-	2: Yes	Operating timer resetting characteristics selection. When actived, the operating time counter is reset after a set release time if the pick-up element is not activated during this time. When disabled, the operating time counter is reset directly after the pick-up element reset.		
Continue time calculation during release time	1: No 2: Yes	-	1: No	Time calculation characteristics selection. If activated, the operating time counter continues until a set release time even when the pick-up element is reset.		

Table. 5.4.10 - 114. Setting parameters for reset time characteristics.

The user can reset characteristics through the application. The default setting is a 60 ms delay; the time calculation is held during the release time.

In the release delay option the operating time counter calculates the operating time during the release. When using this option the function does not trip if the input signal is not re-activated while the release time count is on-going.

Events and registers

The undervoltage function (abbreviated "UV" in event block names) generates events and registers from the status changes in START, TRIP, and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers four (4) independent stages; the events are segregated for each stage operation.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
UV1	Start ON
UV1	Start OFF
UV1	Trip ON
UV1	Trip OFF
UV1	Block ON
UV1	Block OFF
UV1	Undervoltage Block ON
UV1	Undervoltage Block OFF
UV2	Start ON
UV2	Start OFF
UV2	Trip ON
UV2	Trip OFF
UV2	Block ON

Table. 5.4.10 - 115. Event messages.

AQ-G257 Instruction manual

Version: 2.08

Event block name	Event names
UV2	Block OFF
UV2	Undervoltage Block ON
UV2	Undervoltage Block OFF
UV3	Start ON
UV3	Start OFF
UV3	Trip ON
UV3	Trip OFF
UV3	Block ON
UV3	Block OFF
UV3	Undervoltage Block ON
UV3	Undervoltage Block OFF
UV4	Start ON
UV4	Start OFF
UV4	Trip ON
UV4	Trip OFF
UV4	Block ON
UV4	Block OFF
UV4	Undervoltage Block ON
UV4	Undervoltage Block OFF

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.10 - 116. Register content.

Date and time	Event	Fault type	Pre-trigger voltage	Fault voltage	Pre-fault voltage	Trip time remaining	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	AA- B-C	Start/Trip -20ms voltage	Start/Trip voltage	Start -200ms voltage	0 ms1800s	Setting group 18 active

5.4.11 Neutral overvoltage protection (U0>; 59N)

The neutral overvoltage function is used for non-directional instant and time-delayed earth fault protection. Each device with a voltage protection module has four (4) available stages of the function (U0>, U0>>, U0>>>, U0>>>). The function constantly measures phase-to-earth voltage magnitudes and calculates the zero sequence component. Neutral overvoltage protection is scaled to line-to-line RMS level. When the line-to-line voltage of a system is 100 V in the secondary side, the earth fault is 100 % of the U_n and the calculated zero sequence voltage reaches $100/\sqrt{3}$ V = 57.74 V.

Below is the formula for symmetric component calculation (and therefore to zero sequence voltage calculation).

$$U0 = 1/3(U_{L1} + U_{L2} + U_{L3})$$

 $U_{L1\dots 3}$ = Line to neutral voltages

Below are some examples of zero sequence calculation.

Figure. 5.4.11 - 65. Normal situation.

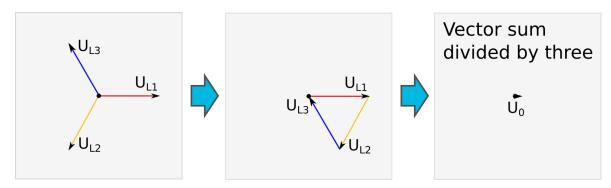


Figure. 5.4.11 - 66. Earth fault in isolated network.

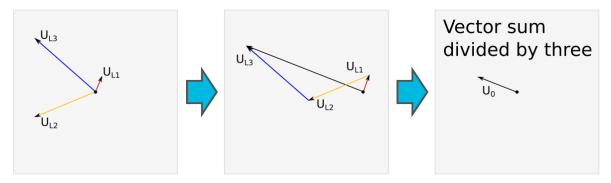
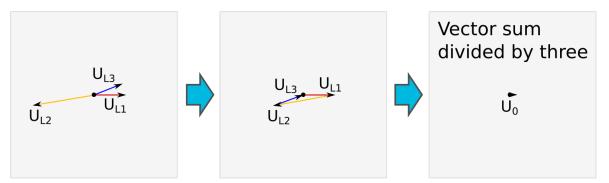



Figure. 5.4.11 - 67. Close-distance short-circuit between phases 1 and 3.

The monitored voltage magnitudes are equal to RMS values. The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

The neutral overvoltage function uses a total of eight (8) separate setting groups which can be selected from one common source.

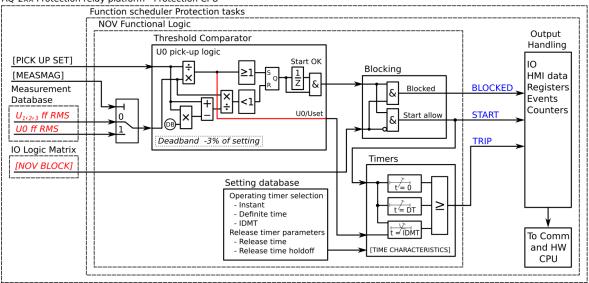
The function can operate on instant or time-delayed mode. In the time-delayed mode the operation can be selected for definite time (DT) or for inverse definite minimum time (IDMT); the IDMT operation supports both IEC and ANSI standard time delays as well as custom parameters.

The operational logic consists of the following:

AQ-G257 Instruction manual

Version: 2.08

- input magnitude selection
- input magnitude processing
- threshold comparator
- block signal check
- time delay characteristics
- output processing.


The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed voltage magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the neutral overvoltage function.

Figure. 5.4.11 - 68. Simplified function block diagram of the U0> function.

AQ-2xx Protection relay platform - Protection CPU

Measured input

The function block uses analog voltage measurement values. The function block uses RMS values. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

Table. 5.4.11 - 117. Measurement inputs of the U0> function.

Signal	Description	Time base
UORMS	RMS measurement of voltage U0/V	5ms
U _{L1} RMS	RMS measurement of voltage U_{L1}/V	5ms
U _{L2} RMS	RMS measurement of voltage U_{L2}/V	5ms
U _{L3} RMS	RMS measurement of voltage UL3/V	5ms

The selection of the AI channel currently in use is made with a setting parameter. In all possible input channel variations the pre-fault condition is presented with a 20 ms averaged history value from -20 ms from a START or TRIP event.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.4.11 - 118. General settings of the function.

Name	Range	Default	Description
U0> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	0: On	Set mode of NOV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U0> force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
U0> meas input select	1: Select 2: U0Calc 3: U3 Input 4: U4 Input	1: Select	Defines which available measured magnitude is used by the function. U0Calc calculates the voltage from phase voltages. Please note that U3 Input and U4 Input selections are available only if the channel has been set to U0 mode at <i>Measurements</i> \rightarrow <i>Transformers</i> \rightarrow <i>VT module</i> .

Pick-up

The U_{set} setting parameter controls the pick-up of the U0> function. This defines the maximum allowed measured voltage before action from the function. The function constantly calculates the ratio between the U_{set} and the measured magnitude (U_m) for neutral voltage. The reset ratio of 97 % is built into the function and is always relative to the U_{set} value. The setting value is common for all measured amplitudes, and when the U_m exceeds the U_{set} value it triggers the pick-up operation of the function.

Table. 5.4.11 - 119. Pick-up settings.

Name	Description	Range	Step	Default
Pick-up setting U0set>	Pick-up setting	1.0099.00%U _n	0.01%U _n	20.00%U _n

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
U0> LN mode behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of NOV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U0> Measuring now	0: No U0 avail! 1: U0Calc 2: U3 Input 3: U4 Input	-	Displays which voltage channel is used by the function. If no voltage channel has been selected the function defaults to calculated residual voltage if line-to-neutral voltages have been connected to device. If no channel is set to "U0" mode and line-to-line voltages are connected, no residual voltage is available and "No U0 avail!" will be displayed.
U0> Pick- up setting	0.01 000 000.0V	0.1V	Primary voltage required for tripping. The displayed pick-up voltage level depends on the chosen U0 measurement input selection, on the pick-up settings and on the voltage transformer settings.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured voltage value. If the measured voltage changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
U _{meas} /U _{set} at the moment	0.001250.00	0.01	The ratio between the measured or calculated neutral voltage and the pick- up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup voltage values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for TRIP signal and also for the release of the function in case the pick-up element is reset before the trip time has been reached. There are three basic operating modes available for the function:

- Instant operation: gives the TRIP signal with no additional time delay simultaneously with the START signal.
- Definite time operation (DT): gives the TRIP signal after a user-defined time delay regardless
 of the measured or calculated voltage as long as the voltage is above the U_{set} value and
 thus the pick-up element is active (independent time characteristics).

 Inverse definite minimum time (IDMT): gives the TRIP signal after a time which is in relation to the set pick-up voltage U_{set} and the measured voltage U_m (dependent time characteristics).

The IDMT function follows this formula:

$$t = \frac{k}{\left(\frac{Um}{Us}\right)^a - 1}$$

Where:

- *t* = operating time
- *k* = time dial setting
- *U_m* = measured voltage
- U_s = pick-up setting
- *a* = IDMT multiplier setting

The following table presents the setting parameters for the function's time characteristics.

Name	Range	Step	Default	Description
Delay type	1: DT 2: IDMT	-	1: DT	Selection of the delay type time counter. The selection possibilities are dependent (IDMT, Inverse Definite Minimum Time) and independent (DT, Definite Time) characteristics.
Definite operating 0.0001800.000s		0.005s	0.040-	Definite time operating delay. The setting is active and visible when DT is the selected delay type.
operating time delay	0.0001800.0005	0.0005	0.040s	When set to 0.000 s, the stage operates as instant without added delay. When the parameter is set to 0.0051800 s, the stage operates as independent delayed.
Time dial	Time dial setting k 0.0160.00s 0.01s		0.05s	The setting is active and visible when IDMT is the selected delay type.
setting k				Time dial/multiplier setting for IDMT characteristics.
IDMT	0.0125.00s	0.01s	1.000	The setting is active and visible when IDMT is the selected delay type.
Multiplier	0.0120.005	0.015	1.00s	IDMT time multiplier in the Um/Uset power.

Table. 5.4.11 - 121. Setting parameters for reset time characteristics.

Name	Range	Step	Default	Description
Release time delay	0.000150.000s	0.005s	0.06s	Resetting time. Time allowed between pick-ups if the pick-up has not led to a trip operation. During this time the START signal is held on for the timers if the delayed pick-up release is active.
Delayed pick-up release	1: No 2: Yes	-	2: Yes	Resetting characteristics selection either as time-delayed or as instant after the pick-up element is released. If activated, the START signal is reset after a set release time delay.
Time calc reset after release time	1: No 2: Yes	-	2: Yes	Operating timer resetting characteristics selection. When active, the operating time counter is reset after a set release time if the pick-up element is not activated during this time. When disabled, the operating time counter is reset directly after the pick-up element reset.

Name	Range	Step	Default	Description		
Continue time calculation during release time	1: No 2: Yes	-	1: No	Time calculation characteristics selection. If activated, the operating time counter continues until a set release time has passed even if the pick-up element is reset.		

The user can reset characteristics through the application. The default setting is a 60 ms delay; the time calculation is held during the release time.

In the release delay option the operating time counter calculates the operating time during the release. When using this option the function does not trip if the input signal is not re-activated while the release time count is on-going.

Events and registers

The neutral overvoltage function (abbreviated "NOV" in event block names) generates events and registers from the status changes in START, TRIP, and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers four (4) independent stages; the events are segregated for each stage operation.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
NOV1	Start ON
NOV1	Start OFF
NOV1	Trip ON
NOV1	Trip OFF
NOV1	Block ON
NOV1	Block OFF
NOV2	Start ON
NOV2	Start OFF
NOV2	Trip ON
NOV2	Trip OFF
NOV2	Block ON
NOV2	Block OFF
NOV3	Start ON
NOV3	Start OFF
NOV3	Trip ON
NOV3	Trip OFF
NOV3	Block ON
NOV3	Block OFF
NOV4	Start ON
NOV4	Start OFF
NOV4	Trip ON

Table. 5.4.11 - 122. Event messages.

Event block name	Event names
NOV4	Trip OFF
NOV4	Block ON
NOV4	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.11 - 123. Register content.

Date and time	Date and time Event Fault type		Pre-trigger voltage	Fault voltage	Pre-fault voltage	Trip time remaining	Used SG	
dd.mm.yyyy hh:mm:ss.mss	Event name	L1-GL1-L2-L3	Start/Trip -20ms voltage	Start/Trip voltage	Start -200ms voltage	0 ms1800s	Setting group 18 active	

5.4.12 Sequence voltage protection (U1/U2>/<; 47/27P/59PN)

The sequence voltage function is used for instant and time-delayed voltage protection. It has positive and negative sequence protection for both overvoltage and undervoltage (the user selects the needed function). Each device with a voltage protection module has four (4) available stages of the function. The function constantly measures the RMS value of phase-to-earth voltage magnitudes, or line-to-line and neutral voltage magnitudes to calculate the positive or negative sequence voltage. The user can select the voltage used. Sequence voltage is based on the system's line-to-line voltage level. Protection stages can be set to protect against both undervoltage and overvoltage. The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

Positive sequence voltage calculation

Below is the formula for symmetric component calculation (and therefore to positive sequence voltage calculation).

$$U1 = \frac{1}{3} (U_{L1} + aU_{L2} + a^2 U_{L3})$$

$$a = 1 \angle 120^{\circ}$$

$$a^2 = 1 \angle 240^{\circ}$$

$$U_{L1\dots3} = Line \text{ to neutral voltages}$$

In what follows are three examples of positive sequence calculation (positive sequence component vector).

Figure. 5.4.12 - 69. Normal situation.

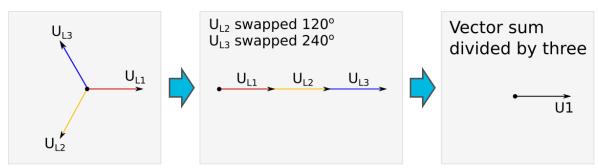


Figure. 5.4.12 - 70. Earth fault in an isolated network.

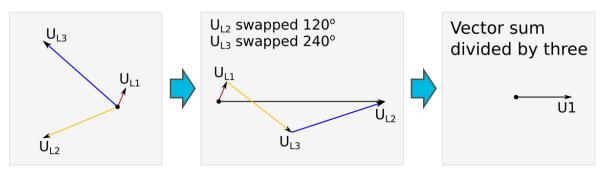
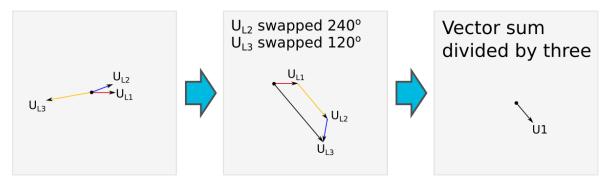
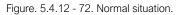



Figure. 5.4.12 - 71. Close-distance short-circuit between phases 1 and 3.


Negative sequence voltage calculation

Below is the formula for symmetric component calculation (and therefore to negative sequence voltage calculation).

$$U2 = \frac{1}{3} (U_{L1} + a^2 U_{L2} + a U_{L3})$$
$$a = 1 \angle 120^{\circ}$$
$$a^2 = 1 \angle 240^{\circ}$$

 $U_{L1\dots 3} = Line \ to \ neutral \ voltages$

In what follows are three examples of negative sequence calculation (negative sequence component vector).

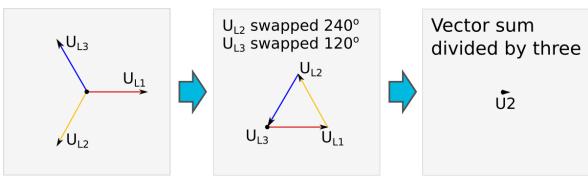


Figure. 5.4.12 - 73. Earth fault in isolated network.

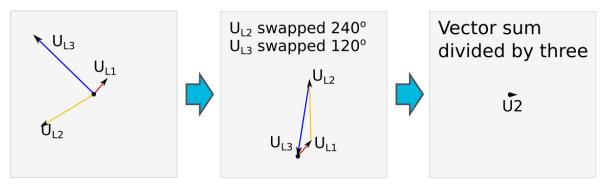
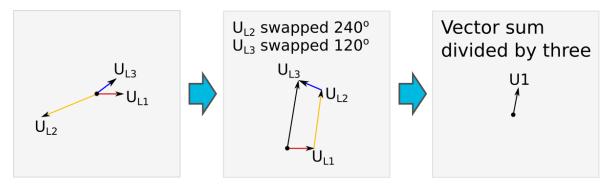



Figure. 5.4.12 - 74. Close-distance short-circuit between phases 1 and 3.

The sequence voltage function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode. In time-delayed mode the operation can be selected between definite time (DT) mode and inverse definite minimum time (IDMT).

The operational logic consists of the following:

- input magnitude selection
- input magnitude processing
- threshold comparator
- block signal check
- time delay characteristics
- · output processing.

The inputs for the function are the following:

- operating mode selections
- setting parameters

- digital inputs and logic signals
- measured and pre-processed voltage magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signal. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also a resettable cumulative counter for the START, TRIP and **BLOCKED** events.

The following figure presents a simplified function block diagram of the sequence voltage function.

Figure. 5.4.12 - 75. Simplified function block diagram of the U1/U2>/< function.

Measured input

The function block uses analog voltage measurement values and always uses RMS values. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

Table. 5.4.12 - 124. Measurement inputs of the U1/U2>/< function.

Signal	Description	Time base
U1RMS	RMS measurement of voltage U1/V	5ms
U2RMS	RMS measurement of voltage U ₂ /V	5ms
U3RMS	RMS measurement of voltage U ₃ /V	5ms

In RMS values the pre-fault condition is presented with 20 ms averaged history value from -20 ms of START or TRIP event.

General settings

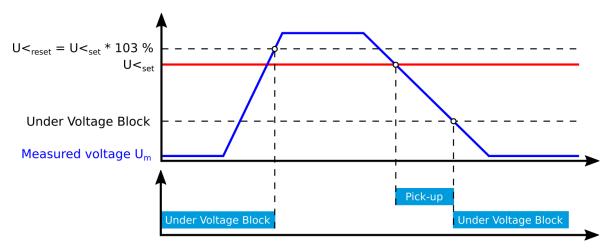
The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
U1/2 >/< LN mode	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	0: On	Set mode of VUB block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U1/2 >/< force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Measured magnitude	1: U1 Positive sequence voltage 2: U2 Negative sequence voltage	1: U1 Positive sequence voltage	Selects which calculated voltage is supervised.

Pick-up

The U_{set} setting parameter controls the pick-up of the U1/U2>/< function. This defines the maximum or minimum allowed calculated U1 or U2 voltage before action from the function. The function constantly calculates the ratio between the U_{set} and the calculated U1 or U2 magnitude (U_c). The monitored voltage is chosen in the *Info* page with the parameter *Measured magnitude*. The reset ratio of 97 % in overvoltage applications is built into the function and is always relative to the U_{set} value. The reset ratio of 103 % in undervoltage applications is built into the function and is always relative to the U_{set} value. When the U_c goes above or below the U_{set} value it triggers the pick-up operation of the function.

Table. 5.4.12 - 126. Pick-up settings.


Name	Description	Range	Step	Default
Pick-up terms	Selects whether the function picks-up when the monitored voltage is under or over the set pick-up value.	Over > Under<	-	Over>
Uset	Pick-up setting	5.00150.00%U _n	0.01%U _n	105%U _n
U _{blk}	Undervoltage blocking (visible when the pick-up term is Under<)	0.0080.00%U _n	0.01%U _n	5%U _n

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Using Block setting to prevent nuisance trips

It is recommended to use the *Under block setting* U_{blk} parameter when Under< is the chosen tripping condition to prevent the relay from tripping in a situation where the network is de-energized. When the measured voltage drops below the set value, the relay does not give a tripping signal. If the measured voltage has dropped below the *Under block setting* U_{blk} parameter, the blocking continues until all of the line voltages have increased above the U< pick-up setting. Please see the image below for a visualization of this function. If the block level is set to zero (0), blocking is not in use.

Figure. 5.4.12 - 76. Example of the block setting operation.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
U1/2 >/< LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of VUB block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U1/2 >/< Pick-up setting	0.01 000 000.0V	0.1V	The primary voltage required for tripping. The displayed pick-up voltage level depends on the pick-up setting and the voltage transformer settings.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured voltage value. If the measured voltage changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
U _{meas} /U _{set} at the moment	0.001250.00Um/Uset	0.01Um/Uset	The ratio between the measured voltage and the pick-up value.

Table. 5.4.12 - 127. Information displayed by the function.

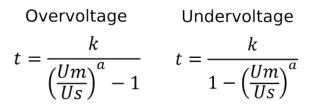
Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup voltage values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).


The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for TRIP signal and also for the release of the function in case the pick-up element is reset before the trip time has been reached. There are three basic operating modes available for the function:

- Instant operation: gives the TRIP signal with no additional time delay simultaneously with the START signal.
- Definite time operation (DT): gives the TRIP signal after a user-defined time delay regardless of the measured or calculated voltage as long as the voltage is above the *U*_{set} value and thus the pick-up element is active (independent time characteristics).
- Inverse definite minimum time (IDMT): gives the TRIP signal after a time which is in relation to the set pick-up voltage U_{set} and the measured voltage U_m (dependent time characteristics).

The IDMT function follows one of the following formulas:

Where:

- *t* = operating time
- *k* = time dial setting
- *U_m* = measured voltage
- U_s = pick-up setting
- *a* = IDMT multiplier setting

The following table presents the setting parameters for the function's time characteristics.

Table. 5.4.12 - 128. Setting parameters for operating time characteristics.

Name	Range	Step	Default	Description
Delay type	1: DT 2: IDMT	-	1: DT Selection of the delay type time counter. The selection possibilitie dependent (IDMT, Inverse Definite Minimum Time) and independ (DT, Definite Time) characteristics.	
Definite				Definite time operating delay. The setting is active and visible when DT is the selected delay type.
operating time delay	0.0001800.000s	0.005s	0.040s	When set to 0.000 s, the stage operates as instant without added delay. When the parameter is set to 0.0051800 s, the stage operates as independent delayed.

AQ-G257 Instruction manual

Version: 2.08

Name	Range	Step	Default	Description		
Time dial	0.0160.00s	0.01c 0.05c				The setting is active and visible when IDMT is the selected delay type.
setting k		0.013	0.005	Time dial/multiplier setting for IDMT characteristics.		
IDMT	0.04 05.00	04.05.00		The setting is active and visible when IDMT is the selected delay type.		
Multiplier	0.0125.00s	0.01s	1.00s	IDMT time multiplier in the U_m/U_{set} power.		

Table. 5.4.12 - 129. Setting parameters for reset time characteristics.

Name	Range	Step	Default	Description
Release time delay	0.000150.000s	0.005s	0.06s	Resetting time. Time allowed between pick-ups if the pick-up has not led to a trip operation. During this time the START signal is held on for the timers if the delayed pick-up release is active.
Delayed pick-up release	1: No 2: Yes	-	2: Yes	Resetting characteristics selection either as time-delayed or as instant after the pick-up element is released. If activated, the START signal is reset after a set release time delay.
Time calc reset after release time	1: No 2: Yes	-	2: Yes	Operating timer resetting characteristics selection. When active, the operating time counter is reset after a set release time if the pick-up element is not activated during this time. When disabled, the operating time counter is reset directly after the pick-up element reset.
Continue time calculation during release time	1: No 2: Yes	-	1: No	Time calculation characteristics selection. If activated, the operating time counter continues until a set release time has passed even if the pick-up element is reset.

The user can reset characteristics through the application. The default setting is a 60 ms delay; the time calculation is held during the release time.

In the release delay option the operating time counter calculates the operating time during the release. When using this option the function does not trip if the input signal is not re-activated while the release time count is on-going.

Events and registers

The sequence voltage function (abbreviated "VUB" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers four (4) independent stages; the events are segregated for each stage operation.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
VUB1	Start ON
VUB1	Start OFF
VUB1	Trip ON
VUB1	Trip OFF
VUB1	Block ON
VUB1	Block OFF
VUB2	Start ON

Table. 5.4.12 - 130. Event messages.

Event block name	Event names
VUB2	Start OFF
VUB2	Trip ON
VUB2	Trip OFF
VUB2	Block ON
VUB2	Block OFF
VUB3	Start ON
VUB3	Start OFF
VUB3	Trip ON
VUB3	Trip OFF
VUB3	Block ON
VUB3	Block OFF
VUB4	Start ON
VUB4	Start OFF
VUB4	Trip ON
VUB4	Trip OFF
VUB4	Block ON
VUB4	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.12 - 131. Register content.

Date and time	Event	Pre-trigger voltage	Fault voltage	Pre-fault voltage	Trip time remaining	Used SG
dd.mm.yyyy	Event	Start/Trip -20ms	Start/Trip	Start -200ms	0 ms1800s	Setting group 18
hh:mm:ss.mss	name	voltage	voltage	voltage		active

5.4.13 Overfrequency and underfrequency protection (f>/<; 81O/81U)

The frequency protection function can be used both in overfrequency and in underfrequency situations, and it has four (4) stages for both. Frequency protection can be applied to protect feeder, bus, transformer, motor and generator applications. The difference between the generated power and the load demand can cause the frequency to drop below or rise above the allowed level. When the consumption is larger than the generated power, the frequency may drop. When more power is generated than is consumed, overfrequency can occur.

In generator applications too big a load or a malfunction in the power controller can cause the frequency to decrease. Underfrequency causes damage to turbine wings through vibration as well as heating due to increased iron losses, dropped cooling efficieny and over-magnetization in step-up transformers. Overfrequency protection prevents the generator from running too fast which can cause damage to the generator turbine.

Underfrequency and overfrequency protection can be used as an indicator of an accidental island operation in distributed generation and in some consumers (as it is unlikely that the consumed and generated power are the same). Overfrequency is also often used to control power generation to keep the system's frequency consistent.

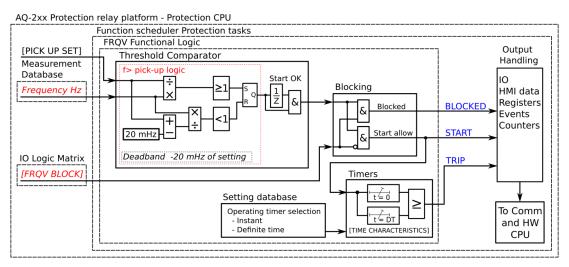
Each stage can be activated and deactivated individually. After the f>/< mode has been activated (*Protection* \rightarrow *Stage activation* \rightarrow *Frequency stages*), the user can activate and deactivate the individual stages at will (*Protection* \rightarrow *Frequency* \rightarrow *Frequency protection* $f > /< \rightarrow$ *INFO* \rightarrow *Stage operational setup*).

The frequency protection function uses a total of eight (8) separate setting groups which can be selected from one common source.

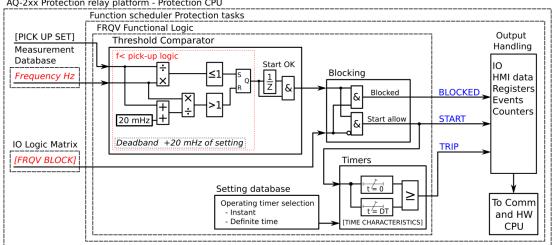
The function can operate on instant or time-delayed mode.

The operational logic consists of the following:

- input magnitude processing
- threshold comparator
- block signal check
- time delay characteristics
- output processing.


The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed frequency magnitudes.


The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signal. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The following figures present simplified function block diagrams of the frequency function.

Figure. 5.4.13 - 77. Simplified function block diagram of the f> function.

AQ-2xx Protection relay platform - Protection CPU

Measured input

The frequency protection function compares the measured frequency to the pick-up setting (given in Hz). The source of the measured frequency depends on the user-defined tracking reference which can be chosen from the Frequency tab of the Measurement menu.

Table. 5.4.13 - 132. Measurement inputs of the f>/< function.

Signals	Signals Description	
VT1 U1, U2, U3	L-N voltages of the first voltage transformer	5ms
VT2 U1, U2, U3	L-N voltages of the second voltage transformer	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Tabla	5/13	122	Conoral	cottinge	of tho	function.
Table.	0.4.10	- 155.	General	settings	ortine	iunction.

Name	Range	Default	Description
f LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	0: On	Set mode of FRQV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
f> enable f>> enable f>>> enable f>>>> enable f< enable f<< enable f<< enable f<<< enable	1: No 2: Yes	0: No	Enables or disables the stage.

AQ-G257 Instruction manual

Version: 2.08

Name	Range	Default	Description
f> force status to f>> force status to f>>> force status to f>>>> force status to f< force status to f<< force status to f<<< force status to f<<< force status to f<<< force status to f<<< force status to f<<< force status to f<<< force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up and time delay

The f_{set} , f_{set} , etc.setting parameters control the pick-up of each stage of the f>/< function. They define the maximum or minimum allowed measured frequency before action from the function. The function constantly calculates the ratio between the pick-up setting and the measured frequency. The reset ratio of 20mHz is built into the function and is always relative to the pick-up value.

Table. 5.4.13 - 134. Pick-up settings.

Name	Description	Range	Step	Default
f> used in setting group f>> used in setting group f>>> used in setting group f>>>> used in setting group f< used in setting group f<< used in setting group f<<< used in setting group f<<< used in setting group f<<< used in setting	Enables or disables the protection stage in the setting group.	0: No 1: Yes	-	0: No
fset> fset>> fset>>> fset>>>	Pick-up setting	10.0080.00Hz	0.01Hz	51Hz
fset< fset<< fset<<< fset<<<	Pick-up setting	5.0075.00Hz	0.01Hz	49Hz
f> operating time f>> operating time f>>> operating time f>>>> operating time f< operating time f<< operating time f<<<< operating time f<<<< operating time	Operation time	0.0001800.00s	0.005s	0.1s

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Operating time characteristics for trip and reset

This function supports definite time delay (DT). For detailed information on this delay types please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
f LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of FRQV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
f condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays the status of the protection function.
f meas / f set	0.00020.000fm/fset	0.001fm/fset	The ratio between the measured frequency and the pick-up value.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup frequency values.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

The frequency function (abbreviated "FRQV" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
FRQV1	f> Start ON
FRQV1	f> Start OFF
FRQV1	f> Trip ON
FRQV1	f> Trip OFF
FRQV1	f>> Start ON
FRQV1	f>> Start OFF
FRQV1	f>> Trip ON
FRQV1	f>> Trip OFF
FRQV1	f>>> Start ON
FRQV1	f>>> Start OFF
FRQV1	f>>> Trip ON
FRQV1	f>>> Trip OFF
FRQV1	f>>>> Start ON
FRQV1	f>>>> Start OFF
FRQV1	f>>>> Trip ON
FRQV1	f>>>> Trip OFF
FRQV1	f< Start ON
FRQV1	f< Start OFF
FRQV1	f< Trip ON
FRQV1	f< Trip OFF
FRQV1	f<< Start ON
FRQV1	f<< Start OFF
FRQV1	f<< Trip ON
FRQV1	f<< Trip OFF
FRQV1	f<<< Start ON
FRQV1	f<<< Start OFF
FRQV1	f<<< Trip ON
FRQV1	f<<< Trip OFF
FRQV1	f<<<< Start ON
FRQV1	f<<<< Start OFF
FRQV1	f<<<< Trip ON
FRQV1	f<<<< Trip OFF

Table. 5.4.13 - 136. Event messages.

Event block name	Event names
FRQV1	f> Block ON
FRQV1	f> Block OFF
FRQV1	f>> Block ON
FRQV1	f>> Block OFF
FRQV1	f>>> Block ON
FRQV1	f>>> Block OFF
FRQV1	f>>>> Block ON
FRQV1	f>>>> Block OFF
FRQV1	f< Block ON
FRQV1	f< Block OFF
FRQV1	f<< Block ON
FRQV1	f<< Block OFF
FRQV1	f<<< Block ON
FRQV1	f<<< Block OFF
FRQV1	f<<<< Block ON
FRQV1	f<<<< Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The table below presents the structure of the function's register content.

Table. 5.4.13 - 137. Register content.

Date and time	Event	f Pre-trig (Hz)	f Fault (Hz)	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	Start/Trip –20ms frequency	Fault frequency	Setting group 18 active

5.4.14 Rate-of-change of frequency (df/dt>/<; 81R)

The rate-of-change of frequency function is used to detect fast drops or increases in frequency. If the load changes fast this function detects and clears the frequency-based faults faster than conventional underfrequency and overfrequency protections. One of the most common causes for the frequency to deviate from its nominal value is an unbalance between the generated power and the load demand. If the unbalance is big the frequency changes rapidly.

The rate-of-change of frequency protection can also be applied to detect a loss of mains situation. Loss of mains is a situation where a part of the network (incorporating generation) loses its connection with the rest of the system (i.e. becomes an islanded network). A generator that is not disconnected from the network can cause safety hazards. A generator can also be automatically reconnected to the network, which can cause damage to the generator and the network.

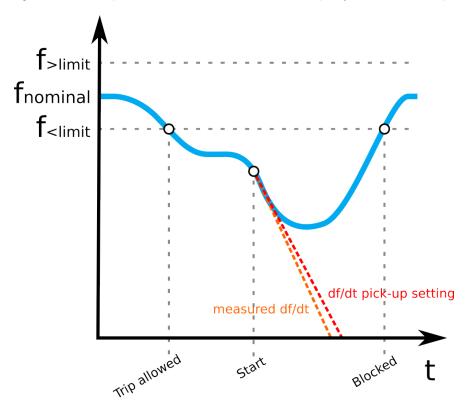


Figure. 5.4.14 - 79. Operation of the df/dt>/< function when the frequency starts but doesn't trip.

The figure above presents an example of the df/dt > < function's operation when the frequency is decreasing. If the f<_{limit} and/or f>_{limit} is activated, the function does not trip no matter how fast the measured frequency changes if it's over the f<_{limit} or under f>_{limit}. As can be seen in the figure above, when the frequency decreases under the f<_{limit},tripping is allowed although the change of frequency is not yet fast enough for the function to trip. Later the frequency makes a fast dip and as a result the change of frequency is faster than the set pick-up value which then causes the relay to operate.

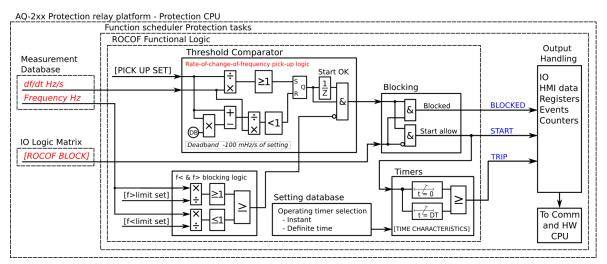
Each stage can be activated and deactivated individually. After the f>/< mode has been activated (*Protection* \rightarrow *Stage activation* \rightarrow *Frequency stages*), the user can activate and deactivate the individual stages at will (*Protection* \rightarrow *Frequency* \rightarrow *Frequency protection* $f > /< \rightarrow$ *INFO* \rightarrow *Stage operational setup*).

The frequency protection function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode.

The operational logic consists of the following:

- input magnitude processing
- threshold comparator
- block signal check
- time delay characteristics
- output processing.


The inputs for the function are the following:

- · operating mode selections
- setting parameters
- digital inputs and logic signals
- · measured and pre-processed frequency magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the df/dt>/< function.

Figure. 5.4.14 - 80. Simplified function block diagram of the df/dt>/< function.

Measured input

The rate-of-change of frequency protection function compares the measured df/dt>/< ratio to the pickup setting (given in Hz/s). The source of the measured frequency depends on the user-defined tracking reference which can be changed from the *Frequency* tab of the *Measurement* menu. There are three (3) frequency references available:

- Frecuency reference 1: CT1IL1, CT2IL1, VT1U1, VT2U1
- Frecuency reference 2: CT1IL2, CT2IL2, VT1U2, VT2U2
- Frecuency reference 3: CT1IL3, CT2IL3, VT1U3, VT2U3.

Table. 5.4.14 - 138. Measurement inputs of the df/dt>/< function.

Signals Description		Time base	
VT1 U1, U2, U3 L-N voltages of the first voltage transformer		5 ms	
VT2 U1, U2, U3	L-N voltages of the second voltage transformer	5 ms	

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Step	Default	Description
df/dt >/< LN mode	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	0: On	Set mode of DFT block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

Name	Range	Step	Default	Description
Max allowed df/dt rate	0.1050.00Hz/ s	0.10Hz/ s	20Hz/s	If df/dt rate exceeds this setting, the function is blocked.
df/dt >/< (18) enable	1: No 2: Yes	-	1: No	Enables or disables the stage.
df/dt >/< (18) force status to	0: Normal 1: Start 2: Trip 3: Blocked	-	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up and time delay

The df/dt>/< (1) pick-up, df/dt>/< (2) pick-up, etc. setting parameters control the pick-up of each stage of the df/dt>/< function. They define the maximum or minimum allowed change of frequency before action from the function. The function constantly calculates the ratio between the pick-up setting and the measured df/dt>/<. The reset ratio of +/- 100 mHz/s is built into the function and is always relative to the pick-up value. The f>/< limit value is used to block the function from operating near the nominal frequency.

Table. 5.4.14 - 140. Pick-up settings.

Name	Description	Range	Step	Default
df/dt>/< (18) used in setting group	Enables the protection stage in setting group.	0: No 1: Yes	-	0: No
df/dt>/< (18) operating mode	Defines the operation mode of the protection stage. In "Rising" mode df/dt function can trip only from increasing frequency. In "Falling" mode df/dt function can trip only from decreasing frequency. "Both" allows df/dt to trip from both.	0: Rising 1: Falling 2: Both	-	0: Rising
df/dt>/< (18) frequency limit	Displays if frequency limits are used or not.	0: Not used 1: Use f limit	-	0: Not used
df/dt>/< (18) pick-up	Pick-up setting.	0.0110.00Hz/s	0.01Hz/ s	0.2Hz/s
df/dt>/< (18) f< limit	Underfrequency limit. Tripping is permitted when measured frequency is under this value. This parameter is visible only when operation mode is set to "Falling" or "Both".	7.0065.00Hz/s	0.01Hz/ s	49.95Hz/ s
df/dt>/< (18) f> limit	Overfrequency limit. Tripping is permitted if measured frequency is above this value. This parameter is visible only when operation mode is set to "Rising" or "Both".	10.0070.00Hz/s	0.01Hz/ s	51Hz/s
df/dt>/< (18) operating time	Operation time delay.	0.0001800.000s	0.005s	0.1s

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Operating time characteristics for trip and reset

This function supports definite time delay (DT). For detailed information on this delay types please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
df/dt >/< LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of DFT block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Measured df/dt	0.00020.000Hz/s	0.001Hz/ s	Rate-of-change-of-frequency at the moment.
df/dt >/< (18) condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays the status of the protection function.
df/dt >/< (18) df/dt meas / df/dt set	0.00020.000p.u.	0.005p.u.	The ratio between the rate-of-change-of-frequency and the pick-up value.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup frequency values.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

The rate-of-change of frequency function (abbreviated "DFT" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Table. 5.4.14 - 142. Event messages.

Event block name	Event names
DFT1	df/dt>/< (1) Start ON

AQ-G257 Instruction manual

Version: 2.08

Event block name	Event names
DFT1	df/dt>/< (1) Start OFF
DFT1	df/dt>/< (1) Trip ON
DFT1	df/dt>/< (1) Trip OFF
DFT1	df/dt>/< (2) Start ON
DFT1	df/dt>/< (2) Start OFF
DFT1	df/dt>/< (2) Trip ON
DFT1	df/dt>/< (2) Trip OFF
DFT1	df/dt>/< (3) Start ON
DFT1	df/dt>/< (3) Start OFF
DFT1	df/dt>/< (3) Trip ON
DFT1	df/dt>/< (3) Trip OFF
DFT1	df/dt>/< (4) Start ON
DFT1	df/dt>/< (4) Start OFF
DFT1	df/dt>/< (4) Trip ON
DFT1	df/dt>/< (4) Trip OFF
DFT1	df/dt>/< (5) Start ON
DFT1	df/dt>/< (5) Start OFF
DFT1	df/dt>/< (5) Trip ON
DFT1	df/dt>/< (5) Trip OFF
DFT1	df/dt>/< (6) Start ON
DFT1	df/dt>/< (6) Start OFF
DFT1	df/dt>/< (6) Trip ON
DFT1	df/dt>/< (6) Trip OFF
DFT1	df/dt>/< (7) Start ON
DFT1	df/dt>/< (7) Start OFF
DFT1	df/dt>/< (7) Trip ON
DFT1	df/dt>/< (7) Trip OFF
DFT1	df/dt>/< (8) Start ON
DFT1	df/dt>/< (8) Start OFF
DFT1	df/dt>/< (8) Trip ON
DFT1	df/dt>/< (8) Trip OFF
DFT1	df/dt>/< (1) Block ON
DFT1	df/dt>/< (1) Block OFF
DFT1	df/dt>/< (2) Block ON
DFT1	df/dt>/< (2) Block OFF
DFT1	df/dt>/< (3) Block ON
DFT1	df/dt>/< (3) Block OFF
DFT1	df/dt>/< (4) Block ON

Event block name	Event names
DFT1	df/dt>/< (4) Block OFF
DFT1	df/dt>/< (5) Block ON
DFT1	df/dt>/< (5) Block OFF
DFT1	df/dt>/< (6) Block ON
DFT1	df/dt>/< (6) Block OFF
DFT1	df/dt>/< (7) Block ON
DFT1	df/dt>/< (7) Block OFF
DFT1	df/dt>/< (8) Block ON
DFT1	df/dt>/< (8) Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The table below presents the structure of the function's register content.

Table. 5.4.14 - 143. Register content.

Date and time	Event	df/dt>/< Pre-trig (Hz/s)	f Pre-trig (Hz)	df/dt>/< Fault (Hz/s)	f Fault (Hz)	Used SG
dd.mm.yyyy	Event	Start/Trip –20ms	Start/Trip –20ms	Fault df/dt>/<	Fault	Setting groups
hh:mm:ss.mss	name	df/dt>/<	frequency		frequency	18 active

5.4.15 Power protection (P, Q, S>/<; 32)

The power protection function is for instant and time-delayed, three-phase overpower or underpower protection (active, reactive, or apparent). The user can select the operating mode with parameter settings.

The figure below presents the pick-up areas of the function's different modes, displayed in a PQ diagram.

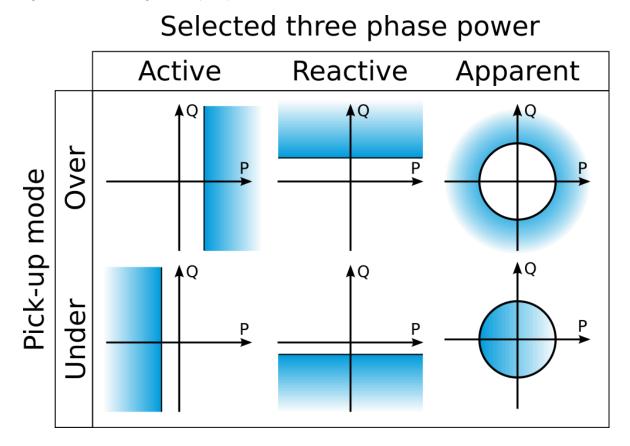


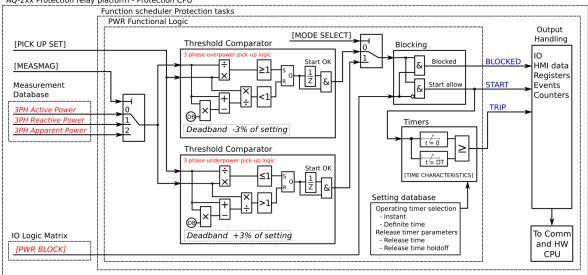
Figure. 5.4.15 - 81. PQ diagram of the pick-up areas in various modes.

The power protection function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode.

The operational logic consists of the following:

- input magnitude selection
- input magnitude processing
- · threshold comparator
- two block signal checks
- time delay characteristics
- output processing.


The inputs for the function are the following:

- · operating mode selections
- setting parameters
- digital inputs and logic signals
- · measured and pre-processed power magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also a resettable cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the power protection function.

AQ-2xx Protection relay platform - Protection CPU

Measured input

The function block uses three-phase power values (active, reactive, or apparent). A -20 ms averaged value is used for pre-fault data registering. The used power measurement value depends on user input. If the protection relay has more than one CT module, the *Measured side* parameter determines which current measurement is used for power measurement.

Toble E / 1E 1/	Measurement inputs of the power protect	ion function
1able, 5.4, 15 - 14	4. Measurement induts of the dower drotect	ion iunciion.

Signal	Description	Time base
3PH active power (P)	Total three-phase active power	5ms
3PH reactive power (Q)	Total three-phase reactive power	5ms
3PH apparent power	Total three-phase apparent power	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description	
PQS>/< LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	0: On	Set mode of PWR block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
PQS>/< force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.	
PQS>/< measurement side	1: POW1 2: POW2	1: POW1	Defines which power measurement module is used by the function. This setting is available if the device has more than one current measurement module.	

Pick-up

The PQS>/< setting parameter controls the pick-up of the power protection function. This defines the maximum or minimum allowed measured three-phase power (active, reactive, or apparent) before action from the function. The function constantly calculates the ratio between the PQS>/< and the measured power magnitude. The reset ratios of 97 % (pick-up mode "Over") and 103 % (pick-up mode "Under") are built into the function and is always relative to the pick-up value.

Table. 5.4.15 - 146. Pick-up settings.

Name	Description	Range	Step	Default
Measured magnitude	Defines which three phase power is used: Active, reactive or apparent power.	0: P3PH 1: Q3PH 2: S3PH	-	0: P3PH
Nominal MVA reference	Defines whether the used nominal power is set manually or if transformer or generator status monitoring function defines the nominal power automatically.	0: Set manually 1: Use Gen nom MVA 2: Use Trafo nom MVA	-	0: Set manually
Set nominal MVA	Nominal MVA used by the function. This parameter is visible only when "Nominal MVA reference" parameter is set to "Set manually"	0.00011000.0000MVA	0.0001MVA	10MVA
Pick-up mode	Defines whether the function operates in underpower or overpower protection mode.	0: > Over 1: < Under	-	0: Over
Pick-up	Pick-up setting. Related to the nominal power set by the user.	-500.000500.000%	0.005%	0%

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
PQS>/< LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of PWR block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
PQS>/< condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays the status of the protection function.
PQS>/< selected measurement	0: POW1CT1 1: POW1CT2 2: POW2CT1 3: POW2CT2 4: Undefined	-	Displays the selected power measurement. This indication is visible if the device has more than one current measurement unit.
Nominal MVA used	0.0001800.000MVA	0.001MVA	Displays the nominal power used by the function. This parameter is displayed if "Nominal MVA reference" parameter has been set to "Use Gen nom MVA" or "Use Trafo nom MVA".
Pick-up setting	-1800.0001800.000MVA	0.001MVA	Pick-up setting used at the moment by the function. Value of this parameter can change if setting group has been changed.

	Lefter and the state of the sta	dia dia Garagean
Table. 5.4.15 - 147.	information displaye	a by the function.

Name	Range	Step	Description
Measurement now	-1800.0001800.000MVA	0.001MVA	Measured active, reactive or apparent power at the moment.
Meas/Set at the moment	-1250.001250.00p.u.	0.01p.u.	Ratio between the measured power and pick-up setting.
Meas/Nom at the moment	-1250.001250.00p.u.	0.01p.u.	Ratio between the measured power and used nominal power value.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup voltage values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT). For detailed information on this delay type please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

Events and registers

The power protection function (abbreviated "PWR" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers four (4) independent stages; the events are segregated for each stage operation.

The events triggered by the function are recorded with a time stamp and with process data values.

Table. 5.4.15 - 148. Event messages.

Event block name	Event names
PWR1	Start ON

Event block name	Event names
PWR1	Start OFF
PWR1	Trip ON
PWR1	Trip OFF
PWR1	Block ON
PWR1	Block OFF
PWR2	Start ON
PWR2	Start OFF
PWR2	Trip ON
PWR2	Trip OFF
PWR2	Block ON
PWR2	Block OFF
PWR3	Start ON
PWR3	Start OFF
PWR3	Trip ON
PWR3	Trip OFF
PWR3	Block ON
PWR3	Block OFF
PWR4	Start ON
PWR4	Start OFF
PWR4	Trip ON
PWR4	Trip OFF
PWR4	Block ON
PWR4	Block OFF

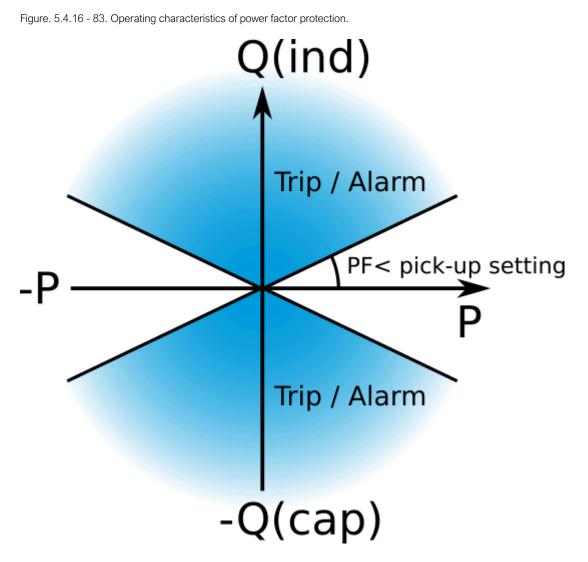

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.15 - 149. Register content.

Date and time	Event	Pre-trigger power	Fault power	Pre-fault power	Trip time remaining	Used SG
dd.mm.yyyy	Event	Start/Trip -20ms	Start/Trip -20ms	Start -200ms	0 ms1800s	Setting group
hh:mm:ss.mss	name	power	power	power		18 active

5.4.16 Power factor protection (PF<; 55)

The power factor protection function is the ratio of active power to apparent power ($\cos \phi = P/S$). In a fully resistive load the power factor is 1.00. In partially inductive loads the power factor is under 1.00. Power factor protection cannot detect a power factor value that is too low.

The power factor protection function uses a total of eight (8) separate setting groups which can be selected from one common source.

The operational logic consists of the following:

- input magnitude selection
- input magnitude processing
- saturation check
- threshold comparator
- block signal check
- time delay characteristics
- output processing.

The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed current magnitudes.

The function's outputs are ALARM START, ALARM, START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general timestamped ON/OFF events to the common event buffer from each of the five (5) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the ALARM START, ALARM, START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the power factor protection function.

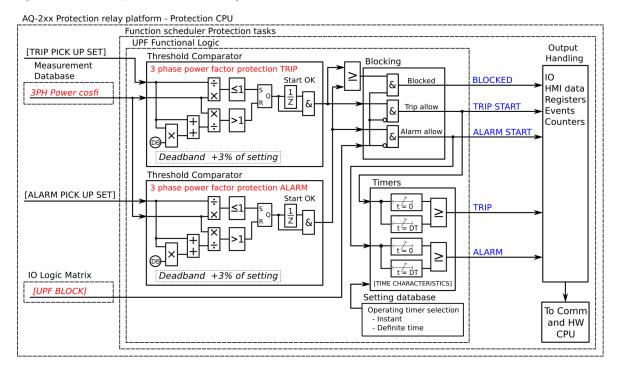


Figure. 5.4.16 - 84. Simplified function block diagram of the PF> function.

Measured input

The function block uses power factor values. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

Table. 5.4.16 - 150. Measurement inputs of the PF< function.

Signal	Description	Time base
3PH cos φ	Three-phase cos phi (power factor)	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
PF< LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of UPF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

Name	Range	Default	Description
PF< force status to	0: Normal 1: Start 2: Trip 3: Blocked 4: Alarm Start 5: Alarm	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
PF< measurement selection	1: POW1 2: POW2	1: POW1	Defines which power measurement module is used by the function. This setting is available if the device has more than one current measurement module.

Pick-up

The *Pick-up setting PF< (lead or lag) Trip* and *Pick-up setting PF< (lead or lag) Alarm* setting parameters control the the pick-up of the PF< function. They define the minimum allowed power factor before action from the function. The function constantly calculates the ratio between the pick-up settings and the measured magnitude (power factor). The reset ratio of 103 % is built into the function and is always relative to the pick-up setting value.

Table. 5.4.16 - 152. Pick-up settings.

Name	Description	Range	Step	Default
Available modes	Enables or disables alarming.	0: Trips 1: Trips and alarms	-	1: Trips and alarms
Pick-up setting PF< (lead or lag) Trip	Pick-up setting for tripping	0.050.99	0.01	0.8
Pick-up setting PF< (lead or lag) Alarm	Pick-up setting for alarming. This parameter is only available when "Available modes" parameter has been set to "Trip and alarm".	0.050.99	0.01	0.9

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table. 5.4.16 - 153. Information displayed by the function.

Name	Range	Step	Description
PF< LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of UPF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
PF< condition	0: Normal 1: Start 2: Trip 3: Blocked 4: Alarm Start 5: Alarm	-	Displays status of the protection function.
Expected alarming time	0.0001800.000s	0.005s	Displays the expected alarming time when a fault occurs.

Time remaining to alarm	0.0001800.000s	0.005s	When the function has detected a fault and counts down time towards an alarm, this displays how much time is left before alarm is activated.
PF _{meas} / PF _{alarm} at the moment	0.001250.00	0.01	The ratio between the measured power factor and the alarm pick-up value.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
PF _{meas} / PF _{set} at the moment	0.001250.00	0.01	The ratio between the measured power factor and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup current values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT). For detailed information on these delay types please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

Events and registers

The power factor protection function (abbreviated "UPF" in event block names) generates events and registers from the status changes in ALARM START, ALARM, START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Table.	5.4.16 -	154.	Event messages.
--------	----------	------	-----------------

Event block name	Event names
UPF1	Block ON
UPF1	Block OFF
UPF1	Start ON
UPF1	Start OFF

Event block name	Event names		
UPF1	Trip ON		
UPF1	Trip OFF		
UPF1	Alarm Start ON		
UPF1	Alarm Start OFF		
UPF1	Alarm ON		
UPF1	Alarm OFF		

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table.	5.4.16 -	155.	Register content.	
--------	----------	------	-------------------	--

Date and time	Event	Pre-trigger PF	Fault PF	Pre-fault PF	Trip time remaining	Used SG
dd.mm.yyyy	Event	Start/Trip -20ms	Start/Trip	Start -200ms	0 ms1800s	Setting group
hh:mm:ss.mss	name	power factor	power factor	power factor		18 active

5.4.17 Machine thermal overload protection (TM>; 49M)

The thermal overload protection function for machines is used for the thermal capacity monitoring and protection of electric machines like synchronous and asynchronous motors and generators. This function can also be used for any applications with single or multiple time constansts, such as inductor chokes, certain types of transformers and any other static units which do not have active cooling apart from cables and overhead lines.

The function constantly monitors the instant values of phase TRMS currents (including harmonics up to 31st) and calculates the set thermal replica status in 5 ms cycles. The function includes a total memory function of the load current conditions according to IEC 60255-8.

The function is based on a thermal replica which represents the protected object's thermal loading in relation to the effective current in the object. The thermal replica includes the calculated thermal capacity that the "memory" uses; it is an integral function which tells apart this function from a normal overcurrent function and its operating principle for overload protection applications.

In heating and cooling situations the thermal image for this function is calculated according to the two equations described below:

Figure. 5.4.17 - 85. Long time constant thermal image calculation.

$$\theta_{tL} = \left(\left(\theta_{t-1} - \left(\frac{I_{EM}}{I_N \times k_{SF} \times k_{AMB}} \right)^2 \times e^{-\frac{t}{\tau_{1h}/\tau_{1c0}/\tau_{1cr}}} \right) + \left(\frac{I_{EM}}{I_N \times k_{SF} \times k_{AMB}} \right)^2 \right) \times (1 - W_f)$$

Where:

- θ_{t-1} = Thermal image status in a previous calculation cycle (the memory of the function)
- I_{EM} = (see below)
- I_N = Current for the 100 % thermal capacity to be used (pick-up current in p.u., with this current t_{max} achieved in time t)
- k_{SF} = Loading factor (service factor) coefficient, the maximum allowed load current in p.u., depending on the protected object
- k_{AMB} = Temperature correction factor, either from a linear approximation or from a settable ten-point thermal capacity curve
- e = Euler's number
- t = Calculation time step in seconds (0.005 s)
- τ_{1h} = Long thermal heating time constant of the protected object (in minutes)
- τ_{1c0} = Long thermal cooling time constant (motor stopped) of the protected object (in minutes)
- τ_{1cr} = Long thermal cooling time constant (motor running) of the protected object (in minutes)
- W_f = Correction factor between the times t₁ and t₂

Figure. 5.4.17 - 86. Short time constant thermal image calculation.

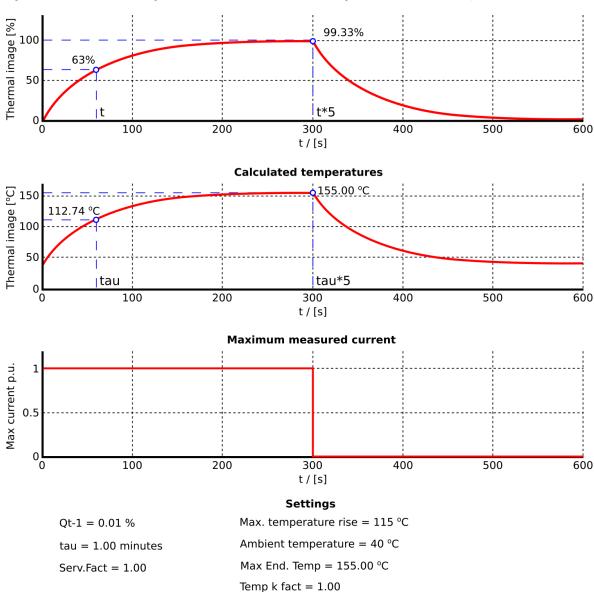
$$\theta_{tS} = \left(\left(\theta_{t-1} - \left(\frac{I_{EM}}{I_N \times k_{SF} \times k_{AMB}} \right)^2 \times e^{-\frac{t}{\tau_{2h}/\tau_{2c}}} \right) + \left(\frac{I_{EM}}{I_N \times k_{SF} \times k_{AMB}} \right)^2 \right) \times W_f$$

Where:

- θ_{t-1} = Thermal image status in a previous calculation cycle (the memory of the function)
- I_{EM} = (see below)
- I_N = Current for the 100 % thermal capacity to be used (pick-up current in p.u., with this current t_{max} achieved in time t)
- k_{SF} = Loading factor (service factor) coefficient, the maximum allowed load current in p.u. value, depending on the protected object
- k_{AMB} = Temperature correction factor, either from a linear approximation or from a settable ten-point thermal capacity curve
- e = Euler's number
- t = Calculation time step in seconds (0.005 s)
- τ_{2h} = Short thermal heating time constant of the protected object (in minutes)
- τ_{2c} = Short thermal cooling time constant of the protected object (in minutes)
- Wf = Correction factor between the times t1 and t2

The equation below is that of the effective current of the protected object including the TRMS measurement maximum phase current as well as a possible phase current unbalance condition.

$$I_{EM} = \sqrt{\left(\left(1 + \left(\left(\frac{I_2}{I_1}\right)^2 \times k_{NPS}\right)\right) \times I_{MAX}^2\right)}$$


Where:


- I₁ = Calculated positive sequence current of the measured RMS phase currents
- I₂ = Calculated negative sequence current of the measured RMS phase currents
- kNPS = Correction factor of the NPS current biasing to the equivalent current calculation
- I_{MAX} = Measured maximum of the three TRMS phase currents

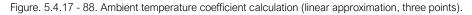
The thermal image status (θ_t %, in percentages of the maximum thermal capacity used) calculation is based on the sum of the long and short time constant thermal image calculation:

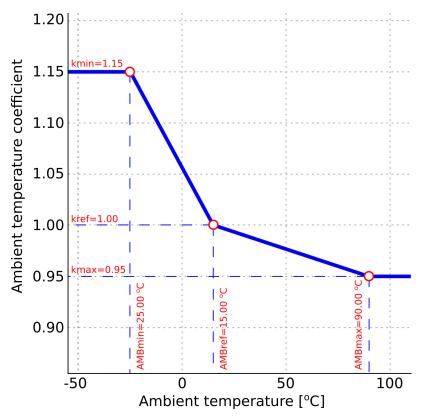
 $\theta_{t\%} = (\theta_{tL} + \theta_{tS}) \times 100\%$

The basic operating principle of the thermal replica is based on the nominal temperature rise, which is achieved when the protected object is loaded with a nominal load in a nominal ambient temperature. When the object is loaded with a nominal load for a time equal to its heating constant tau (τ), 63% of the nominal thermal capacity is used. When the loading continues until five times this given constant, the used thermal capacity approaches 100 % indefinitely but never exceeds it. With a single time constant model the cooling of the object follows this same behavior, the reverse of the heating when the current feeding is completely zero.

The described behavior is based on the assumption that the monitored object has a homogenous body which generates and dissipates heat with a rate proportional to the temperature rise caused by the current squared. Installation conditions considering the prevailing conditions in the thermal replica are compensated with the ambient temperature coefficient which is constantly calculated and changing when using RTD sensor for the measurement. When the ambient temperature of the protected object is stable it can be set manually.

The ambient temperature compensation takes into account the set minimum and maximum temperatures and the load capacity of the protected object as well as the measured or set ambient temperature. The formulas below present examples of the calculation of the ambient temperature coefficient (a linear correction factor to the maximum allowed current):


 $t_{Amb < t_{min}} = k_{min}$


$$t_{Amb < t_{ref}} = \left(\frac{1 - k_{min}}{t_{ref} - t_{min}} \times (t_{AMB} - t_{min})\right) + k_{min}$$

$$t_{Amb>t_{ref}} = \left(\frac{k_{max} - 1}{t_{max} - t_{ref}} \times \left(t_{AMB} - t_{ref}\right)\right) + 1.0$$

 $t_{Amb>t_{max}} = k_{max}$

- t_{amb} = Measured (set) ambient temperature (can be set in ℃ or ℱ)
- t_{max} = Maximum temperature (can be set in °C or °F) for the protected object
- k_{max} = Ambient temperature correction factor for the maximum temperature
- t_{min} = Minimum temperature (can be set in °C or °F) for the protected object
- kmin = Ambient temperature correction factor for the minimum temperature
- t_{ref} = Ambient temperature reference (can be set in ℃ or 𝑘, the temperature in which the given manufacturer presumptions apply and the temperature correction factor is 1.0)

This ambient temperature coefficient relates to a nominal reference temperature. The default is +40 °C (the standard ambient temperature rating for machines) which gives the coefficient value of 1.00 for the thermal replica. The settable thermal capacity curve uses linear interpolation for ambient temperature correction with a maximum of ten (10) pairs of temperature–correction factor pairs. The temperature and coefficient pairs are set to the TM> function's settable correction curve.

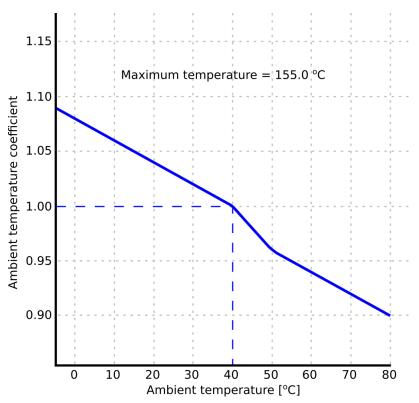


Figure. 5.4.17 - 89. Ambient temperature coefficient calculation (linear approximation, indefinite points).

As mentioned in the previous diagram, the reference temperature for electric machines usually is +40 \degree ; this gives a correction coefficient of 1.00 which can be referred to as the nominal temperature in this case. The correction curve does not need to be set with as many points as there are available. The minimum setting is two pairs and the result is a straight line, for which the linear approximation is the better choice.

Multiple time constants

The thermal behaviour of the single time constant model was presented in the introduction of this chapter. However, it is not the optimal solution for electric machines, especially when the motor is stopped and started frequently. The following explains the main reasons as well as the differences between the single and the multiple time constant models.

By the terms of electrical machine the thermal behavior and time constants varies in between of heating and cooling as well as at certain point within heating and cooling when the loading current is decreased or increased instantly to minimum or maximum. In practice this means that the thermal replica needs to have more settable time constants than one common constant for heating and cooling, as is the case with single time constant objects like cables.

The most common practice is to separate the minimum settable time constants for heating and cooling. The main reason for this is fairly simple: the rotating machine (especially a motor) usually has a cooling fan in the same shaft with its drive, and it cools both the motor and its own surface when the motor is running. Unfortunately, the cooling stops when the motor stops, and the time constant becomes longer as the heat is slower to dissipate into the surrounding air. The cooling time constant (τ_c) may be the same as the heating time constant (τ_h) if the machine has active cooling. Additionally, the starting method (DOL/Soft start/Y-delta) also tells whether there is a need for another time constant (locked rotor, overloading situations) in order to achieve a suitable thermal image for the machine.

The following figure presents the various differences to consider when solve the time constants in the motor (as compared to single time constant objects like cables).

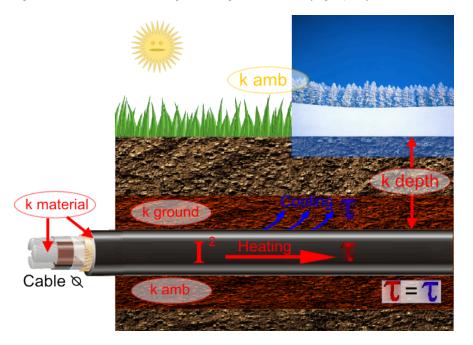


Figure. 5.4.17 - 90. Factors affecting the cooling and current-carrying capacity of a cable.

The current-carrying capacity of a cable mostly depends on the conductor's material and its diameter. The second most important factor is the cable's insulating material and how much it can withstand temperature. As can be seen in the image above, all factors (apart from the air temperature) are quite stable, especially when the cable lies below the ground frost limit in places where the outside temperature can dip well below 0 °C. The heat conduction from the cable into the surrounding ground is the same, regardless whether the cable is heating or cooling. The composition of the soil defines how well the ground conducts heat. However, these loading factors only affect the maximum current-carrying capacity of the cable; they are not the cable's time constants. The only time constant to consider is the heating time constant, which is equal to the cooling time constant for underground cables.

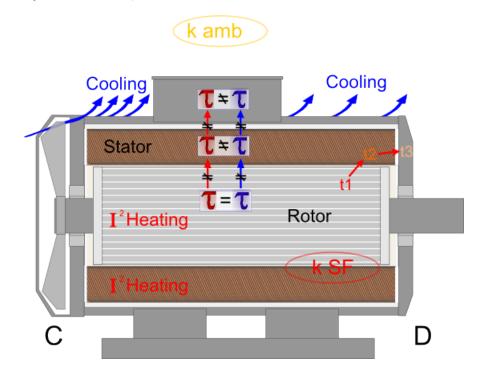


Figure. 5.4.17 - 91. Simplified motor construction and time constants.

Any normal induction machine such as electric motors have the following major components:

- the rotor: rotates, its shaft used as a power outlet for the motor (drive end),
- the stator: generates the electromagnetic field which induces into the rotor and makes it rotate (hence the name "induction motor"),
- the body: contains the stator and rotor.

Motors always have some kind of a cooling system. The most common cooling system is the rotor's shaft-mounted fan (cooling end). Bigger motors or slowly rotating motors can have additional fans or liquid cooling.

By observing motor thermal properties, one can find several very different components which all have their own thermal time constants. The rotor has a constant that is the same for both heating and cooling ($\tau_h = \tau_c$), the stator has a constant where the heating time constant is different from the cooling constant ($\tau_h = /= \tau_c$), and even the motor body has its own time constant for heating and cooling. Keeping the rotor and the stator from being overheated are required for the overall motor protection as it can cause insulator damage in the stator and melt the rotor bars. Both of these faults result in the malfunction of the motor.

When considering the thermal behavior, one can see another fundamental difference between single and multiple time constant objects like cables and electric motors. While the cable loading may vary during the operating conditions, currents higher than the nominal current are not part of the normal usage but always indicate a fault of some sort. Motor with direct-on-line (DOL) starting have a high starting current (up to 6-7 x I_n) and heat generation that are part of its normal operation and happen every time the motor is started. The following figure describes the process of motor heating from the ambient temperature to the nominal temperature with direct-on-line (DOL) starting.

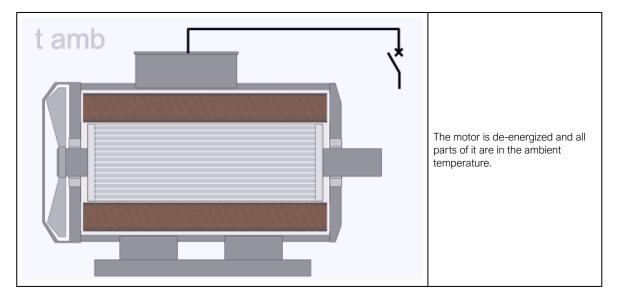
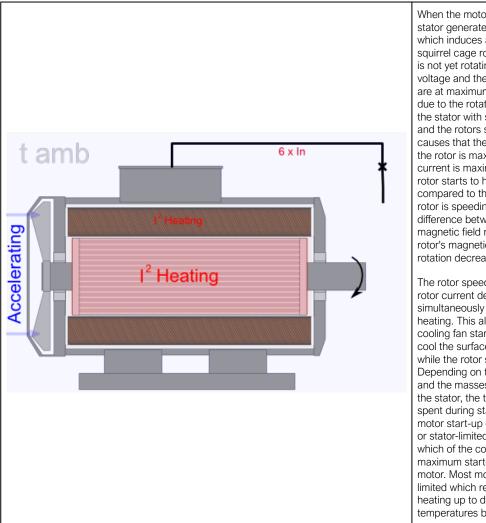



Table. 5.4.17 - 156. Motor heating during DOL starting.

When the motor is energized the stator generates a magnetic field which induces a voltage to the squirrel cage rotor. While the rotor is not yet rotating, the induced voltage and the current it causes are at maximum in the rotor. This is due to the rotating magnetic field in the stator with synchronous speed and the rotors slip now is 1 which causes that the induced voltage to the rotor is maximum and the current is maximum also). The rotor starts to heat up very quickly compared to the stator. When the rotor is speeding up, the difference between the stator's magnetic field rotation and the rotor's magnetic field rotation decreases.

The rotor speeding up leads to the rotor current decreasing, simultaneously decreasing the rotor heating. This also makes the cooling fan start to rotate and thus cool the surface of the motor while the rotor speeds up. Depending on the size of the motor and the masses of the rotor and of the stator, the thermal capacity spent during start-up varies. The motor start-up can be rotor-limited or stator-limited, which defined which of the components limits the maximum start-up time for the motor. Most motors are rotorlimited which results in the rotor heating up to dangerously high temperatures before the stator.

AQ-G257 Instruction manual

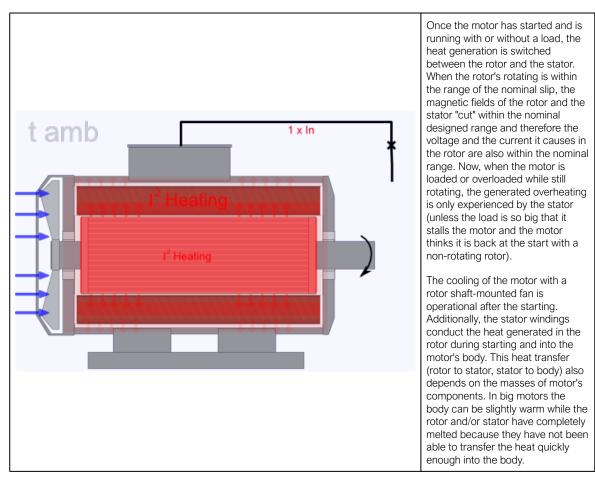
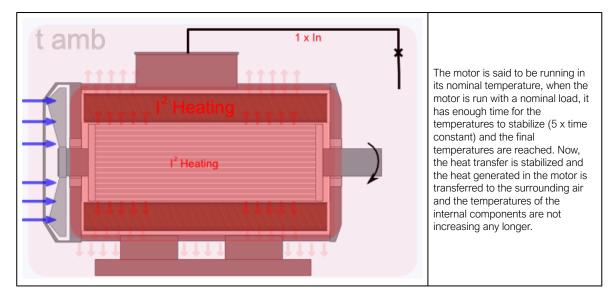
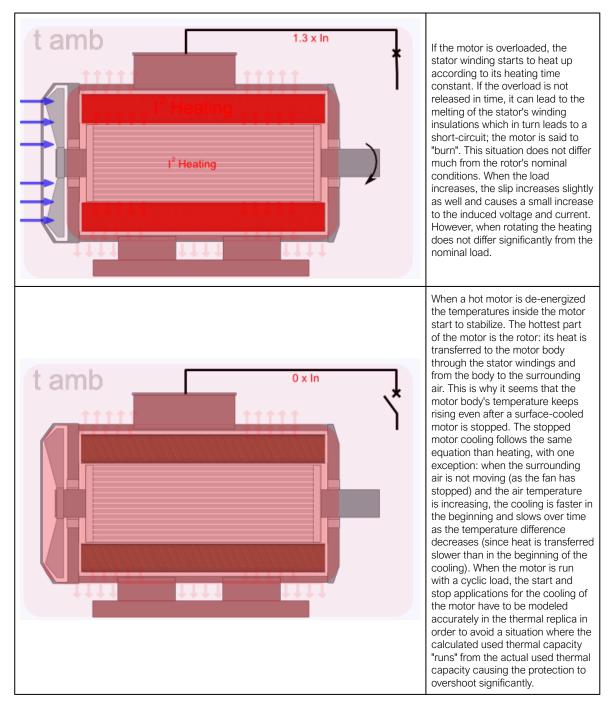
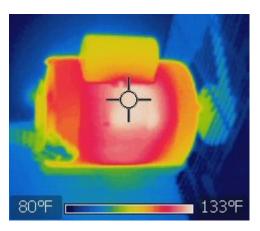




Table. 5.4.17 - 157. Motor heating during overloading and motor cooling.

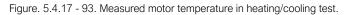


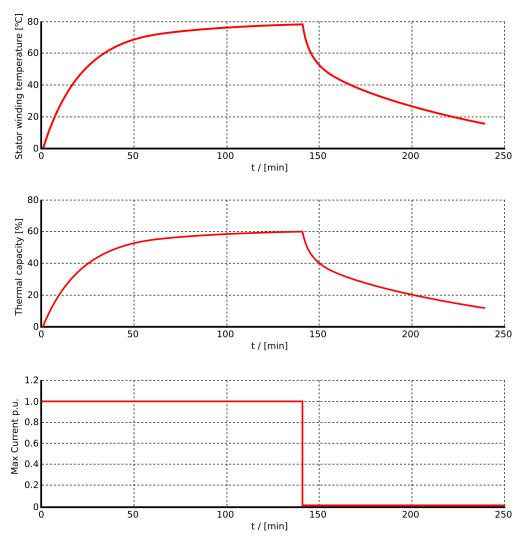
The previous figures presented the thermal behavior of a motor on a theoretical level. In reality, the temperature of a rotor inside the motor windings can also be measured with RTD elements. The rotor temperature is highest on the drive end becuase the cooling is the weakest there (as can be seen in the image below).

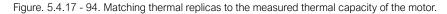
AQ-G257 Instruction manual

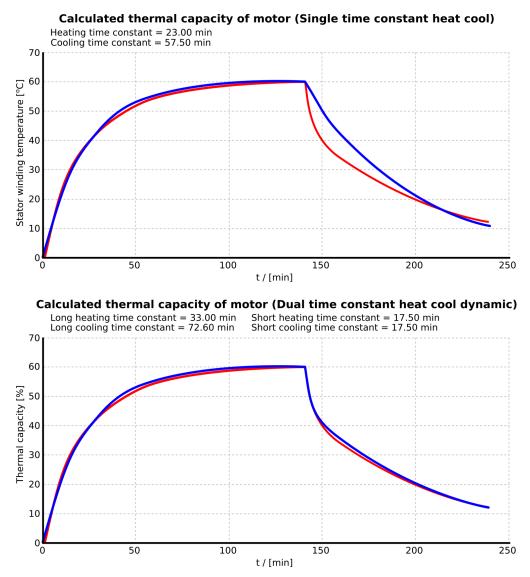
Version: 2.08

Figure. 5.4.17 - 92. Running motor's temperature with thermal image camera.

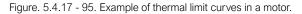


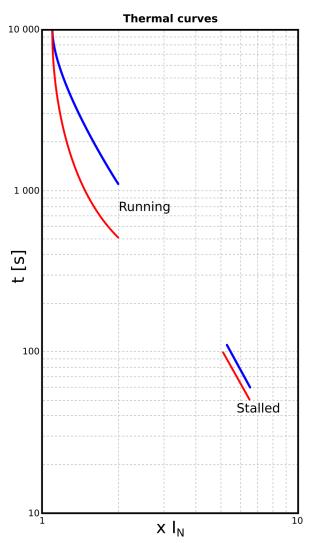

Measuring the rotor's temperature is very complicated due to its rotating nature. This is why normally there are no measurements available and why the protection of the rotor always requires a calculated thermal image. Relying solely on the measurements from RTDs installed in the motor's stator windings is not recommended as they mey not be in the actual hot spot and thus give false readings. For these reasons motor protection should not be either thermal images or RTDs but rather a combination of them both for accurate monitoring of the motor's temperature.


Thermal image modeling in protection relays requires certain things to be ensured for the model to correctly match the motor thermal behavior. As was seen in the previous section, a motor usually has many states which differ from one another in terms of heating and of the parts in danger of damage. Sometimes the thermal image needs to be adjusted and fine-tuned for the application so that it matches the motor's actual temperature perfectly. This is why the thermal replica needs to offer enough setting points for various situations where the motor may be running at that time. The relay needs to recognize these situations so that the thermal model can be updated correctly.


Thermal image characteristics and operating modes

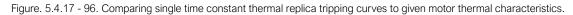
To demonstrate the various settings available in the thermal image, the following figure presents the data from a field test: a motor was loaded with a stable load, run until the final temperature was reached and then de-energized and left to cool. The motor temperature was monitored with RTDs installed into the drive end of the relay. The motor was loaded with a nominal current, its service factor was 1.15 and the ambient temperature was measured to be 24 degrees Celsius. In this case the motor was started without a load, and the loading was increased directly after starting in order to concentrate the heating effects of stable loading.

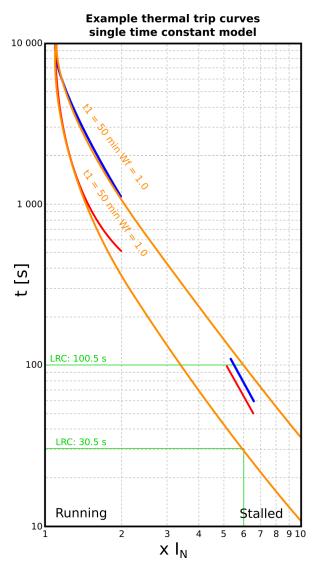


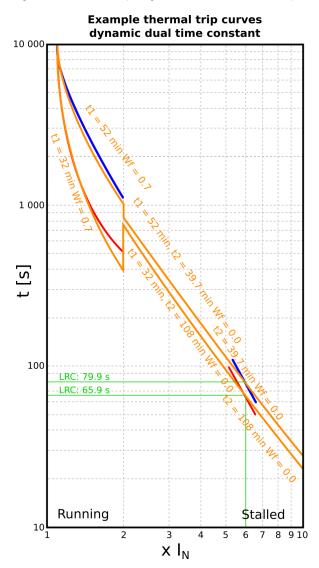


As can be seen in the figures above, when the motor is loaded with a constant current both of the replicas (single and dual time constant) follow the motor heating quite accurately. The operational difference is during cooling. With a single cooling time constant the replica does not follow the actual cooling of the motor and the match can be said to be very poor. With dynamically-controlled cooling time constants the match is very accurate. If this motor were used for cyclic loads with repeating cooling times, the single time constant model would stretch into the next duty cycle and probably cause unnecessary alarms or even trips eventhough the motor were till running in safe temperatures.

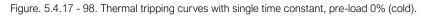
Thermal trip curves


Motor thermal curves are useful when studying motor heating in possible overload and start-up situations. These are usually available upon request from manufacturers, and the relay operation can be set according to these.




From motor thermal limit curves –if available– one can see the time constants for overloading as well as the safe stall times for hot and cold situations. Additionally, the cooling time constant must be checked from the motor datasheet or alternatively measured. From the image above one can estimate the safe stall time in cold situations to be approximately 80 seconds, and in hot situation approximately 67 seconds. When the thermal limit curves are available, the operation of the thermal replica can be set very accurately for both overloading and stall conditions.

The cooling time constant as presented in the previous example is very crucial in the case of variable duty cycle motor applications. If the motor is continuously running with a constant load, the cooling time constant is not that significant and can be estimated to be e.g. two to three times longer than the heating time constant.



As the figures above have shown, with estimated time constants from the motor thermal limit curves the single time constant model underprotects the motor in the stall condition when the motor is cold. When the motor is hot the model overprotects with a heavy hand, allowing the motor only 30.5 seconds of stalling time of the approximately 67 seconds the motor can withstand. When dual time constants and dynamic time constants are in use, the relay automatically selects the correct tripping curves for the thermal replica according to the settings, producing therefore an exact thermal image response (as compared to the single time constant thermal image). In overload conditions the response from both of the thermal replicas is acceptable as even a small overshoot is noticed when the motor is hot. In the curve simulations the hot condition was defined as 70 % of the thermal capacity.

The following figures present the tripping and cooling curves of the thermal replica.

AQ-G257 Instruction manual

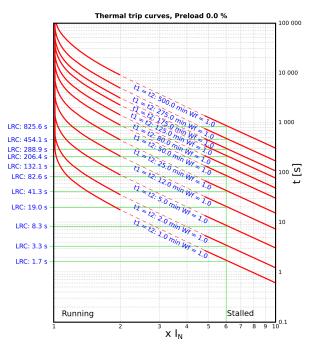
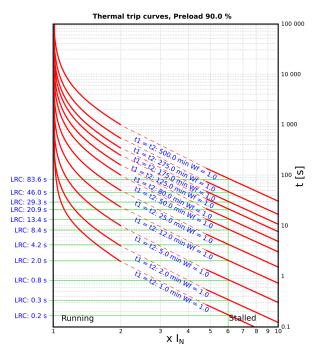



Figure. 5.4.17 - 99. Thermal tripping curves with single time constant, pre-load 90% (hot).

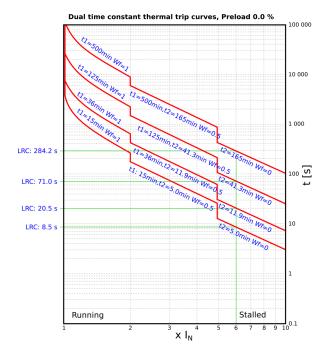
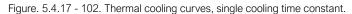



Figure. 5.4.17 - 101. Thermal tripping curves with dual dynamic time constants and correction factor, pre-load 90% (hot).

AQ-G257 Instruction manual

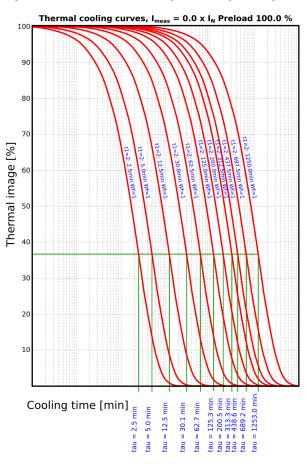
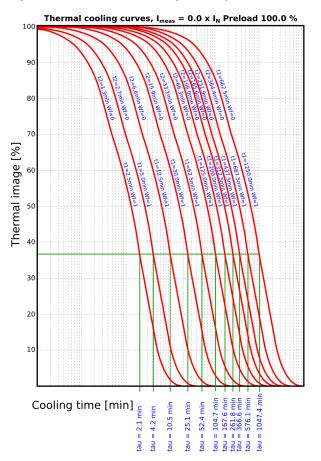



Figure. 5.4.17 - 103. Thermal cooling curves, dynamic dual time constant.

© Arcteq Relays Ltd IM00017

Figure. 5.4.17 - 104. Thermal cooling curves, dynamic triple time constant (motor is running without load in the first part with dedicated time constant).

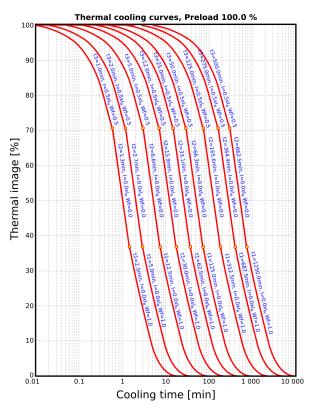
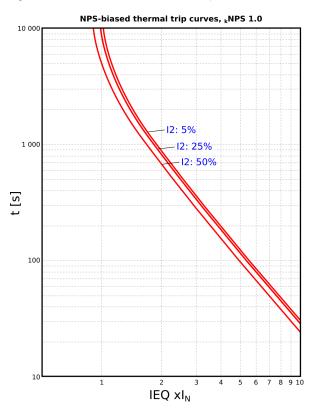



Figure. 5.4.17 - 105. NPS-biased thermal trip curves with k_{NPS} value of 1.

AQ-G257 Instruction manual

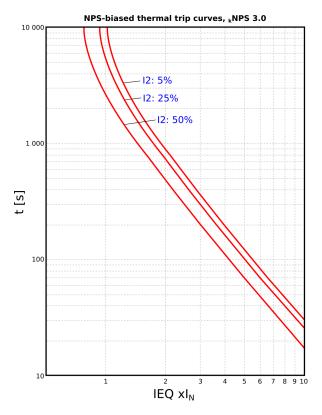


Figure. 5.4.17 - 107. NPS-biased thermal trip curves with k_{NPS} value of 7.

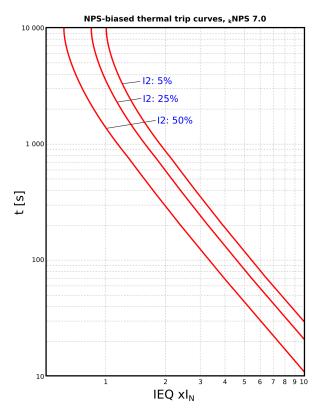
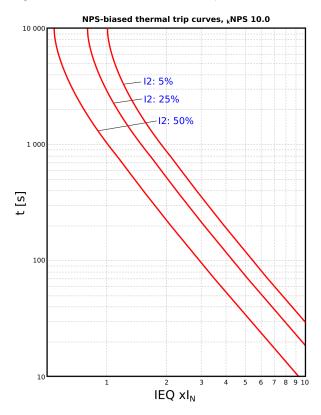



Figure. 5.4.17 - 108. NPS-biased thermal trip curves with kNPS value of 10.

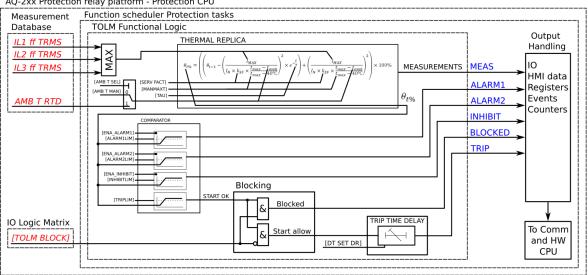
Function inputs and outputs

The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

The machine thermal overload protection function uses a total of eight (8) separate setting groups which can be selected from one common source.

The operational logic consists of the following:

- input magnitude processing
- thermal replica
- comparator
- block signal check
- output processing.


The inputs for the function are the following:

- setting parameters
- measured and pre-processed current magnitudes.

The function's output signals can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the output signals. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the TRIP, ALARM 1, ALARM 2, INHIBIT and BLOCKED events.

The following figure presents a simplified function block diagram of the machine thermal overload protection function.

Figure. 5.4.17 - 109. Simplified function block diagram of the TM> function.

AQ-2xx Protection relay platform - Protection CPU

Measured input

The function block uses analog phase current measurement values. The function block uses TRMS values from the whole harmonic specter of 32 components.

Table. 5.4.17 - 158. Measurement inputs	of the	TM>	function.
---	--------	-----	-----------

Signal	Description	Time base
IL1TRMS	TRMS measurement of phase L1 (A) current	5ms
IL2TRMS	TRMS measurement of phase L2 (B) current	5ms
IL3TRMS	TRMS measurement of phase L3 (C) current	5ms
11	Positive sequence current	5ms
12	Negative sequence current	5ms
RTD	Temperature measurement for the ambient correction	5ms

Setting parameters

Table. 5.4.17 - 159. General settings (not selectable under setting groups)

Name	Range	Default	Description
TM> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Displays the mode of TOLM block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
TM> mode	0: Disabled 1: Activated	0: Disabled	The selection of the function is activated or disabled in the configuration. By default it is not in use.

Name	Range	Default	Description
TM> Status Force to	0: Normal 1: Blocked 2: Alarm1 On 3: Alarm2 On 4: Inhibit On 5: Trip On	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Temp C or F deg	0: C 1: F	0: C	The selection of whether the temperature values of the thermal image and RTD compensation are shown in Celsius or in Fahrenheit.

Table. 5.4.17 - 160. Settings of the motor status monitoring function and how they are shared by other protection functions.

Name	Range	Step	Default	Prot.funcs.	Description
Motor In Scaled	0.140.0xln	0.1xl _n	-	- motor status monitoring - machine thermal overload protection (TM>; 49M) - motor start/ locked rotor monitoring (Ist>; 48/14) - non- directional undercurrent protection (I<; 37) - mechanical jam protection (Im>; 51M)	The motor's nominal current scaled to per unit. If the user selects <i>Object In</i> in the CT settings, this value should be 1.00. If scaled to the CT nominal, this value may vary.
Motor In A	0.1 5000.0A	0.1A	-	- motor status monitoring - machine thermal overload protection (TM>; 49M) - motor start/ locked rotor monitoring (lst>; 48/14) - non- directional undercurrent protection (I<; 37) - mechanical jam protection (Im>; 51M)	The motor's nominal current in amperes.

AQ-G257 Instruction manual

Name	Range	Step	Default	Prot.funcs.	Description
Nominal starting current	0.140.0xl _n	0.1xl _n	6.0xI _n	 motor status monitoring machine thermal overload protection (TM>; 49M) motor start/ locked rotor monitoring (lst>; 48/14) mechanical jam protection (lm>; 51M) 	The motor's locked rotor current with the nominal voltage. This setting is used for automatic curve selection and calculation. Also, the nominal starting capacity calculation is based on this value.
Nominal starting current A	0.15000.0A	0.1A	-	- motor status monitoring - machine thermal overload protection (TM>; 49M) - motor start/ locked rotor monitoring (lst>; 48/14) - mechanical jam protection (lm>; 51M)	The motor's locked rotor current in amperes.
Min locked rotor current	0.140.0xln	0.1xln	3.5xl _n	- motor status monitoring - machine thermal overload protection (TM>; 49M) - motor start/ locked rotor monitoring (lst>; 48/14) - mechanical jam protection (lm>; 51M)	The motor's minimum locked rotor current. This setting defines the current limit for when this current is exceeded while the automatic curve selection and the control only short time constant (stall) are in use.
Min locked rotor current A	0.15000.0A	0.1A	-	- motor status monitoring - machine thermal overload protection (TM>; 49M) - motor start/ locked rotor monitoring (lst>; 48/14) - mechanical jam protection (lm>; 51M)	The motor's minimum locked rotor current. This setting defines the current limit for when this current is exceeded while the automatic curve selection and the control only short time constant (stall) are in use.

Name	Range	Step	Default	Prot.funcs.	Description
Max locked rotor current	0.140.0xl _n	0.1xl _n	7.5xl _n	- motor status monitoring - machine thermal overload protection (TM>; 49M) - motor start/ locked rotor monitoring (Ist>; 48/14) - mechanical jam protection (Im>; 51M)	The maximum locked rotor current of the motor. This setting defines the current limit which is maximum current for the motor to draw in locked rotor situation (starting or stalled). If the measured current exceeds this setting limit it is considered to be overcurrent fault and corresponding measures can be applied to disconnect the feeder and motor from the supply.
Max locked rotor current A	0.15000.0A	0.1A	-	 motor status monitoring machine thermal overload protection (TM>; 49M) motor start/ locked rotor monitoring (Ist>; 48/14) mechanical jam protection (Im>; 51M) 	The maximum locked rotor current in amperes.
Max overload current	0.140.0xln	0.1xl _n	2.0xIn	- motor status monitoring - machine thermal overload protection (TM>; 49M) - motor start/ locked rotor monitoring (lst>; 48/14) - mechanical jam protection (lm>; 51M)	The motor's maximum overload current. Exceeding this setting stalls the motor. This setting defines when the thermal replica switches to the short (stall) time constant. As long as the current stays below this setting value, the motor should run even when overloaded.
Max overload current A	0.15000.0A	0.1A	-	 motor status monitoring machine thermal overload protection (TM>; 49M) motor start/ locked rotor monitoring (Ist>; 48/14) mechanical jam protection (Im>; 51M) 	The maximum overload current of the motor in amperes.
No load current <	0.140.0xln	0.1xln	0.2xln	- motor status monitoring - machine thermal overload protection (TM>; 49M) - non- directional undercurrent protection (I<; 37)	The motor's no load current. This setting defines the "Stopped" condition when the current is below this setting value. Also, when the current is below this value, the undercurrent protection stage is locked.

AQ-G257 Instruction manual

Name	Range	Step	Default	Prot.funcs.	Description
No load current < A	0.15000.0A	0.1A	-	- motor status monitoring - machine thermal overload protection (TM>; 49M) - non- directional undercurrent protection (I<; 37)	The motor's no load current in amperes.
Motor service factor	0.015.00xl _n	0.01xl _n	1.00xl _n	 motor status monitoring machine thermal overload protection (TM>; 49M) 	Service factor which corrects the maximum allowed loading according to various conditions (e.g. installation, construction, etc.) which vary from the presumption conditions. Frequently motors are stamped to a service factor of 1.15: this means that they can withstand a continuous 15% overloading from the rated current (as this is not necessary in all conditions, it is recommended to consult the motor's datasheet or manual for details). If the service factor is not known, this parameter should be left at its default setting of $1.00 \times I_n$.
Hot condition theta limit	0.0100.0%	0.1%	70%	- motor status monitoring - frequent start protection (N>) - machine thermal overload protection (TM>; 49M) - motor start/ locked rotor monitoring (lst>; 48/14) - mechanical jam protection (Im>; 51M)	Setting the thermal limit for a hot motor and a cold motor. When this setting value is not exceeded while a locked rotor situation occurs, the function uses a cold stall curve adjusted with the actually used thermal capacity. The function uses a hot stall curve when this setting value is exceeded. This also applies to starts when the motor is hot or cold. Please note that using this setting requires that the Machine thermal overload protection (TM>) function is activated and in use.
Safe stall time cold	0.1600.0s	0.1s	20.0s	 motor status monitoring machine thermal overload protection (TM>; 49M) motor start/ locked rotor monitoring (Ist>; 48/14) mechanical jam protection (Im>; 51M) frequent start protection (N>; 66) 	The safe stall time when the motor is cold. Unless this value is specified, it is set to be equal to the hot stall time. Most probably this leads to overprotection with the cold motor stall (best case scenario). This setting value is used for the cold thermal stall curve selection in automatic control. This parameter is also used in the motor start-up and the number of starts calculations.

Name	Range	Step	Default	Prot.funcs.	Description
Safe stall time hot	0.1600.0s	0.1s	15.0s	- motor status monitoring - machine thermal overload protection (TM>; 49M) - Motor start/ locked rotor monitoring (Ist>; 48/14) - mechanical jam protection (Im>; 51M) - frequent start protection (N>; 66)	The safe stall time when the motor is hot. This setting value is used for the hot thermal stall curve selection in automatic control. This parameter is also used in the motor start-up and the number of starts calculations.

Table. 5.4.17 - 161. Motor's thermal image settings.

Name	Range	Step	Default	Description
Pick-up current	0.0040.00xl _n	0.01xl _n	1.00xl _n	The current for 100 % thermal capacity to be used (the pick-up current in p.u., this current t_{max} achieved in $t \ge 5$).
NPS- biasing in use	0: No NPS- biasing 1: NPS-biasing in use	-	0: No NPS- biasing in use	The selection of whether or not the thermal replica reference current is biased with the NPS current.
NPS-bias factor	0.110.0	0.1	3.0	The negative sequence current biasing factor. This factor depends on the motor's construction and is in relation to the positive and negative sequence rotor resistances. A typical value for this is the default setting 3.0.
Time constants	0: Single 1: Multiple	-	0: Single	The selection of whether the thermal replica uses single or multiple heating and cooling time constants. If "Single" is selected, only the time constants Long heating (cold) and Long cool Stop are shown. If "Multiple" is selected, all available time constants are shown.
Estimate short TC and timings	0: Set manually 1: Estimate (online)	-	0: Set manually	The selection of whether the relay estimates short time constants for heating and cooling. It also selects the timing for short and long time constants when the motor is stopped.
Long heat T const (cold)	0500.0min	1.0min	10.0min	The setting for the long heating time constant. This setting is for "Cold" motor conditions and is used when the calculated thermal capacity is below the set value for "Hot condition theta limit".
Long heat T const (hot)	0500.0min	1.0min	10.0min	The setting for the long heating time constant. This setting is for "Hot" motor conditions and is used when the calculated thermal capacity is above the set value for "Hot condition theta limit". This setting can be modified for when the motor's thermal characteristics vary between "hot" and "cold" situation. If the characteristics do not change, this setting should be the same as the setting value of "Long heat T const (cold)". This setting is visible when the time constant option "Multiple" is selected.
Long cool T const Run	03000.0min	1.0min	10.0min	The setting for the long cooling time constant for the "Run" condition of the motor. When the motor cools while running, its time constant is not the same as the stopped cooling constant but instead typically a lot shorter (since the motor cooling fan is active). This setting may need the testing of the motor cooling characteristics. If unknown, this setting should be the same as the setting value of "Long Cool T const Stop" (slower cooling) or "Long heat T const" (faster cooling). This setting is visible when the time constant option "Multiple" is selected.
Long cool T const Stop	03000.0min	1.0min	10.0min	The setting for the stopped motor cooling time constant. When the motor is stopped, the thermal replica calculates the cooling according to this setting value. Typically this time constant is about $2.5 - 3.5$ times the heating time constant.

Name	Range	Step	Default	Description
Short heat T const (cold)	0500.0min	1.0min	10.0min	The setting for short heating time constant for "cold" motor status. This time constant defines the locked rotor and stalled tripping curve selection. While this setting is not the safe stall time directly, it defines the used tripping curve for the locked rotor condition. This setting is visible when the time constants option "Multiple" and the "Set manually" option from "Estimate short TC and timings" are both selected.
Short heat T const (cold) est	0500.0min	1.0min	10.0min	The estimated setting for short heating time constant for "cold" motor status. This time constant defines the locked rotor and stalled tripping curve selection. This setting value is calculated based on the information given by the locked rotor current (LRC) and the cold safe stall time. This setting value is visible when the time constants option "Multiple" and the "Estimate" option from "Estimate short TC and timings" are both selected.
Short heat T const (hot)	0500.0min	1.0min	10.0min	The setting for short heating time constant for "hot" motor status. This time constant defines the locked rotor and stalled tripping curve selection. While this setting is not the safe stall time directly, it defines the used tripping curve for the locked rotor condition. This setting is visible when the time constants option "Multiple" and the "Set manually" option from "Estimate short TC and timings" are both selected.
Short heat T const (hot) est	0500.0min	1.0min	10.0min	The estimated setting for short heating time constant for "hot" motor status. This time constant defines the locked rotor and stalled tripping curve selection. This setting value is calculated based on the information given by the LRC and the hot safe stall time. This setting value is visible when the time constants option "Multiple" and the "Estimate" option from "Estimate short TC and timings" are both selected.
Short cool T const	03000.0min	1.0min	10.0min	The setting for the short cooling time constant. This value is the same for both running and stopped conditions, and typically it is the same between heating and cooling. This setting is visible when the time constants option "Multiple" and the "Set manually" option from "Estimate short TC and timings" are both selected.
Wf factor for L/S T const	0.01.0	0.1	0.5	The correction factor between the currently used long and short time constants. With this setting the heating and cooling calculations can be fine-tuned. A setting value of 0.5 means that 50 % of the heating or cooling calculation is based on the long time constant and another 50 % is based on the short time constant. A setting value of 0.0 means the calculation is completely based on the short time constant, while a value of 1.0 means it its completely based on the long time constant. This setting value is visible when the time constants option "Multiple" is selected.
T const dyn. balancing	0: Fixed 1: Dynamic	-	0: Fixed	The selection of whether or not the thermal replica balances and switches the time constants dynamically based on the detected motor status. The switching is based on the settings given for maximum overload current and for minimum locked rotor current. If "Dynamic" is selected, the thermal replica switches the time constants. If "Fixed" is selected, no time constants are switched. This setting value is visible when the time constants option "Multiple" is selected.
Short cool T used when stop	0.03000min	0.1min	30.0min	The setting for how long the short cooling time constant is used when the motor is stopped. The cooling is typically faster in right after the motor has stopped. This setting may need adjusting depending on the application for a perfect match. This setting value is visible when the time constants option "Multiple" is selected.
Short cool T used when stop (est)	0.03000min	0.1min	30.0min	The estimated setting for how long the short cooling time constant is used when the motor is stopped. The cooling is typically faster right after the motor has stopped. This setting value is visible when the time constansts option "Multiple" is selected.
Cold reset default theta	0.0150.0%	0.1%	60.0%	The default theta when the function is restarted. It is also possible to fully reset the thermal element. This parameter can be used when testing the function to manually set the current thermal cap to any value.

Table. 5.4.17 - 162. Environmental settings

Name	Range	Step	Default	Description
Dev. temp (tmax)	0: A 1: B 2: F 3: H 4: Manual set	-	2: F	The maximum allowed temperature for the protected object. The default setting is "F" which is +155 °C.
Obj. max. temp (tmax = 100 %)	0500 deg	1 deg	125 deg	Visible when the Dev. temp. (tmax) is set to "4: Manual set".
Ambient temp. sel.	0: Manual set 1: RTD	-	0: Manual set	The selection of whether the thermal image biasing uses a fixed or a measured ambient temperature.
Man. amb. temp. set.	0500 deg	1 deg	40 deg	The manual fixed ambient temperature setting for thermal image biasing. Underground cables commonly use +15 °C. This setting is visible if "Ambient temp. sel." is set to "Manual set".
RTD amb. temp. read.	0500 deg	1 deg	40 deg	The RTD ambient temperature reading for the thermal image biasing. This setting is visible if "Ambient temp. sel." is set to "RTD".
Ambient lin. or curve	0: Linear est. 1: Set curve	-	0: Linear est	The selection of how to correct the ambient temperature, either by internally calculated compensation based on end temperatures or by a user-settable curve. The default setting is "0: Linear est." which means the internally calculated correction for ambient temperature.
Temp. reference (tref) k _{amb} = 1.0	-60500 deg	1 deg	15 deg	The temperature reference setting. The manufacturer's temperature presumptions apply and the thermal correction factor is 1.00 (rated temperature). For underground cables the set value for this is usually 15 °C and for cables in the air it is usually 25 °C. This setting is visible if "Ambient lin. or curve" is set to "Linear est."
Max. ambient temp.	0500 deg	1 deg	45 deg	The maximum ambient temperature setting. If the measured temperature is more than the maximum set temperature, the set correction factor for the maximum temperature is used. This setting is visible if "Ambient lin. or curve" is set to "Linear est."
k at max. amb. temp.	0.015.00 x I _n	0.01 x I _n	1.00 x I _n	The temperature correction factor for the maximum ambient temperature setting. This setting is visible if "Ambient lin. or curve" is set to "Linear est."
Min. ambient temp.	-60500 deg	1 deg	0 deg	The minimum ambient temperature setting. If the measured temperature is below the minimum set temperature, the set correction factor for minimum temperature is used. This setting is visible if "Ambient lin. or curve" is set to "Linear est."
k at min. amb. temp.	0.015.00 x I _n	0.01 x I _n	1.00 x I _n	The temperature correction factor for the minimum ambient temperature setting. This setting is visible if "Ambient lin. or curve" is set to "Linear est."
Amb. temp. ref. 110	-50.0500.0 deg	0.1 deg	15 deg	The temperature reference points for the user-settable ambient temperature coefficient curve. This setting is visible if "Ambient lin. or curve" is set to "Set curve".
Amb. temp. k1k10	0.015.00	1.00	0.01	The coefficient value for the temperature reference point. The coefficient and temperature reference points must be set as pairs. This setting is visible if "Ambient lin. or curve" is set to "Set curve".
Add curvepoint 310	0: Not used 1: Used	-	0: Not used	The selection of whether or not the curve temperature/coefficient pair is in use. The minimum number to be set for the temperature/coefficient curve is two pairs and the maximum is ten pairs. If the measured temperature is below the set minimum temperature reference or above the maximum set temperature reference, the used temperature coefficient is the first or last value in the set curve. This setting is visible if "Ambient lin. or curve" is set to "Set curve".

Operating characteristics

The operating characteristics of the machine thermal overload protection function are completely controlled by the thermal image. The thermal capacity value calculated from the thermal image can set the I/O controls with ALARM 1, ALARM 2, INHIBIT and TRIP signals.

Table. 5.4.17 - 163. Pick-up settings.

Name	Range	Step	Default	Description
Enable TM> Alarm 1	0: Disabled 1: Enabled	-	0: Disabled	Enabling/disabling the ALARM 1 signal and the I/O.
TM> Alarm 1 level	0.0150.0 %	0.1 %	40 %	ALARM 1 activation threshold.
Enable TM> Alarm 2	0: Disabled 1: Enabled	-	0: Disabled	Enabling/disabling the ALARM 2 signal and the IO.
TM> Alarm 2 level	0.0150.0 %	0.1 %	40 %	ALARM 2 activation threshold.
Enable TM> Rest Inhibit	0: Disabled 1: Enabled	-	0: Disabled	Enabling/disabling the INHIBIT signal and the IO.
TM> Inhibit level	0.0150.0 %	0.1 %	80 %	INHIBIT activation threshold.
TM> Trip level	0.0150.0 %	0.1 %	100 %	TRIP activation threshold.
TM> Trip delay	0.0003600.000 s	0.005 s	0.000 s	The trip signal's additional delay. This delay delays the trip signal generation by a set time. The default setting is 0.000 s which does not give an added time delay for the trip signal.

The pick-up activation of the function is direct for all other signals except the TRIP signal which also has a blocking check before the signal is generated.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup current values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Measurements and indications

The function outputs measured process data from the following magnitudes:

Table. 5.4.17 - 164. General status codes.

Name	Range	Description
TM> LN behaviour	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	Displays the mode of TOLM block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
TM> Condition	0: Normal 1: Alarm 1 ON 2: Alarm 2 ON 3: Inhibit ON 4: Trip ON 5: Blocked	The function's operating condition. No outputs are controlled when the status is "Normal".
Motor status	0: Stopped 1: Stalled 2: Just Stopped 3: Overloading 4: Running normal	The function's thermal image status. When the measured current is below 1 % of the nominal current, the status "Light/No load" is shown. When the measured current is below the trip limit, the status "Load normal" is shown. When the measured current is above the pick-up limit but below $2 \times I_n$, the status "Overloading" is shown. When the measured current is above $2 \times I_n$, the status "High overload" is shown.
TM> Setting alarm	0: SF setting ok 1: Service factor set fault. Override to 1.0	Indicates if SF setting has been set wrong and the actually used setting is 1.0. Visible only when there is a setting fault.
TM> Setting alarm	0: Ambient setting ok 1: Ambient t set fault. Override to 1.0	Indicates if ambient temperature settings have been set wrong and actually used setting is 1.0. Visible only when there is a setting fault.
TM> Setting alarm	0: Nominal current calc ok 1: Nominal current set fault. Override to 1.0	Indicates if nominal current calculation is set wrong and actually used setting is 1.0. Visible only when there is a setting fault.
TM> Setting alarm	0: Ambient setting ok 1: Inconsistent setting of ambient k	Indicates if ambient k setting has been set wrong. Visible only when there is a setting fault.

Table. 5.4.17 - 165. Measurements.

Name	Range	Description / values
Currents	0: Primary A 1: Secondary A 2: Per unit	The active phase current measurement from IL1 (A), IL2 (B) and IL3 (C) phases in given scalings.

Name	Range	Description / values		
Thermal image	0: Thermal image calc.	 TM> Trip expect mode: No trip expected/Trip expected TM> Time to 100 % theta: Time to reach the 100 % thermal cap TM> Rreference T curr.: reference/pick-up value (IEQ) TM> Active meas. curr.: the measured maximum TRMS current at a given moment TM> T est. with act. curr.: estimation of the used thermal capacity including the current at a given moment TM> T at a given moment: the thermal capacity used at that moment 		
	1: Temp. estimates	 TM> Used k for amb. temp: the ambient correction factor at a givenmoment TM> Max. temp. rise all.: the maximum allowed temperature rise TM> Temp. rise atm: the calculated temperature rise at a given moment TM> Hot spot estimate: the estimated hot spot temperature including the ambient temperature TM> Hot spot max. all.: the maximum allowed temperature for the object 		
	2: Timing status	 TM> Trip delay remaining: the time to reach 100% theta TM> Trip time to rel.: the time to reach theta while staying below the trip limit during cooling TM> Alarm 1 time to rel.: the time to reach theta while staying below the Alarm 1 limit during cooling TM> Alarm 2 time to rel.: the time to reach theta while staying below the Alarm 2 limit during cooling TM> Inhibit time to rel.: the time to reach theta while staying below the Alarm 2 limit during cooling 		

Table. 5.4.17 - 166. Counters.

Name	Description / values		
Alarm1 inits	The number of times the function has activated the Alarm 1 output		
Alarm2 inits	m2 inits The number of times the function has activated the Alarm 2 output		
Restart inhibits The number of times the function has activated the Restart inhibit output			
Trips The number of times the function has tripped			
Trips Blocked The number of times the function trips has been blocked			

Events and registers

The machine thermal overload protection function (abbreviated "TOLM" in event block names) generates events and registers from the status changes in TRIP and BLOCKED signals. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

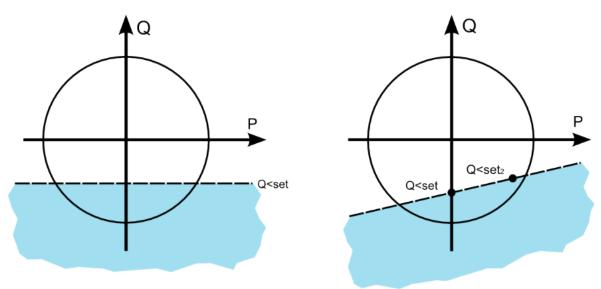
Event block name	Description
TOLM1	Alarm1 ON
TOLM1	Alarm1 OFF
TOLM1	Alarm2 ON
TOLM1	Alarm2 OFF
TOLM1	Inhibit ON
TOLM1	Inhibit OFF
TOLM1	Trip ON
TOLM1	Trip OFF
TOLM1	Block ON

Table. 5.4.17 - 167. Event messages.

Event block name	Description
TOLM1	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for TRIP, BLOCKED, etc. signals. The table below presents the structure of the function's register content.

Table. 5.4.17 - 168. Register content.


Name	Event names
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Time to reach 100 % theta	seconds
Ref. T current	x In
Active meas. current	x In
T at a given moment	%
Max. temp. rise allowed	degrees
Temp. rise at a given moment	degrees
Hot spot estimate	degrees
Hot spot max. all.	degrees
Trip delay rem.	Remaining time to trip in seconds
Used SG	Setting group 18 active

5.4.18 Underexcitation protection (Q<; 40)

Synchronous machines require a certain amount of excitation to stay stable. If the excitation drops too low a synchronous machine can drop out of step. One way for the relay to sense underexcitation is by measuring reactive power. When the generator induces capacitive power, the value of reactive power is negative (and thus the excitation current can be low enough for the synchronous machine to drop out of step). Underexcitation protection supervises capacitive power and picks up when the set kvar value is exceeded.

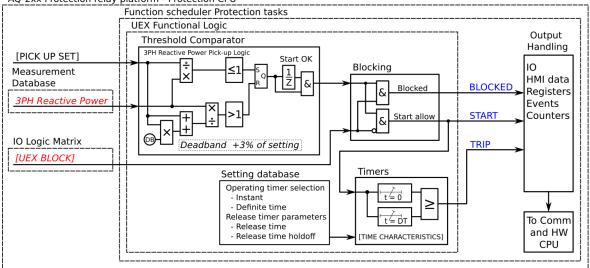
The image below presents the two modes of underexcitation and their protection areas. The Fixed mode is depicted on the left, the P-dependent mode on the right.

The underexcitation function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode (DT).

The operational logic consists of the following:

- input magnitude processing
- threshold comparator
- block signal check
- time delay characteristics
- output processing.


The inputs for the function are the following:

- · operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed power magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the underexcitation function.

Figure. 5.4.18 - 111. Simplified function block diagram of the Q< function.

AQ-2xx Protection relay platform - Protection CPU

Measured input

The function block uses three-phase active power values. A -20ms averaged value used for pre-fault data registering. If the protection relay has more than one CT module, the *Measured side* parameter determines which current measurement is used for the power measurement.

Table. 5.4.18 - 169. Measurement inputs of the Q< function.

Signal	Description	Time base
3PH Reactive power (P)	Total three-phase reactive power	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
Q< LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	0: On	Set mode of UEX block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Q< force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Q< measurement selection	1: POW1 2: POW2	1: POW1	Defines which power measurement module is used by the function. This setting is available if the device has more than one current measurement module.

Pick-up

The Q_{set} setting parameter controls the pick-up of the Q< function. This defines the minimum allowed measured three-phase reactive power before action from the function. The function constantly calculates the ratio between the Q_{set} and the measured magnitude (Q_m). The reset ratio of 97 % is built into the function and is always relative to the Q_{set} value.

Table. 5.4.18 - 171. Pick-up settings.

Name	Range	Step	Default	Description
Qset mode	0: Fixed 1: P- dependent	-	0: Fixed	Decides whether the pick-up area is defines only by the Q_{set} parameter or by two points set in the PQ plane.
Ocot	set< 0.0100 000kvar	0.01kvar	-100kvar	In Fixed mode: sets the pick-up value for the function.
QSEL<				In P-dependent mode: chooses the reactive power for the first point.
Pick-up P1 for Qset<	0.0100 000kW	0.01kW	100kW	The value of the active power for Q_{set} when the P-dependent mode is in use.
Qset2<	0.0100 000kvar	0.01kvar	-100kvar	Chooses the reactive power for the second point when the P-dependent mode is in use.
Pick-up P2 for Qset<	0.0100 000kW	0.01kW	100kW	The value of the active power for Q_{set2} when the P-dependent mode is in use.

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
Q< LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of UEX block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Q< condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays the status of the protection function.
Q< selected measurement	0: POW1CT1 1: POW1CT2 2: POW2CT1 3: POW2CT2 4: Undefined	-	Displays the selected power measurement. This indication is visible if the device has more than one current measurement unit.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.

Table. 5.4.18 - 172. Information displayed by the function.

Name	Range	Step	Description
Q _{meas} /Q _{set} at the moment	-1250.001250.00Qm/Q _{set}	0.01Q _m /Q _{set}	The ratio between the measured reactive power and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup power values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT). For detailed information on this delay type please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

Events and registers

The underexcitation function (abbreviated "UEX" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

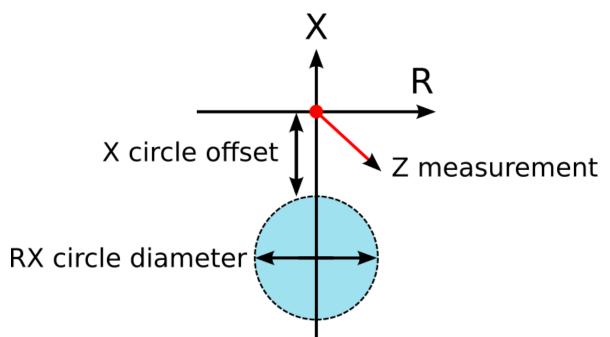
The events triggered by the function are recorded with a time stamp and with process data values.

Table. 5.4.18 - 173. Event messages.

Event block name	Event names
UEX1	Start ON
UEX1	Start OFF
UEX1	Trip ON
UEX1	Trip OFF
UEX1	Block ON
UEX1	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.18 - 174. Register content.


Date and time	Event	Pre-trigger power (P&Q)	Fault power (P&Q)	Pre-fault power (P&Q)	Trip time remaining	Used SG
dd.mm.yyyy	Event	Start/Trip -20ms	Start/Trip	Start -200ms	0 ms1800s	Setting group
hh:mm:ss.mss	name	power	power	power		18 active

5.4.19 Underexcitation protection (X<; 40)

Synchronous machines require a certain amount of excitation to stay stable. If the excitation drops too low a synchronous machine can drop out of step. One way for the relay to sense underexcitation is by measuring the impedance. When the measured impedance enters the defined circle, the function will trip.

The image below presents the basic principle of the function.

Figure. 5.4.19 - 112. Underexcitation protection with impedance measurement.

The underexcitation function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode (DT).

The operational logic consists of the following:

- input magnitude processing
- threshold comparator
- block signal check
- time delay characteristics
- output processing.

The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed impedance magnitudes.

© Arcteq Relays Ltd IM00017

he function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

Measured input

The function block uses phase-to-phase impedance values, phase-to-phase impedance values or positive sequence impedance values. A -20ms averaged value used for pre-fault data registering.

Table. 5.4.19 - 175. Measurement inputs of the X< function.

Signal	Description	Time base
Z1 Impedance loop	Phase-to-neutral impedance loop	5 ms
Z2 Impedance loop	Phase-to-neutral impedance loop	5 ms
Z3 Impedance loop	Phase-to-neutral impedance loop	5 ms
Z12 Impedance loop	Phase-to-phase impedance loop	5 ms
Z23 Impedance loop	Phase-to-phase impedance loop	5 ms
Z31 Impedance loop	Phase-to-phase impedance loop	5 ms
Positive sequence impedance	Pos.seq. impedance calculated from three phases	5 ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.4.19 - 176. General settings of the function.

Name	Range	Default	Description
X< LN mode	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	1: On	Set mode of URX block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
X< force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Operation mode	1: P-E impedances 2: Pos. Seq. impedances 3: P-P impedances	1: P-E impedances	Defines which available measurement is used by the function.

Pick-up

The *X* circle offset and *RX* circle diameter setting parameters control the pick-up of the X< function. This defines the tripping area of the function. The function constantly monitors the distance between the defined circle and the measured impedance. The reset ratio of 103 % is built into the function and is always relative to the RX circle diameter.

Table. 5.4.19 - 177. Pick-up settings.

Name	Name Range		Default	Description
X circle offset (pri)	-50 00050 000 Ohm	0.01 Ohm	-50.00 Ohm	Sets the distance from origo to the edge of tripping area.
RX circle diameter (pri)	0.0150 000 Ohm	0.01 Ohm	50.00 Ohm	Sets the diameter of tripping area.

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table 5	4 19 -	178	Information	displayed	by the function.
Table. 0		170.	mormation	uispiaycu	by the function.

Name	Range	Step	Description
X< LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of URX block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
X< condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays the status of the protection function.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
Z _{meas} /Z _{set} at the moment	-1250.001250.00 Z _m /Z _{set}	0.01Zm/Zset	The ratio between the measured impedance and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup power values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT). For detailed information on this delay type please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

Events and registers

The underexcitation function (abbreviated "URX" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

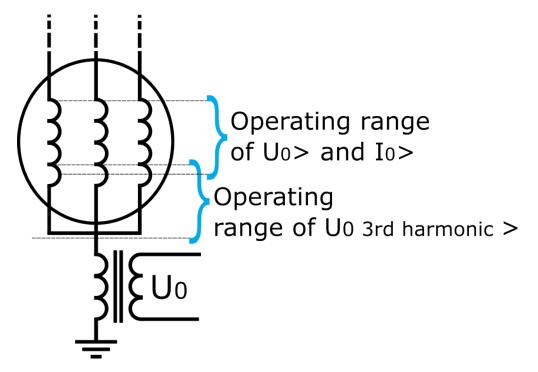
The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
URX1	Start ON
URX1	Start OFF
URX1	Trip ON
URX1	Trip OFF
URX1	Block ON
URX1	Block OFF
URX2	Start ON
URX2	Start OFF
URX2	Trip ON
URX2	Trip OFF
URX2	Block ON
URX2	Block OFF

Table. 5.4.19 - 179. Event messages.

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.19 - 180. Register content.


Date and time	Event	Pre-trigger impedance (Z)	Impedance		Trip time remaining	Used SG
dd.mm.yyyy	Event	Start/Trip -20ms	Start/Trip	Start -200ms	0 ms1800s	Setting group
hh:mm:ss.mss	name	impedance	impedance	impedance		18 active

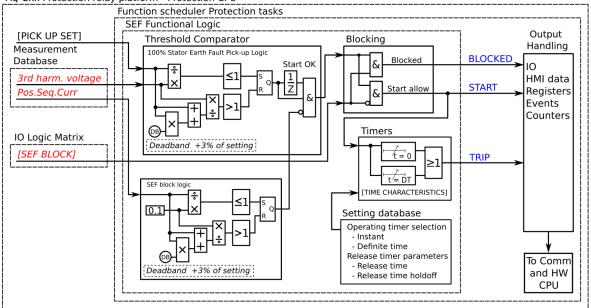
5.4.20 100 % stator earth fault protection (U03rd>; 64S)

When using conventional neutral overvoltage protection function (U0>; 59N) even in the best case scenario at least 5 % of the stator remains outside the function's range. The 100 % stator earth fault protection function (also known as neutral 3rd harmonic overvoltage protection) is used to detect earth faults near the neutral point. When an Earth fault occurs near the neutral point, it does not produce enough neutral voltage for a conventional neutral overvoltage protection to detect the fault. Generators induce some of the 3^{rd} harmonic neutral voltage; when there is an earth fault near the neutral point, this function detects the drop in the 3^{rd} harmonic neutral voltage and trips the breaker. If the 3^{rd} harmonic neutral overvoltage and the 100 % stator can be protected by combining the neutral overvoltage and the 100 % stator earth fault protection functions.

The figure below demonstrates the overlapping range of the neutral overvoltage and the 100 % stator earth fault protection function.

Figure. 5.4.20 - 113. Overlapping demonstration.

The function can operate on instant or time-delayed mode. In the time-delayed mode the operation can be selected for definite time (DT) or for inverse definite minimum time (IDMT).


The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed voltage and current magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the 100 % stator earth fault protection function.

Figure. 5.4.20 - 114. Simplified function block diagram of the U03rd> function.

AQ-2xx Protection relay platform - Protection CPU

Measured input

The function block uses analog voltage measurement values for 3rd harmonic voltage measurement and three-phase current measurement values for positive sequence current blocking. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

Table. 5.4.20 - 181. Measurement inputs of the U03rd> function.

Signal	Description	Time base
3 rd harmonic voltage (U0)	3 rd harmonic neutral voltage	5ms
Positive sequence current (I1)	Positive sequence current (I1)	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.4.20 - 18	82. General settings of the function.
--------------------	---------------------------------------

Name	Range	Default	Description
U03rd> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	0: On	Set mode of SEF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U03rd< force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up

The function has an inbuilt low-current blocking feature to prevent faulty trips. It is set by the *Low current blocking 11< set* parameter. If this parameter is set above zero (0), the measured positive sequence current must be above the set limit for the function to trip.

The *Pick-up setting U03h< set* setting parameter controls the pick-up of the 100 % stator earth fault protection function. This defines the minimum allowed measured neutral 3rd harmonic voltage before action from the function. The function constantly calculates the ratio between the U_{set} < and the measured magnitude. The reset ratio of 103 % is built into the function and is always relative to the U_{set} < value.

Table. 5.4.20 - 183. Pick-up settings.

Name	Description	Range	Step	Default
U _{0 3rd} meas input select	Voltage input must be selected if both U3 and U4 have been set to "U0" mode.	0: U3 input 1: U4 input 2: Select	-	2: Select
Uset<	Pick-up setting	1.00100.00%U _n	0.01%U _n	20%U _n
I1< block	If the measured positive sequence current is below this value, tripping is not allowed. $0 \times I_n$ setting disables block.	0.00100.00xI _n	0.01xl _n	0%Un

The pick-up activation of the function is not directly equal to the START or TRIP signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
U _{0 3rd} < LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of SEF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U ₀ 3rd< condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays the status of the protection function.
U ₀ _{3rd} < measuring now	0: No U0 avail! 1: U3 input 2: U4 input	-	Displays used voltage measurement channel. If both U3 and U4 channels have been set to "U0" mode the used input channel must be selected with "U $_{03rd}$ < meas input select" parameter.
U _{03rd} < pick-up setting	0.01 000 000V	0.1V	Displays the pick-up setting currently used in volts.
Expected operating time	' INNON 1800 NODE		Displays the expected operating time when a fault occurs.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
U _{meas} /U _{set}	0.001250.00Um/Uset	0.01Um/Uset	The ratio between the measured third harmonic residual voltage and the pick-up value.

Table. 5.4.20 - 184. Information displayed by the function.

Name	Range	Step	Description
Measured U ₀ _{3rd} harm (%)	0.001250.00%U _{0n}	0.01%U _{0n}	Measured third harmonic residual voltage in relation to voltage transformer nominal.
Measured U ₀ _{3rd} harm (Pri)	0.001250.00V	0.01V	Measured third harmonic residual voltage on the primary side of voltage transformer.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a ALARM or TRIP signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup voltage values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for TRIP signal and also for the release of the function in case the pick-up element is reset before the trip time has been reached. There are three basic operating modes available for the function:

- Instant operation: gives the TRIP signal with no additional time delay simultaneously with the START signal.
- Definite time operation (DT): gives the TRIP signal after a user-defined time delay regardless of the measured or calculated voltage as long as the voltage is above the *U*_{set} value and thus the pick-up element is active (independent time characteristics).
- Inverse definite minimum time (IDMT): gives the TRIP signal after a time which is in relation to the set pick-up voltage *U*_{set} and the measured voltage *U*_m (dependent time characteristics).

The IDMT function follows this formula:

$$t = \frac{k}{\left(\left(\frac{Um}{Us}\right) - 1\right)^a}$$

Where:

- *t* = operating time
- *k* = time dial setting
- U_m = measured voltage
- U_s = pick-up setting
- *a* = IDMT multiplier setting

The following table presents the setting parameters for the function's time characteristics.

Table. 5.4.20 - 185. Setting parameters for operating time characteristics.

Name	Range	Step	Default	Description
Delay type	1: DT 2: IDMT	-	1: DT	Selection of the delay type time counter. The selection possibilities are dependent (IDMT, Inverse Definite Minimum Time) and independent (DT, Definite Time) characteristics.
Definite operating time delay	0.0001800.000s	0.005s	0.040s	Definite time operating delay. The setting is active and visible when DT is the selected delay type. When set to 0.000 s, the stage operates as instant without added delay. When the parameter is set to 0.0051800 s, the stage operates as independent delayed.
Time dial setting k	0.0160.00s	0.01s	0.05s	The setting is active and visible when IDMT is the selected delay type. Time dial/multiplier setting for IDMT characteristics.
IDMT Multiplier	0.0125.00s	0.01s	1.00s	The setting is active and visible when IDMT is the selected delay type. IDMT time multiplier in the U_{m}/U_{set} power.

Table. 5.4.20 - 186. Setting parameters for reset time characteristics.

Name	Range	Step	Default	Description
Release time delay	0.000150.000s	0.005s	0.06s	Resetting time. Time allowed between pick-ups if the pick-up has not led to a trip operation. During this time the START signal is held on for the timers if the delayed pick-up release is active.
Delayed pick-up release	1: No 2: Yes	-	2: Yes	Resetting characteristics selection either as time-delayed or as instant after the pick-up element is released. If activated, the START signal is reset after a set release time delay.
Time calc reset after release time	1: No 2: Yes	-	2: Yes	Operating timer resetting characteristics selection. When active, the operating time counter is reset after a set release time if the pick-up element is not activated during this time. When disabled, the operating time counter is reset directly after the pick-up element reset.
Continue time calculation during release time	1: No 2: Yes	-	1: No	Time calculation characteristics selection. If activated, the operating time counter continues until a set release time has passed even if the pick-up element is reset.

The user can reset characteristics through the application. The default setting is a 60 ms delay; the time calculation is held during the release time.

In the release delay option the operating time counter calculates the operating time during the release. When using this option the function does not trip if the input signal is not re-activated while the release time count is on-going.

Events and registers

The 100 % stator earth fault protection function (abbreviated "SEF" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

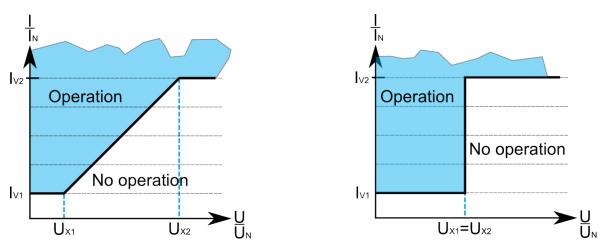
Table. 5.4.20 - 187. Event messages.

Event block name	Event names
SEF1	Start ON
SEF1	Start OFF
SEF1	Trip ON
SEF1	Trip OFF
SEF1	Block ON
SEF1	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.20 - 188. Register content.

Date and time	Event	Pre-trigger voltage	Fault voltage	Pre-fault voltage	Trip time remaining	Used SG
dd.mm.yyyy	Event	Start/Trip -20ms	Start/Trip	Start -200ms	0 ms1800s	Setting group 18
hh:mm:ss.mss	name	voltage	voltage	voltage		active


5.4.21 Voltage-restrained overcurrent protection (Iv>; 51V)

Short-circuits that occur close to the generator decrease the fault current which in turn inhibits the operation of a high-set overcurrent stage. The decreasing voltage caused by these faults can be used to decrease the current pick-up level and thus to improve sensitivity. This voltage-restrained overcurrent protection function can be used as an alternative for the underimpedance function for more sensitive short-circuit detection in generator protection applications.

When there is a short-circuit near the generator, the voltage decreases which in this function's case decreases the overcurrent's pick-up level according to set parameters. The function can work as voltage-controlled overcurrent protection or as voltage-restrained overcurrent protection. When the set parameter value Ux2 is greater than Ux1, the protection function works as voltage-restrained overcurrent protection. In this case the overcurrent pick-up value increases as the voltage increases between the set values Ux1 and Ux2. The protection function uses positive sequence voltage to define the pick-up level at that moment.

When the set value of Ux1 is equal to Ux2, the function works as voltage-controlled overcurrent protection. Now the overcurrent protection doesn't operate until a fault reduces the voltage below a set value, usually about 80 % of the normal. A fixed pick-up level of voltage-controlled overcurrent protection is easier to coordinate with other relays. However, the voltage-restrained overcurrent protection function is less prone to making unwanted operations on motor starting currents and system swings.

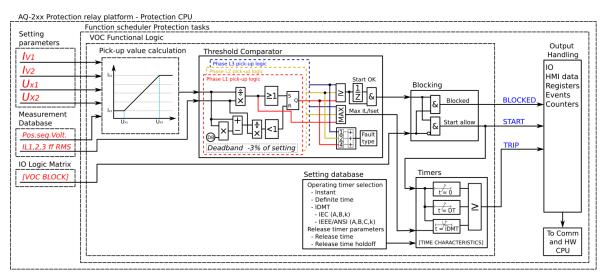
Figure. 5.4.21 - 115. Pick-up levels in the two modes.

Just like the other overcurrent protection functions, this function can be set to definite time (DT) or inverse definite minimum time (IDMT) delay. However, if IDMT is selected for this function, the time delay depends on the ratio between the measured current and the current pick-up level at that moment. This means that the operation time can also shorten as a result of the reduced voltage.

The operational logic consists of the following:

- input magnitude processing
- saturation check
- threshold comparator
- block signal check
- time delay characteristics
- output processing.

The basic design of the protection function is the three-pole operation.


The inputs for the function are the following:

- operating mode selections
- setting parameters
- · digital inputs and logic signals
- measured and pre-processed current magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the non-directional overcurrent function.

Measured input

The function block uses the calculated positive sequence voltage to determine the pick-up level. Analog current measurement values are used to detect faults. A -20ms averaged value of the selected magnitude is used for pre-fault data registering.

Table 5 4 04 400	Management include of the contract or sector in relation of a sector structure to the function of	
Table: 5.4.21 - 189.	Measurement inputs of the voltage-restrained overcurrent protection function.	

Signal	Description	Time base
IL1RMS	RMS measurement of phase L1 (A) current	5ms
IL2RMS	RMS measurement of phase L2 (B) current	5ms
IL3RMS	RMS measurement of phase L3 (C) current	5ms
U1	Positive sequence voltage	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.4.21 - 190. General settings of the function.

Name	Range	Default	Description
lv> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of VOC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Iv> force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up

The *lv1*, *lv2*, *Ux1*, *Ux2* setting parameters and *the positive sequence voltage measurement* control the pick-up level of the voltage-restrained overcurrent protection function. The pick-up level defines the maximum allowed measured current before action from the function. The function constantly calculates the ratio between the current pick-up level and the measured magnitude (I_m) for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the current pick-up value.

Name	Range	Step	Default	Description
1st knee point (Iv>)	0.1040.00xl _n	0.01xl _n	0.2 xl _n	The lower current limit.
2nd knee point (Iv2>)	0.1040.00xI _n	0.01xl _n	1.2xI _n	The higher current limit.
1st knee point voltage (Ux1)	0.00150.00%Un	0.01%U _n	20%Un	The lower voltage limit.
2nd knee point voltage (Ux2)	0.00150.00%U _n	0.01%U _n	100%U _n	The higher voltage limit. When this value is higher than Ux1, the function operates as voltage- restrained overcurrent protection. If the two values are equal, the function operates as voltage-controlled overcurrent protection.

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Tabla	5/21-	102	Information	displayed	by the fun	ction
lable.	0.4.ZT-	192.	iniornation	uispiayeu	by the full	CUON.

Name	Range	Step	Description
lv> LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of VOC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
lv> condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays status of the protection function.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured highest phase current value. If the measured current changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.

Name	Range	Step	Description
Voltage measurement	0: Invalid U1 not avail. 1: Ok	-	If phase voltages are not available the function is not able to calculate positive sequence voltage (U1). This can happen when voltage measurement mode has been set to "3LL+U4" or "2LL+U3+U4" mode but none of the channels have been set to "U0" mode.
l> pick-up level now	0.001250.00xln	0.01xln	Overcurrent pick-up level used by the function at the moment. The pick- up level changes with positive sequence voltage setting changes.
Measured voltage now	0.001250.00%Un	0.01%Un	Calculated positive sequence voltage at the moment. This influences the overcurrent pick-up level used by the function.
I _{meas} /I _{set} at the moment	0.001250.00	0.01	The ratio between the highest measured phase current and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup voltage values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT) and inverse definite minimum time delay (IDMT). For detailed information on these delay types please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

Events and registers

The voltage-restrained overcurrent protection function (abbreviated "VOC" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
VOC1	Start ON
VOC1	Start OFF
VOC1	Trip ON
VOC1	Trip OFF

Event block name	Event names
VOC1	Block ON
VOC1	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.21 - 194. Register content.

Date and time	Event	Fault type	Pre- trigger current	Fault current	U1 Voltage	Current pick-up	Pre- fault current	Trip time remaining	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	L1-EL1-L2-L3	Start/Trip -20ms current	Start/ Trip current	Positive sequence voltage	Pick-up current level	Start -200ms current	0 ms1800s	Setting group 18 active

5.4.22 Volts-per-hertz overexcitation protection (V/Hz>; 24)

Generators, transformers, and motors have their own, specific volts-per-hertz ratios under which these machines are expected to operate. Exceeding the V/Hz ratio results in machine overexcitation which causes iron core saturation in generators and transformers. This causes a breakdown of the insulation in the core's interlamination due to excessive voltage and eddy current heating. Additionally, stray flux is induced into non-laminated components which are not designed to carry flux-caused currents. In generators overexcitation typically occurs if the V/Hz ratio goes five percent above the nominal V/Hz ratio, with any possible damage happening within seconds. The most common situation for overexcitation is when a machine is off-line prior to synchronization.

The figure below shows how the pick-up settings and the measured frequency affect the pick-up level of the volts-per-hertz protection function.

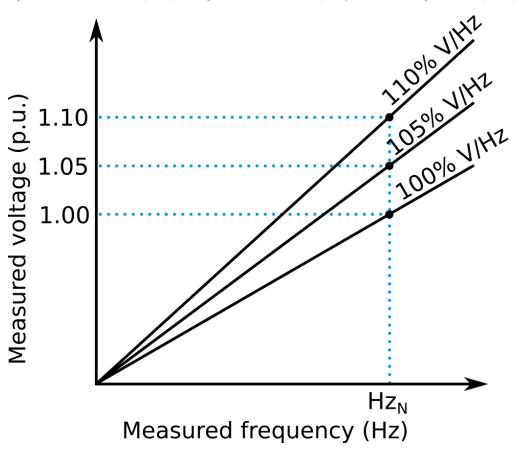


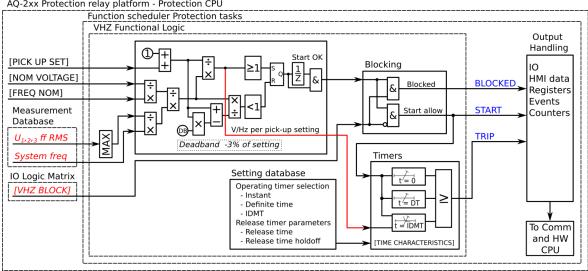
Figure. 5.4.22 - 117. Effect of pick-up settings and the measured frequency to the overvoltage function's pick-up level.

Volts-per-hertz protection is based on the ratio between the maximum phase-to-phase voltage and the measured system frequency. The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

The non-directional overcurrent function uses a total of eight (8) separate setting groups which can be selected from one common source.

The operational logic consists of the following:

- input magnitude processing
- threshold comparator
- block signal check
- time delay characteristics
- output processing.


The inputs for the function are the following:

- setting parameters
- digital inputs and logic signals
- measured and pre-processed voltage magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signal. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the volts-per-hertz overexcitation function.

Figure. 5.4.22 - 118. Simplified function block diagram of the V/Hz> function.

AQ-2xx Protection relay platform - Protection CPU

Measured input

The function block uses analog system voltages and system frequency measurement values.

Table. 5.4.22 - 195. Measurement inputs of the volts-per-hertz function.

Signal	Description	Time base
UL1 RMS	UL1 System voltage RMS	5ms
U _{L2} RMS	UL2 System voltage RMS	5ms
U _{L3} RMS	U _{L3} System voltage RMS	5ms
UL12 RMS	UL12 System voltage RMS	5ms
UL23 RMS	UL23 System voltage RMS	5ms
U _{L31} RMS	U _{L31} System voltage RMS	5ms
f	Measured system frequency f	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
V/Hz> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	0: On	Set mode of VHZ block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

Tabla	E 1 0	100	Conorol	aattinga	of the	function
Table.	0.4.22	2 - 190.	General	settings	or the	function.

Name	Range	Default	Description
V/Hz > force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up

The *Pick-up V/Hz* > (% of nominal) setting parameter controls the pick-up of the volts-perhertz function. This defines the maximum measured voltage allowed in relation to the measured frequency before action from the function. The function constantly calculates the ratio between the *Pick-up V/Hz* (% of nominal) and the calculated U_{meas}/f_{meas} ratio. The reset ratio of 97 % is built into the function and is always relative to the *Pick-up V/Hz* (% of nominal) value.

Table. 5.4.22 - 197. Pick-up settings.

Name	Range	Step	Default	Description
Pick-up V/Hz > (% of nominal)	0.0130.00%	0.01%	5.00%	The maximum allowed increase in the measured V/Hz ratio in relation to the nominal V/Hz ratio.
Alarm delay (DT)	0.0001800.000s	0.005s	0.040s	The definite operation time delay for alarm event.
Delay type	0: DT 1: Inverse 2: DT and inverse	-	0: DT	Selects the delay type(s) for the time counter.
Time dial setting k	0.0165.00	0.01 0.01		Defines the time dial/multiplier setting for inverse curve characteristics. This setting is active and visible when the "Delay type" parameter is set to "Inverse" or "DT and inverse".
Definite operating time delay	0.0001800.000s	0.005s	0.040s	The definite operating time delay which is applied no matter how much the V/Hz ratio is exceeded. This setting is only visible, when the selected delay type is "DT" or "DT and inverse".

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Inverse operating time characteristics are calculated according to the following equation:

 $t_{inverse} = DT_{set} + \frac{0.18 \times TimeDial \ k}{(\frac{V}{Hz_{measured}} - 1)^{IDMT_{multiplier}}}$

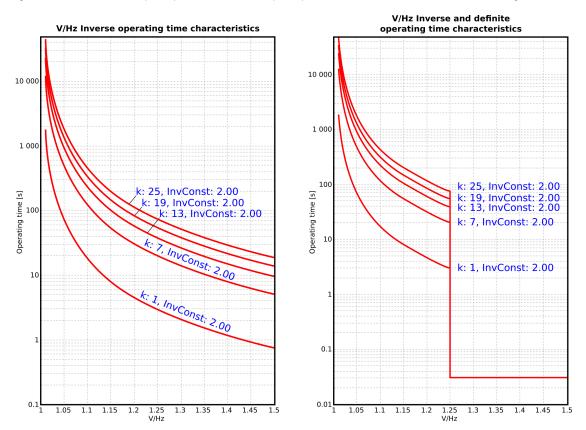
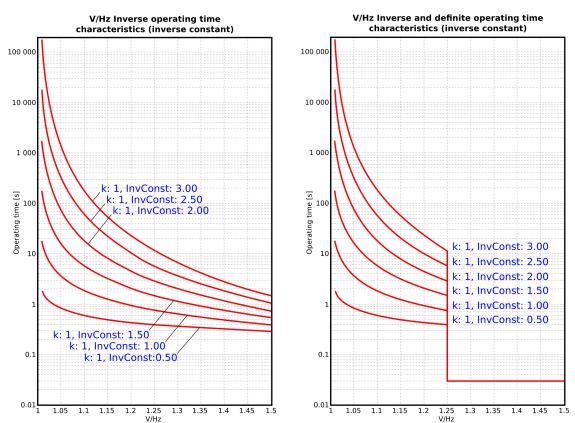



Figure. 5.4.22 - 119. Inverse (above) and inverse and DT (below) time characteristics with the TimeDial k setting effect.

Figure. 5.4.22 - 120. Inverse (above) and inverse and DT (below) time characteristics with the inverse constant setting effect.

Name	Range	Step	Default	Description
Release time delay	0.000150.000s	0.005s	0.06s	Resetting time. The time that is allowed between pick-ups when the pick-up has not lead into a trip operation. During this time the START signal is held on for the timers if the delayed pick-up release is active.
Delayed pick-up release	0: No 1: Yes	-	1: Yes	Resetting characteristics selection is either time-delayed or instant after the pick-up element is released. If activated, the START signal is reset after a set release time delay.
Time calc reset after release time	0: No 1: Yes	-	1: Yes	Operating timer resetting characteristics selection. When active, the operating time counter is reset after a set release time unless a pick-up element is activated during this time. When disabled, the operating time counter is reset directly after the pick-up element reset.
Continue time calculation during release time	0: No 1: Yes	-	1: No	Time calculation characteristics selection. If activated the operating time counter continues until a set release time has elapsed even if the pick-up element is reset.

Table. 5.4.22 - 198. Setting parameters for reset time characteristics.

The user can reset characteristics through the application. The default setting is a 60 ms delay; the time calculation is held during the release time.

In the release delay option the operating time counter calculates the operating time during the release. When using this option the function does not trip if the input signal is not re-activated while the release time count is on-going.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
V/Hz> LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of VHZ block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
V/ Hz> condition	0: Normal 1: Start 2: Alarm 3: Trip 4: Blocked	-	Displays the status of the protection function.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
U/f atm to pick-up U/f ratio	-100.00100.00%	0.01P _m /P _{set}	The ratio between the measured power and the pick-up value.
Nominal U/f	-100.000100.000V/ Hz	0.001V/Hz	Nominal volts-per-hertz ratio (voltage in per-unit value divided by nominal frequency). When 50Hz is used nominal U/f

Table. 5.4.22 - 199. Information displayed by the function.

AQ-G257 Instruction manual

Version: 2.08

Name	Range	Step	Description
U/f at the moment	-100.000100.000V/ Hz	0.001V/Hz	Volts-per-hertz at the moment.
U/f atm to nominal U/f ratio	-100.000100.000V/ Hz	0.001V/Hz	Measured volts-per-hertz ratio divided by nominal volts-per-hertz ratio.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup voltage values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

The volts-per-hertz overexcitation protection function (abbreviated "VHZ" in event block names) generates events and registers from the status changes in START, TRIP, and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers one (1) stage which can be set to definite and/or inverse operating time characteristic.

The events triggered by the function are recorded with a time stamp and with process data values. The function registers its operation into the last twelve (12) time-stamped registers.

Event block name	Event names
VHZ1	(1) Start ON
VHZ1	(1) Start OFF
VHZ1	(1) Alarm ON
VHZ1	(1) Alarm OFF
VHZ1	(1) Trip ON
VHZ1	(1) Trip OFF
VHZ1	(1) Block ON
VHZ1	(1) Block OFF
VHZ1	(2) Start ON
VHZ1	(2) Start OFF

Table. 5.4.22 - 200. Event messages.

Event block name	Event names
VHZ1	(2) Alarm ON
VHZ1	(2) AlarmOFF
VHZ1	(2) Trip ON
VHZ1	(2) Trip OFF
VHZ1	(2) Block ON
VHZ1	(2) Block OFF

Table. 5.4.22 - 201. Register content.

Name	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Voltages (AB/BC/CA) pre-trig	Start/Trip -20ms voltages
Frequency pre-trig	Start/Trip -20ms frequency
Voltages (AB/BC/AC) fault	Start/Trip voltages
Frequency fault	Start/Trip frequency
Voltages (AB/BC/AC) pre-fault	Start -200ms voltages
Frequency pre-fault	Start -200ms frequency
Trip time remaining	0 ms1800 s
Used SG	Setting group 18 active

5.4.23 Underimpedance protection (Z<; 21U)

Underimpedance protection is an alternative for voltage-restrained overcurrent protection. It can be used to detect short-circuit faults near the generator even when the short-circuit current is small. Additionally, under impedance protection can be used as backup protection for transformer protection.

Figure. 5.4.23 - 121. Operating characteristics of underimpedance protection.

The underexcitation function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode (DT).

The operational logic consists of the following:

- input magnitude selection
- input magnitude processing
- threshold comparator
- block signal check
- time delay characteristics
- output processing.

The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed impedance magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

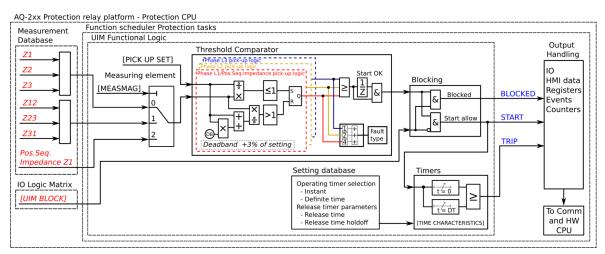


Figure. 5.4.23 - 122. Simplified function block diagram of the Z< function.

Measured input

Sufficient current and voltage measurements are required for the impedance measurement to work properly. The user can select the monitored magnitude to be equal to either phase-to-earth impedance loops, phase-to-phase impedance loops, or the positive sequence impedance. A -20ms averaged value of the selected magnitude is used for pre-fault data registering.

Please note that impendance calculations are enable in *Measurement* \rightarrow *Impedance Calculations* \rightarrow *Impedance calc. settings* to ensure that the function calculates the listed values.

Signal	Description	Time base
Z1	Impedance of phase-to-earth (P1-E)	5ms
Z2	Impedance of phase-to-earth (P2-E)	5ms
Z3	Impedance of phase-to-earth (P3-E)	5ms
Z12	Impedance of phase-to-phase (P1-P2)	5ms
Z23	Impedance of phase-to-phase (P2-P3)	5ms
Z31	Impedance of phase-to-phase (P3-P1)	5ms
Pos.Seq.Imp	Positive sequence impedance	5ms

Table. 5.4.23 - 202. Measurement inputs of the Z< function.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.4.23 - 203. General settings of the function.

Name	Range	Default	Description
Z< LN mode	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	0: On	Set mode of UIM block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Z< force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Operation mode	1: P-E Impedances 2: P-P Impedances 3: Pos. seq. Impedance	1: P-E Impedance	Selects the used impedances.

Pick-up

The Z_{set} (*pri*)< setting parameter controls the the pick-up of the Z< function. This defines the minimum allowed measured impedance before action from the function. The function constantly calculates the ratio between the impedance pick-up leveland the calculated impedance for each of the three stages or the positive sequence impedance. The reset ratio of 103 % is built into the function and is always relative to the current pick-up value.

Table. 5.4.23 - 204. Pick-up settings.

Name	Description	Range	Step	Default
Z _{set} (pri)<	Pick-up setting as primary side impedance	0.10150.00Ω	0.01Ω	10Ω

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
Z< LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of UIM block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Z< condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays status of the protection function.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.

Table. 5.4.23 - 205. Information displayed by the function.

Name	Range	Step	Description
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
Z _{meas} /Z _{set} at the moment	0.001250.00	0.01	The ratio between the lowest measured impedance and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a-time stamped blocking event with information of the impedance values.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

The underimpedance protection function (abbreviated "UIM" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers two (2) independent stages; the events are segregated for each stage operation.

The events triggered by the function are recorded with a time stamp and with process data values.

Table. 5.4.23 - 206. Event messages.

Event block name	Event names
UIM1	Start ON
UIM1	Start OFF
UIM1	Trip ON
UIM1	Trip OFF
UIM1	Block ON
UIM1	Block OFF
UIM2	Start ON
UIM2	Start OFF
UIM2	Trip ON
UIM2	Trip OFF
UIM2	Block ON

Event block name	Event names		
UIM2	Block OFF		

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.23 - 207. Register content.

Date and time	Event	Fault type	Pre-trigger impedance	Fault impedance	Pre-fault impedance	Trip time remaining	Used SG
dd.mm.yyyyhh:mm:ss.mss	Event name	A- EA- B-C	Start/Trip -20ms impedance	Start/Trip impedance	Start -200ms impedance	01800s	Setting group 18 active

5.4.24 Inadvertend energizing protection (I> U< I.A.E; 50/27)

Inadvertent energizing protection function is intended to be used for protection the generator from connecting the generator to network when it is not rotating. A machine that is accidentally energized from the power system can be damaged or completely destroyed.

The power protection function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode.

The operational logic consists of the following:

- input magnitude processing
- threshold comparator
- block signal check
- time delay characteristics
- output processing.

The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed power magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also a resettable cumulative counter for the START, TRIP and BLOCKED events.

Measured input

The function block uses analog current values and positive sequence voltage values calculated from phase voltages. The monitored magnitudes are equal to RMS values.

Table. 5.4.24 - 208. Measurement inputs of the Z< function.

Signal	Description	Time base
IL1RMS	RMS measurement of phase L1 (A) current	5ms
IL2RMS	RMS measurement of phase L2 (B) current	5ms
IL3RMS	RMS measurement of phase L3 (C) current	5ms
Pos. Seq. Voltage	Positive sequence voltage	5ms

General settings

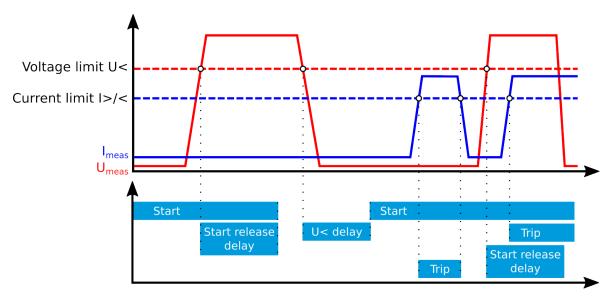

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Tabla	5121	200	Conoral	cottings	of tho	function.
Table.	J.4.24 -	209.	General	settings	or the	iunction.

Name	Range	Default	Description
I>U< I.A.E LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of IAE block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I>U< I.A.E. force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up

Figure. 5.4.24 - 123. Operating characteristics of inadvertent energizing protection.

The Voltage limit U< and Current limit I>/< activation setting parameter controls the the pick-up of the function. Whenever the measured voltage is under the Voltage limit U< setting value the function is "Started". If voltage rises over the setting limit the function will wait for the duration set to *Time delay for releasing start condition* before releasing the start condition. When voltage decreases under Voltage limit U< the function will wait until duration set to *Time delay for U* activation has passed. If the measured current rises over *Current limit I*>/< activation parameter while voltage is under the Voltage limit U< parameter the function will trip. Keep in mind that even if voltage is over the set limit the function can trip form rising current if start release time delay is still counting down.

Name	Range	Step	Default	Description
Voltage limit U<	0.0099.00 %Un	0.01 %Un	50.00 %Un	Sets the under voltage limit for the function.
Time delay for U< activation	0.0001800.000 s	0.005 s	5.000 s	When the voltage drops under the <i>Voltage limit U</i> < setting the function will wait for the duration of this parameter setting to activate "start" condition.
Current limit I>/<	0.053.00 xln	0.05 xln	0.05 xln If "start" condition is on and each phase current is above this limit th function will trip.	
Time delay for releasing start condition	0.0001800.000 s	0.005 s	0.250 s	When measured voltage rises over <i>Voltage limit U<</i> setting the function will wait for the duration of this parameter setting before disabling start condition. If each phase current rises over <i>Current limit I>/< setting</i> while start release is still going on the function will trip.

Table. 5.4.24 - 210. Pick-up settings.

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table	5/2/-	211	Information	displayed	by the function.
Table.	J.4.24 -	Z I I.	inionnation	uispiayeu	by the function.

Name	Range	Step	Description
I>U< I.A.E LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of IAE block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I>U< I.A.E condition			Displays status of the protection function.
Expected operating time	0.000 1800.000s		Displays the expected operating time when a fault occurs.
Time remaining to trip	~ I-1800.000 1800.000s I		When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
Measured voltage / set now	voltage / set 0.001250.00 0.0		The ratio between the positive sequence voltage and the pick-up setting.
Measured min current / set now	leasured min urrent / set 0.001250.00		The ratio between the lowest measured phase current and the pick-up setting.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a-time stamped blocking event with information of the impedance values.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

The inadvertent energizing protection function (abbreviated "IAE" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
IAE1	Start ON
IAE1	Start OFF
IAE1	Trip ON
IAE1	Trip OFF
IAE1	Block ON
IAE1	Block OFF

Table. 5.4.24 - 212. Event messages.

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.24 - 213. Register content.

Date and time	Event	Phase current	Phase voltage	Used SG
dd.mm.yyyyhh:mm:ss.ms	s Event name	Phase 1,2,3 [A,B,C] currents	Phase AB, BC and CA voltages	Setting group 18 active

5.4.25 Inadvertend energizing protection (I> U< I.A.E; 50/27)

Inadvertent energizing protection function is intended to be used for protection the generator from connecting the generator to network when it is not rotating. A machine that is accidentally energized from the power system can be damaged or completely destroyed.

The power protection function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode.

The operational logic consists of the following:

- input magnitude processing
- · threshold comparator
- block signal check
- time delay characteristics
- output processing.

The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed power magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also a resettable cumulative counter for the START, TRIP and BLOCKED events.

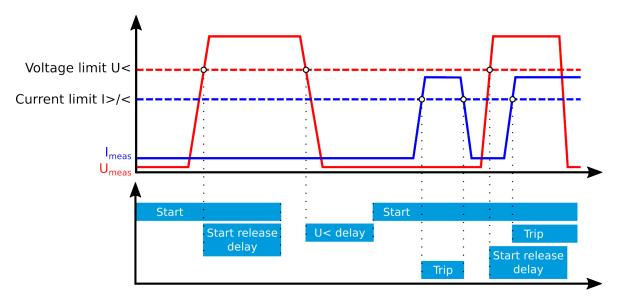
Measured input

The function block uses analog current values and positive sequence voltage values calculated from phase voltages. The monitored magnitudes are equal to RMS values.

Signal	Description	Time base
IL1RMS	RMS measurement of phase L1 (A) current	5ms
IL2RMS	RMS measurement of phase L2 (B) current	5ms
IL3RMS	RMS measurement of phase L3 (C) current	5ms
Pos. Seq. Voltage	Positive sequence voltage	5ms

Table. 5.4.25 - 214. Measurement inputs of the Z< function.

General settings


The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Tahle	5425-	215	General	settinas	of the	function.
Table.	5.4.25 -	210.	General	settiings	or the	iunction.

Name	Range	Default	Description
I>U< I.A.E LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of IAE block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I>U< I.A.E. force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up

Figure. 5.4.25 - 124. Operating characteristics of inadvertent energizing protection.

The *Voltage limit U*< and *Current limit I*>/< activation setting parameter controls the the pick-up of the function. Whenever the measured voltage is under the *Voltage limit U*< setting value the function is "Started". If voltage rises over the setting limit the function will wait for the duration set to *Time delay for releasing start condition* before releasing the start condition. When voltage decreases under *Voltage limit U*< the function will wait until duration set to *Time delay for U*< activation has passed. If the measured current rises over *Current limit I*>/< activation parameter while voltage is under the *Voltage limit U*< parameter the function will trip. Keep in mind that even if voltage is over the set limit the function can trip form rising current if start release time delay is still counting down.

Name	Range	Step	Default	Description
Voltage limit U<	0.0099.00 %Un	0.01 %Un	50.00 %Un	Sets the under voltage limit for the function.
Time delay for U< activation	0.0001800.000 s	0.005 s	5.000 s	When the voltage drops under the <i>Voltage limit U</i> < setting the function will wait for the duration of this parameter setting to activate "start" condition.
Current limit I>/<	0.053.00 xln	0.05 xln	0.05 xln	If "start" condition is on and each phase current is above this limit the function will trip.

<u> </u>		~		
lable.	5.4.25 -	216.	Pick-up	settings.

Name	Range	Step	Default	Description
Time delay for releasing start condition	0.0001800.000 s	0.005 s	0.250 s	When measured voltage rises over <i>Voltage limit U<</i> setting the function will wait for the duration of this parameter setting before disabling start condition. If each phase current rises over <i>Current limit I>/< setting</i> while start release is still going on the function will trip.

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
I>U< I.A.E LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of IAE block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I>U< I.A.E condition	0: Normal 1: Start 2: Trip 3: Blocked	-	Displays status of the protection function.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
Measured voltage / set now	0.001250.00	0.01	The ratio between the positive sequence voltage and the pick-up setting.
Measured min current / set now	0.001250.00	0.01	The ratio between the lowest measured phase current and the pick-up setting.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a-time stamped blocking event with information of the impedance values.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

The inadvertent energizing protection function (abbreviated "IAE" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Table. 5.4.25 - 218. Event messages.

Event block name	Event names
IAE1	Start ON
IAE1	Start OFF
IAE1	Trip ON
IAE1	Trip OFF
IAE1	Block ON
IAE1	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.4.25 - 219. Register content.

Date and time	Event	Phase current	Phase voltage	Used SG
dd.mm.yyyyhh:mm:ss.mss	Event name	Phase 1,2,3 [A,B,C] currents	Phase AB, BC and CA voltages	Setting group 18 active

5.4.26 Pole slip protection (78)

Pole slipping is a phenomena when synchronism is lost due to power swings. This can happen in extreme fault conditions which cause a transient torque on the machine. Generators might experience this if it has low excitation, because it produces a weak magnetic field. The "slip" occurs when rotor electrically and physically shifts in relation to the stator, after which the field returns the rotor back in sync with the stator. This causes high acceleration and deceleration causes stress on the generator and prime mover, which can cause winding movement, shaft fracture or worse.

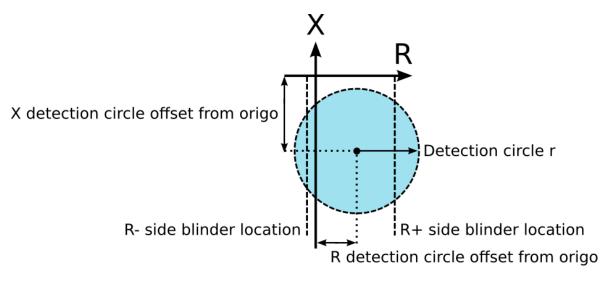
The pole slip protection function uses a total of eight (8) separate setting groups which can be selected from one common source.

The operational logic consists of the following:

- input magnitude processing
- threshold comparator
- block signal check
- pole slip detection counter
- output processing.

The basic design of the protection function is the three-pole operation.

AQ-G257 Instruction manual


Version: 2.08

The inputs for the function are the following:

- setting parameters
- digital inputs and logic signals
- measured and pre-processed current and voltage magnitudes.
- calculated impedances

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

Figure. 5.4.26 - 125. Operating characteristics of pole slip protection.

Measured input

The function block uses analog current and voltage measurement values. These values are used for calculating impedance.

Table. 5.4.26 - 220. Measurement inputs of the pole slip protection function.

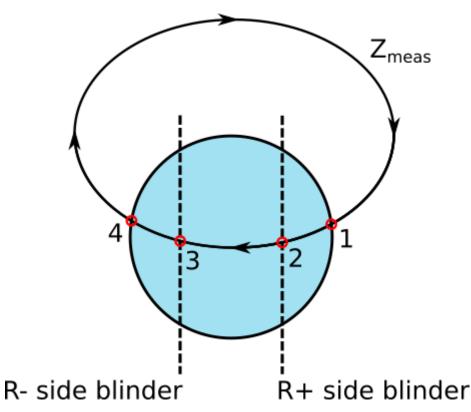
Signal	Description	Time base
IL1RMS	RMS measurement of phase L1 (A) current	5ms
IL2RMS	RMS measurement of phase L2 (B) current	5ms
IL3RMS	RMS measurement of phase L3 (C) current	5ms
UL12RMS	RMS measurement of voltage UL1/V	5ms
U _{L23} RMS	RMS measurement of voltage UL2/V	5ms
U _{L31} RMS	RMS measurement of voltage UL3/V	5ms
UL1RMS	RMS measurement of voltage UL12/V	5ms
UL2RMS	RMS measurement of voltage UL23/V	5ms
U _{L3} RMS	RMS measurement of voltage UL31/V	5ms
Pos. Seq. Impedance	Positive sequence impedance	5 ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.4.26 - 221. General settings of the function.

Name	Range	Default	Description
Pole slip [78] LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	0: On	Set mode of OOS block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Pole slip force status to	0: Normal 1: Start 2: Trip 3: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.


Pick-up

Parameters listed below determine the slip detection area. Slip detection area consists of detection circle and two side blinders. For a slip to be counted the impedance must first enter the circle, then while inside the circle the impedance must cross the blinders and then exit the circle. Keep in mind that the impedance must stay between the blinders longer than what is set to *Minimum locust traverse time between blinders* for the function to count the slip. If more than one slips are required for the function to trip the measured impedance must enter the circle from the same side each cycle. If time set to *Reset slip detection after last detected slip* has passed between slips the slip counter is reset.

Table. 5.4.26 - 222. Pick-up settings.	Table.	5.4.26 - 222.	Pick-up settings.
--	--------	---------------	-------------------

Name	Range	Step	Default	Description
X detection circle offset from origin (pri)	-50 000.0050 000.00 Ohm	0.01 Ohm	-50.00 Ohm	Moves the midpoint of circle in the X-axis (reactance).
R detection circle offset from origo (pri)	-50 000.0050 000.00 Ohm	0.01 Ohm	0.00 Ohm	Moves the midpoint of circle in the R-axis (resistance).
Detection circle r (pri)	0.0150 000.00 Ohm	0.01 Ohm	50.00 Ohm	Sets the radius of the detection circle.
R+ side blinder location (pri)	0.0050 000.00 Ohm	0.01 Ohm	20.00 Ohm	R+ side blinder. Impedance must cross this level after entering the circle for the function to count a slip.
R- side blinder location (pri)	-50 000.000.00 Ohm	0.01 Ohm	-20.00 Ohm	R- side blinder. Impedance must cross this level after entering the circle for the function to count a slip.
Minimum locus traverse time between blinders	0.0001800.00 s	0.005 s	0.050 s	Minimum time impedance must stay between the blinders so that the function will count a slip.
Pole slip detection limit to trip	15 slips	1 slips	1 slips	How many slips need to be detected for the function to trip.
Reset slip detection after last detected slip	0.0001800.000 s	0.005 s	1.000 s	Maximum time between slips before the function resets the slip counter to zero.

Figure. 5.4.26 - 126. Impedance must enter the circle first then cross the blinders and lastly exit the circle for the function to count a slip. Impedance can enter the circle from either side but it must keep entering the circle from the same side for the function to keep counting the slips.

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Description
Pole slip [78] LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	Displays the mode of OOS block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Pole slip condition	0: Normal 1: Start 2: Trip 3: Blocked	Displays status of the protection function.
Configuration status	0: Ok 1: Incorrect VT set 2: Incorrect char. Set	Displays the status of settings currently in use.

Table. 5.4.26 - 223. Information displayed by the function.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a-time stamped blocking event with information of the impedance values.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

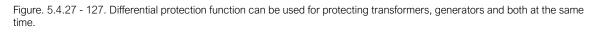
Events and registers

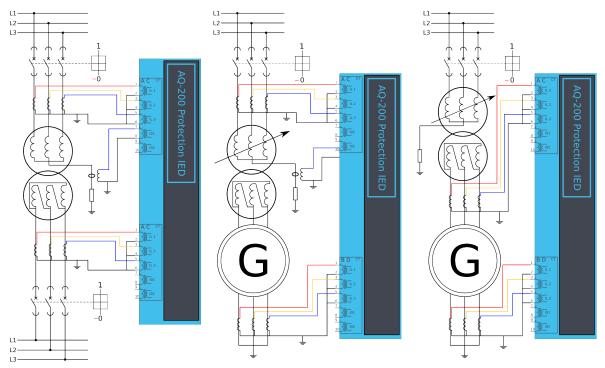
The pole slip protection function (abbreviated "OOS" in event block names) generates events and registers from the status changes in START, TRIP and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names		
OOS1	Poleslip Detection START ON		
OOS1	Poleslip detection START OFF		
OOS1	Poleslipt Trip ON		
OOS1	Poleslip Trip OFF		
OOS1	Poleslip detection BLOCKED ON		
OOS1	Poleslip detection BLOCKED OFF		

Table. 5.4.26 - 224. Event messages.


The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.


Table. 5.4.26 - 225. Register content.

Date and time	Event	In blinder time	Used SG
dd.mm.yyyyhh:mm:ss.mss	Event name	Duration of reactance being between the blinders.	Setting group 18 active

5.4.27 Generator/transformer differential protection (Idb>/Idi>/I0dHV>/I0dLV>; 87T/ 87N/87G)

The generator/transformer differential function is used for protecting the following power transformers: two-winding transformers, and to some extent three-winding and two-winding transformers that have double outputs and a summing application. This function can also be used for protecting generators.

Power transformers are seen in electric power generation, transmission, and distribution. They are also part of application networks for a wide range of purposes (eg. power and voltage levels). The most common use for a transformer is (as the name implies) to transform alternating voltage from one voltage level to another. What is common for all transformers is that they are a crucial and one of the most important single components in a network because a transformer's failure affects a wide area in the network. While transformers do not have many moving parts (apart from tap changers), their electric and mechanical properties are far from being simple.

When designing transformer protection it is usual to consider the transformer's usage as well as the power level it transforms. This is because the economical aspect becomes more significant as the size of the transformer increases, and the applied protection should be in line with the cost of the transformer. For example, there is little point in installing a high-level multifunction transformer device into a distribution transformer of a few kVA that feeds a handful of farms in a rural area network. Similarly, it is pointless to have nothing but fuses protecting a transmission transformer of a few hundred MVA that feeds entire cities.

When designing transformer protection one should consider which protection elements are needed to apply sufficient protection. The following table gives a rough idea what protection methods and elements as well as risks exist for the different types of transformers. Overlooking these points when designing transformers increase the risk of costly problems with the transformer.

Transformer	Risk level	Protection
Pole- mounted <100 kVA transformer. Distribution.	Risks are mostly environmental; the most common issue is a lightning hitting an overhead line. A broken device can be switched to a new one within hours. Relatively cheap.	Protection includes feeder overcurrent and earth fault protection. No separate protection devices are normally applied.
<500 kVA transformer in industrial use, installation indoors. Distribution, applications.	The biggest risk is overloading; cooling can be an issue if the environmental conditions are difficult. A broken device can be replaced with a new one within hours. Possible fault extension to other parts of the network or to building should be reduced. Relatively cheap.	Protection includes feeder overcurrent and earth fault protection. Fuses are used to limit the possible short-circuit current.
500kVA2 MVA Distribution, applications, motors, small generators.	Risks include overloading, overvoltage, transients, and cooling. Replacing a broken device is costly, so fixing might be the better option if a fault occurs. It is important to monitor the device as the cost of fixing failures is probably higher than the cost of monitoring.	Protection includes overcurrent and earth fault protection, a dedicated pressure guard (Buchholz gas relay), overloading protection with winding temperature monitors. Fuses could be considered for limiting the short-circuit current. If the transformer is oil-insulated, oil level monitoring should be applied.
2MVA100 MVA Distribution, generation, sub transmission <130 kV.	Risks include overloading, overvoltage, transients, cooling, and environmental issues. Replacing a broken device is problematic as the process is difficult and normally takes the network off-line for a long time. The device is relatively expensive. Its failure affects a wide area regardless of where it is installed (transmission, distribution, generation). Monitoring, clearing faults quickly, and limiting the device's internal fault time are all very important.	Includes the following protections: differential, overcurrent and earth fault protection, backup overcurrent and earth fault protection, tap changer protection, a dedicated pressure guard (Buchholz gas relay), overloading protection with numerical and winding temperature monitors. If the transformer is oil-insulated, oil level monitoring should be applied in addition to monitoring of loading and oil-ageing estimations. If the transformer has forced cooling, monitoring and protection for cooling systems should be applied. Multifunction relays need protections and monitoring; dedicated relays require backup overcurrent and earth fault protections.
>100 MVA Transmission > 130 kV	Risks include overloading, overvoltage, transients, cooling, and environmental issues. Replacing a broken device is problematic as the process is difficult and normally takes the network off-line for a long time. The device is extremely expensive. Its failure affects a wide area regardless where it is installed (transmission, distribution, generation). Monitoring, clearing faults quickly, and limiting the device's internal fault time are all very important.	Includes the following protections: redundant differential overcurrent and earth fault protection, redundant backup overcurrent and earth fault protection, tap changer protection, a dedicated pressure guard (Buchholz gas relay), overloading protection with numerical and redundant winding temperature monitors. Oil level monitor should be applied, as well as monitoring of loading and oil-ageing estimations. If the transformer has forced cooling, monitoring and protection for cooling systems should be applied. Separated relays for control, monitoring and protection.

There are many transformer faults, e.g. dirty, watered or old transformer oil, oil leakage from the tank, as well as multiple, prolonged heavy overloading and other faults in the cooling systems. These can cause earth faults, interturn faults or even phase-to-phase faults in the windings of the transformer.

Why is differential protection needed in transformer protection?

The transformer differential function is based on calculating the difference between the ingoing and outgoing currents. If the operating status is normal, all power that comes in also goes out. If this is not the case, the transformer has an internal fault and the device should be de-energized as soon as possible to avoid extensive damage to the transformer. An operating differential function takes a faulty transformer off-line for a long time. A quick de-energizing of the fault saves money because in most cases the transformer can still be repaired which is significantly cheaper than replacing the broken device with a new one. However, there are some exceptions to this. Faults that occur within the differential protection zone but without the transformer itself (such as in the bus or in the cables connected to the transformer). Faults of this type are easily repaired and the transformer can be re-energized soon after the fault has bee cleared.

If a transformer is protected only by conventional overcurrent and earth-fault protections, the operating time should be set in coordination with the low-voltage side protection relays to ensure selectivity. Therefore, transformer protection should be set to delayed operation (not instant) so that the low-voltage side relays can operate before transformer protection. This is necessary because under normal conditions the transformer's energizing and its short-circuit supply to the high or low voltage side is seen directly on both sides of the transformer. An overcurrent protection with instant operation causes problems with timing coordination or sensitivity, especially if the instant protection is set on high-current starting criteria. However, this is not a significant issue with smaller transformers as the installation and maintenance of various differential protections is considered more expensive than not having full protection.

Differential protection is very sensitive and it is scaled internally to the loading and fault current flowing through the transformer. For example, an interturn fault in the transformer's windings could go entirely unnoticed by an overcurrent relay while a differential relay could trip it in the very first power cycle. The same goes for internal earth faults: they can be impossible for conventional earth fault protection to notice until the fault causes heavier fault currents (such as when the fault location is close to the neutral side inside the star winding).

These are the main arguments for using differential protection: they are sensitive, their operation in internal in-zone faults is fast, and they have a high stability for out-zone faults. These guarantee a minimum of unwanted power outages as well as minimized and reduced damage to the transformer itself. On the other hand, differential protection has its negative properties: it is not very easy to set up to operate correctly, and it requires a second set of current transformers which increases installation costs. However, this cost is marginal in larger scale power transformers.

The following chapter explains the principles of transformers. It also shows how how to set the differential protection correctly for the example application.

Transformer properties and basic concepts for differential protection

Setting the differential protection requires some intial data of the transformer to be known. At minimum, the following data needs to be available:

- the transformer's nominal power
- the nominal voltages of both the HV and LV sides
- the transformer's special properties, such as tap changer and auxiliary windings
- the transformer's vector group (for matching the transformer vectors in p.u.)
- the ratios and properties of the transformers HV and LV sides.

This chapter shows the setting and the principle of transformer differential protection step by step.

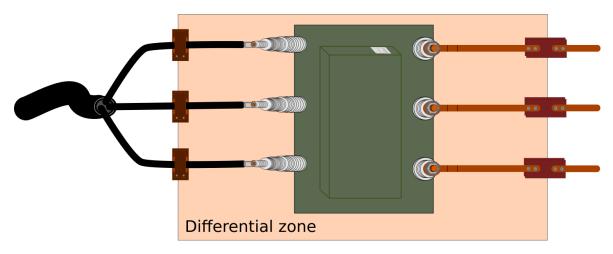


Figure. 5.4.27 - 128. Transformer and its components forming the differential zone.

The differential protection area is the area between the current transformers. This is called the differential zone which means that the currents going in from one side must come out from the other side. This is true whether the signal is scaled higher or lower, or whether the phase angle is shifted. Unless both side currents match there is a problem within the protected zone which either blocks or keeps the current inside the zone.

The image below shows what a typical transformer name plate looks like, what data it includes and what to do with it.

Figure. 5.4.27 - 129. Transformer name plate data.

M.G.TRAFO & Sons. Co. Ltd.				
PHASE	3			
POWER	2000	kVA		
VECTOR	Yd1			
IMP.Zk%	4.95	%		
VOLT.H.	10 000	V		
VOLT.L.	1000	V		
AMP.H.	116	Α		
AMP.L.	1155	Α		
FREQUENCY 50 Hz				

According to the data on this example name plate, this transformer is designed for three-phase usage and therefore it has two windings. The nominal power of the transformer is 2 MVA. Its vector group is Yd1: this means that the high-voltage side is connected to the Y and the low-voltage side to the delta, resulting in the LV side having a 30-degree lag in relation to the HV side. Additionally, the HV side's nominal voltage is 10 kV and its amperage is 116 A, on the LV side the nominal voltage is 1kV and its amperage is 1.155 kA. The transformer's short-circuit impedance is 4.95 %; it is based on the transformer's final test and presents how much short-circuit current the transformer is able to feed. The transformer's frequency is 50 Hz. This kind of information is usually available in a transformer's name plate and documentation. If the transformer has a tap changer, its information is usually also available in the name plate data.

Nominal current matching is the first thing to consider in differential protection. Usually a modern numerical protection relay can calculate these factors itself as long as the transformer's nominal power and voltage levels are known. However, if one feels inclined to calculate the amplitude matching factor, they can do so with the formulas presented below.

For this example, let us say we want to do these calculation for the transformer whose name plate we have in the image above. Let us further say the HV side current transformers are 150/5 A and the LV side current transformers are 1200/5 A. The primary side factor (p.u.) and current are then calculated as follows:

$$I_{n,HV} = \frac{S_n}{\sqrt{3} \times U_{HV}} = \frac{2\ 000\ 000\ VA}{\sqrt{3} \times 10\ 000\ V} = 115.47\ A$$
$$I_{pu,pri,HV} = \frac{I_{n,HV}}{CT_{pri,HV}} = \frac{115.47\ A}{150\ A} = 0.77$$

 $I_{pu,sec,HV} = I_{pu,pri,HV} \times CT_{sec,HV} = 0.77 \times 5 \text{ A} = 3.85 \text{ A}$

Then, the secondary side factor (p.u.) and current are calculated as follows:

$$I_{n,LV} = \frac{S_n}{\sqrt{3} \times U_{LV}} = \frac{2\ 000\ 000\ VA}{\sqrt{3} \times 1\ 000\ V} = 1154.7\ A$$
$$I_{pu,pri,LV} = \frac{I_{n,LV}}{CT_{pri,LV}} = \frac{1154.7\ A}{1200\ A} = 0.96$$

 $I_{pu,sec,LV} = I_{pu,pri,LV} \times CT_{sec,LV} = 0.96 \times 5 \text{ A} = 4.81 \text{ A}$

The calculations show that if 2 MVA of power go through the transformer the CT's secondary current on the high-voltage side will be 3.85 A and the CT secondary current on the low-voltage side will be 4.81 A. The differential function uses these values to change them into measured currents in per unit. Therefore, it would show $1.0 \cdot I_n$ for both HV and LV side measurements, eventhough the measured currents are different. This is called amplitude matching of the HV and LV sides. In modern differential relays this is done automatically when the nominal values and CT ratings are set for the transformer. Thus, these calculations only have nice-to-know informational value.

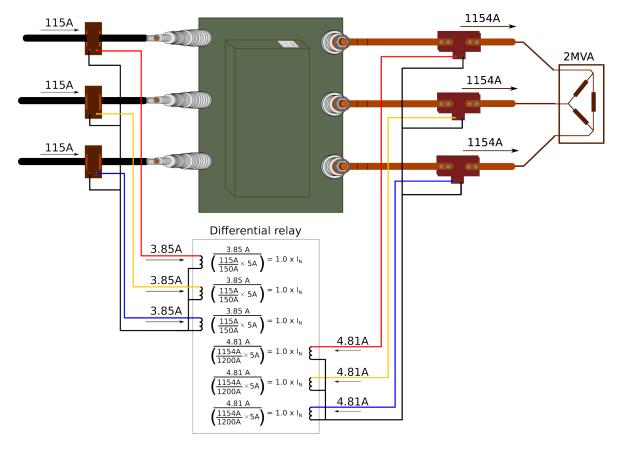
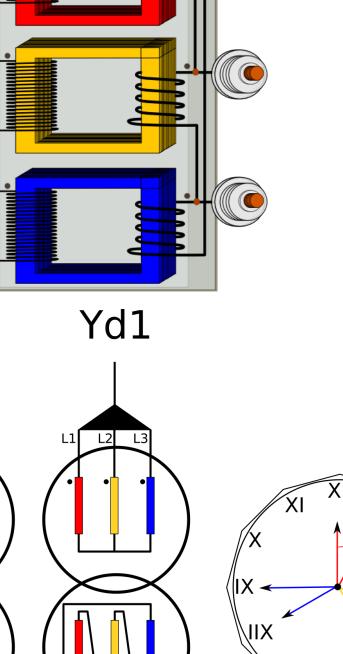
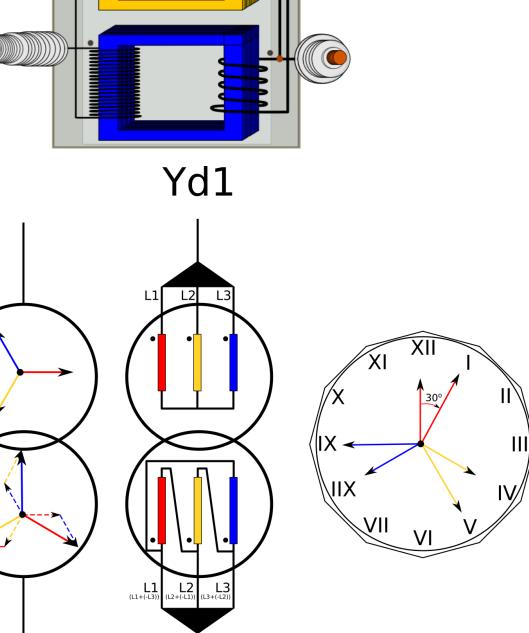


Figure. 5.4.27 - 130. Amplitude scaling to match the nominal currents and CTs in the differential relay.


Nominal current matching is only part of the differential protection settings. The vector group of the transformer is also important, since the differential function is interested in the angle difference of the measured current vectors. In this example the transformer's vector group is Yd1, which means that the transformer's HV side is connected to the Y and the LV side to the delta. Therefore, the LV side is in 30-degree lag in relation to the HV side vectors.

The number '1' in the vector group's name comes from the angle in the phase current difference between the HV and the LV side. If one imagines the HV side current's Y placed upside down on the face of a clock (with the Y's leg pointing at 12), the LV side's delta would be pointing at 1. Likewise, '11' means that the LV side is leading 30 degrees; '5' and '7' are just the other ends of the windings thus causing a 180-degree difference between the '1' and '11' clock numbers.

The following example explains transformer current vectors and what a connection might look like.


AQ-G257 Instruction manual

Version: 2.08

))))))

In modern relays these standard vector groups (Y or delta, lead or lag) are defined by a setting selection and there is no need for interposing transformers. Even if the transformer's vector group is not standard it should still be settable within the relay (such as with zigzag transformers).

In this example, the function translates the delta side currents. The correction applies not only to the angles but also to the amplitudes because the delta side (in p.u.) is relative to the amplitude difference with the Y-connected side.

$$\overline{IL1DS}_{LV} = \frac{(\overline{IL1}_{LV} - \overline{IL2}_{LV})}{\sqrt{3}}$$
$$\overline{IL2DS}_{LV} = \frac{(\overline{IL2}_{LV} - \overline{IL3}_{LV})}{\sqrt{3}}$$

$$\overline{IL3DS}_{LV} = \frac{(IL3_{LV} - IL1_{LV})}{\sqrt{3}}$$

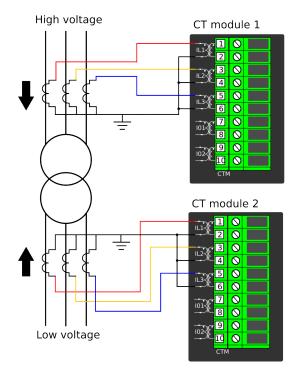
This process is called vector group matching for the currents (in p.u.) of the transformer. This matching is necessary whenever one side is connected to the delta and another to the Y. Previously in nonnumerical relays, this matching was done by interposing CTs which connected the power transformer's Y side to the delta, and the transformer's delta side to the Y. This got the HV and LV side vectors to match each other. Then the currents in the relay inputs are summed up. If there is no difference (as the HV and LV side currents negate each other), the pick-up is not triggered. If the currents do have a difference, the current flows to the relay input and with enough difference causes a pick-up and a trip. However, as modern differential relays do this transformation by calculating the corrected vector internally, this is also just nice-to-know information not related to the actual operation of the relay.

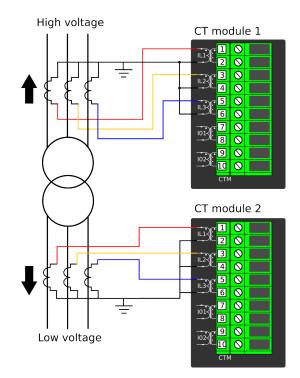
	Phase angles HV side			Phase angles LV side			
	Shift(deg)	IL1	IL2	IL3	IL1"	IL2"	IL3"
Yy0, Yyn0, YNy0, Dd0	0	0	240	120	0	240	120
Yy6,Yyn6, YNy6, YNyn6, Dd6	180	0	240	120	180	60	300
Yd1, YNd1, Dy1, Dyn1	-30	0	240	120	330	210	90
Yd11, YNd11, Dy11, Dyn11	30	0	240	120	30	270	150
Yd5, YNd5, Dy5, Dyn5	-150	0	240	120	210	90	330
Yd7, YNd7, Dy7, Dyn7	150	0	240	120	150	30	270

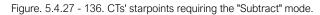
Figure. 5.4.27 - 132	. Expected phase shifts from HV sid	de to LV side (a symmetrical situation).
----------------------	-------------------------------------	--

The direction of the CTs' Y legs on the HV and LV sides affects how the differential calculation method is set. The setting options are "add" and "subtract" which is why the CTs' currenct direction has to be taken into account. The "add" mode is used when the CT's starpoints are either pointing towards each other or away from each other. The "subtract" mode is used when those points are pointing in the same direction. In this example the correct setting would be the "add" mode because the CTs in the main circuit are connected to the opposite and thus the measured currents from the CTs are also opposite. The user selects how they want the signals shown: the CTs' currents can be negated with the "subtract" option, resulting in a one Y-connected vector diagram.

The images below present the differential algorithm itself (one calculating formula for each phase difference); first the "subtract" formulas, then the "add" formulas. Selection is based on the CT connections.


Figure. 5.4.27 - 133. "Subtract" formula.


$$L1DIFF_{Subt} = |\overline{IL1}_{HV} - \overline{IL1}_{LV}|$$
$$L2DIFF_{Subt} = |\overline{IL2}_{HV} - \overline{IL2}_{LV}|$$
$$L3DIFF_{Subt} = |\overline{IL3}_{HV} - \overline{IL3}_{LV}|$$


Figure. 5.4.27 - 134. "Add" formula.

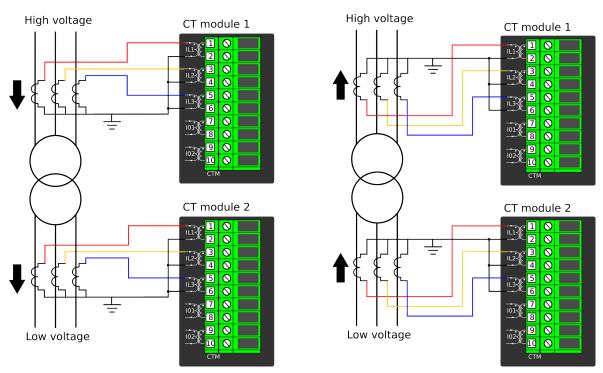

 $L1DIFF_{Add} = |\overline{IL1}_{HV} + \overline{IL1}_{LV}|$ $L2DIFF_{Add} = |\overline{IL2}_{HV} + \overline{IL2}_{LV}|$ $L3DIFF_{Add} = |\overline{IL3}_{HV} + \overline{IL3}_{LV}|$

Figure. 5.4.27 - 135. CTs' starpoints requiring the "Add" mode.

The differential function has two (2) separate stages built into the function. Non-restraint characteristics use only the "Average mode and Max mode formulas (described below) as the comparison base. Restraint characteristics also make a so-called bias calculation for each of the phases in order to adjust the differential stage towards the measured currents. Bias calculation can be sensitive or coarse (see the following formulas).

Figure. 5.4.27 - 137. Average mode (sensitive biasing).

$$L1BIAS_{AVG} = \frac{|IL1_{HV}| + |IL1_{LV}|}{2}$$
$$L2BIAS_{AVG} = \frac{|IL2_{HV}| + |IL2_{LV}|}{2}$$
$$L3BIAS_{AVG} = \frac{|IL3_{HV}| + |IL3_{LV}|}{2}$$

Figure. 5.4.27 - 138. Max mode (coarse biasing).

 $L1BIAS_{MAX} = \max (|IL1_{HV}|, |IL1_{LV}|)$ $L2BIAS_{MAX} = \max (|IL2_{HV}|, |IL2_{LV}|)$ $L3BIAS_{MAX} = \max (|IL3_{HV}|, |IL3_{LV}|)$

Next, these two formulas are combined in a graph: the x-axis presents the measured differential current, and the y-axis presents the calculated bias current. The following graph shows the differential function characteristic, both biased and non-biased.

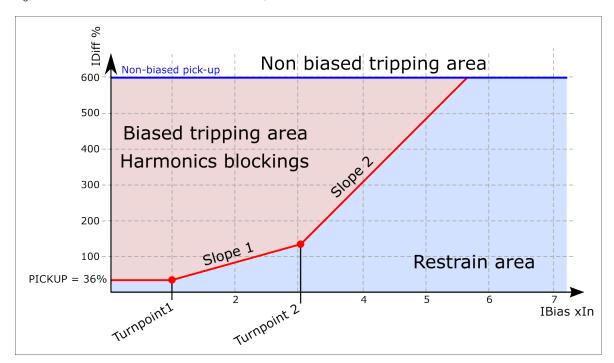


Figure. 5.4.27 - 139. Differential function characteristic, biased and non-biased.

The graph is the function of measured biasing current and the differential protection current. The red line presents the allowed differential current in percentages. In this example the non-biased pick-up is set lower than in a normal transformer application. The settings and the ranges of the differential protection function are presented in the "Settings and signals" section of this topic.

The biasing characteristic is formed with the following formulas:

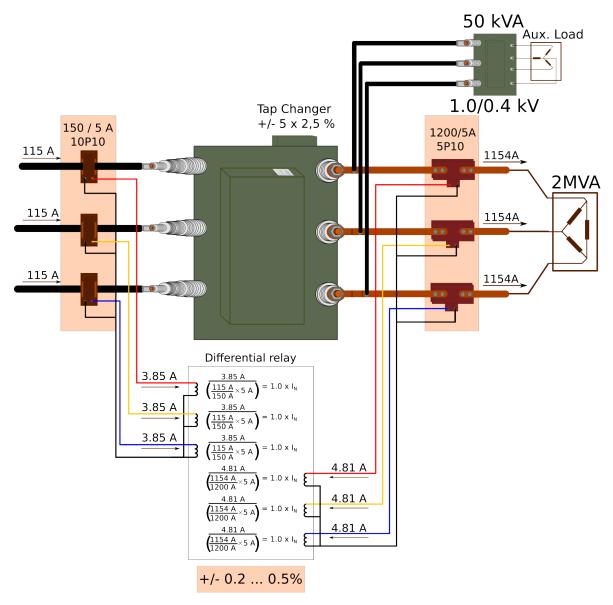
 $Diff_{bias < TP1} = I_{d > pick-up}$ $Diff_{bias TP1...TP2} = SL1 \times (Ix - TP1) + I_{d > pick-up}$ $Diff_{bias > TP2} = SL2 \times (Ix - TP2) + SL1 \times (TP2 - TP1) + I_{d > pick-up}$

These form a straight line from zero current to Turnpoint (TP1). From TP1 to TP2 is the first slope (Slope 1) which causes the set biasing to be coarser when the measured current amplitude increases. When the measured current is higher that the TP2 set value, the second slope (Slope 2) is used.

Differential characteristics settings

Characteristics parts

One needs to understand what the various parts of the characteristics mean in order to set the characteristics for the transformer application.


Diffbias<TP1 = Id>pick-up

This is the first straight line which represents the differential current created by the transformer's normal operation. It takes into account measurement errors, possible variations caused by the transformer's tap changer (if available), and the various reasons why the application might have caused a different load inside the protected differential zone. In differential relays this is known as the pick-up current ($I_{d>pick-up}$). It is the basic sensitivity limit: when the measured differential current is below this limit, the transformer still operates normally and the protection does not trigger. In other words, the pick-up current setting must be higher than the combination of all the normal operation factors that cause differential currents.

Differential current sources (normal operation)

When calculating the differential current in a basic situation, it is strongly recommended to consider the following transformer component errors (the illustrated parts in the image below).

Figure. 5.4.27 - 140. Differential current sources (normal operation).

There seven (7) differential current sources for normal operation:

1) Primary side CT measurement accuracy (CTE_{pri}) In this example the primary side CTs are Class 10P, which means the measurement error is 10 %.

2) Secondary side CT measurement accuracy (CTE_{sec})

In this example the secondary side CTs are Class 5P, which means the measurement error is 5 %.

3) Relay measurement accuracy (primary and secondary) (RE_m)

The relay measurement error is below 0.5 %, its optional accuracy below 0.2 % per measurement channel: the combined value for both sides is either 1 % or 0.4 %.

4) Possible auxiliary transformer or auxiliary winding, currents not measured separately (AUTE) In this example a 50 kVA auxiliary transformer is connected to the LV side output before the CTs, and this needs to be noted in the calculations. The same is true when the transformer itself is connected to auxiliary power output and those currents are not measured. The auxiliary power output's effect can be calculated by calculating the percentage of the auxiliary transformer/winding VA in relation to the transformer nominal VA (see formula below; assumes the auxiliary load to be nominal):

$$AUTE = \frac{AUX}{NOM} \times 100 \% = \frac{50\ 000\ VA}{2\ 000\ 000\ VA} \times 100 \% = 2.5 \%$$

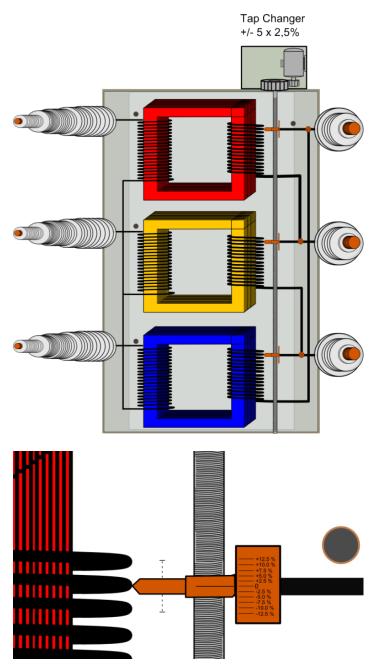
5) Transformer core magnetizing current (TME)

Transformer magnetizing current is the current which flows in the primary winding. Since it is running only in the primary side, this needs to be taken into account in the settings calculations. The approximate magnetizing current value can be calculated according to the following formula:

$$I_{TM} = \frac{U_{PRI}}{j\omega L_F}$$

When the primary inductance is known, the magnetizing current value is compared to the HV side's nominal current and the resulting percentage is directly the TME value. If the transformer's primary inductance is unknown, one can use a conservative estimate of 3 % as the TME value.

6) Safety margin (SME)


Conservative settings typically use a safety margin up to 5 %.

7) Tap changer on load side (TCE)

This example transformer has a tap changer with the rating of +/- 5×2.5 %. This means that the secondary side windings can be set +/- 5×2.5 % from the nominal center position, causing a maximum deviation of 5×2.5 % from the nominal conditions. Therefore the TCE is 12.5 % in this case. Please note that the tap position is not always in the nominal center position: check the application and calculate the maximum effect to the worst side.

Generally the tap changer means that the transformer transformation ratio can be adjusted in order to receive the nominal voltage more accurately to the secondary side of the transformer. There a multiple reasons for voltage variations, e.g. heavy or light loading in the HV side. In practice this means that if the secondary side needs more or less voltage, the secondary side uses more or less winding rounds. This causes a difference in the nominal current condition, which can be noticed as a differential current in the relay. Usually tap changer positions are presented as deviation steps for the secondary voltage to both positive and negative direction from the center (see the second image below).

Calculating the generated differential current — The biased settings

Now we have all the necessary data to calculate a naturally generated differential current based on the known errors and possible variables.

First we need to calculate the maximum uncertainty ($I_{meas, unc}$) from the various magnitudes inside the transformer. In this example, the transformer has a tap changer that affects the internal currents; however, its effects cannot be estimated reliably and the current's maximum uncertainty needs to be calculated. If there is no tap changer, the maximum uncertainty can be calculated sufficiently enough by summing the maximum inaccuracies of the CTs on the HV and LV sides.

 $I_{meas,unc} = \frac{absolute\ uncertainty}{absolute\ measurement} \times 100$

Looking at the formula above, one can see that the absolute maximum uncertainty as well as the absolute measurement are needed. The former is the sum of the primary CT error (CTE_{pri}), the secondary CT error (CTE_{sec}), the tap changer maximum error (TCE) and the product of multiplying the secondary CT error with the tap changer maximum error (CTE_{sec} × TCE). The latter is the sum of the so-called expected value $(1 \times I_n)$ and the tap changer maximum error (TCE). The images below show the full formula (on the left) as well as the formula and its result when filled with the figures from our example configuration (on the right):

 $I_{meas,unc} = \frac{CTE_{pri} + CTE_{sec} + TCE + (CTE_{sec} + TCE)}{1 + TCE} \times 100 \qquad I_{meas,unc} = \frac{0.1 + 0.05 + 0.125 + (0.05 \times 0.125)}{1 + 0.125} \times 100 = 25\%$

The calculation result (25 %) presents the maximum caused differential current to nominal that can be caused by the transformer's properties. If we know other uncertainties, they can now be added to $I_{meas, unc}$ to get the following operation:

 $I_{db>pick-up} = I_{meas.unc} + (2 \times RE_m) + AUTE + TME = 25\% + (2 \times 0.5\%) + 2.5\% + 3\% = 31.5\%$

This means that in the worst case scenario, the differential current flows while the transformer's operation is normal. This is why the final result usually gets an added safety margin: the stable operation of the differential protection must be ensured and possible calculation errors negated. The following image shows the base sensitivity (i.e. the minimum setting for the differential current that the relay operation requires) given to the differential protection characteristics:

$$I_{db>pick-up} = \left(\frac{CTE_{pri} + CTE_{sec} + TCE + CTE_{sec} \times TCE}{1 + TCE} \times 100\right) + 2 \times RE_m + AUTE + TME + SME = 36\%$$

Now the base sensitivity takes into account the starting situation (no load to Turnpoint 1) in the characteristics. Next, it needs to be decided where to set **Turnpoint 1**. In most of differential relays this point is either fixed or automatically defined based on the base sensitivity and Slope 1; however, in this type of differential relay this point can be set by the user. If the user wants a high sensitivity, TP1 can be set to $1 \times I_n$ since the calculated base sensitivity already factors in the tap changer effect and all other differential current sources that normal operating causes. If the user prefers coarse settings, TP1 can be set to $0.5 \times I_n$, even $0.01 \times I_n$. The limit is determined by the sum of the protection principle the user wants. A smaller value results in a conservative and stable operation, while a larger value results in a highly sensitive but possibly unstable protection.

Please note that if TP 1 is set to $0.01 \times I_n$, Slope 1 starts directly from the setting and no unbiased sensitive section is available. This is useful when the user does not want base sensitivity to include the tap changer effect, but instead have it be accounted for in Slope 1 directly. This can lead to optimal sensitivity and stable settings for a differential relay even if there are no non-biased sensitive section in the characteristics. In this case, the formula to calculate the base sensitivity is as follows:

 $I_{db>pick-up} = CTE_{pri} + CTE_{sec} + 2 \times RE_m + AUTE + TME + SME$

 $I_{db>\,pick-up} = 10\% + 5\% + 2 \times 0.5\% + 2.5\% + 3\% + 5\% = 26\%$

Next are the **Slope 1** settings, which present the relay's restrain characteristics over the transformer's load current range. This slope should be effective up to the maximum transformer loading. This value for power transformers is usually around 1.0 to $2.0 \times I_n$; for large power transformer a typical value is $1.5 \times I_n$. The purpose is to compensate the measurement errors caused by a relatively high current, including the tap changer effect. Slope 1 is calculated by using the transformer and CT nominal values in the maximum full load (Turnpoint 2) of the transformer with highest possible differential current causing tap position. Generally the Slope 1 setting is calculated as follows:

Slope 1 =
$$\frac{I_{diff} TP2}{I_{bias} TP2} \times 100 \%$$

Now the calculation of the maximum differential current in **Turnpoint 2** includes the previously calculated correction factors for the HV and LV side CTs.

$$I_{pu PRI HV} = \frac{In_{HV}}{CT_{PRI HV}} = \frac{115.47 \text{ A}}{150 \text{ A}} = 0.77$$

 $I_{pu PRI LV} = \frac{In_{LV}}{CT_{PRI LV}} = \frac{1154.7 \text{ A}}{1200 \text{ A}} = 0.96$

Also is needed the corrected transformation ratio effect (TR_{corr}) due to the tap changer position on the maximum voltage position (usually this generates the highest differential current).

$$TR_{CORR} = \frac{U_{HV \ VOLTS \ MIN}}{U_{HV}} \times \left(\frac{U_{HV}}{U_{LV}}\right)$$

To get the HV volts minimum value the user needs to apply the calculation on a situation when the tap changer on the secondary side is at maximum output voltage and the output is nominal. In this example we had a maximum of +12.5% increasing effect from the tap changer, resulting in the following calculation:

$$TR_{CORR} = \frac{10\ 000\ V \times (1.0 - 0.125)}{10\ 000\ V} \times \left(\frac{10\ 000\ V}{1\ 000\ V}\right) = 8.75$$

Next we calculate the the currents that flow in the HV and LV sides, when the loading of the transformer is e.g. 1.5 times its rated power.

Therefore, the LV side currents are as follows:

$$I_{LV} = \frac{I_{N \ LV} \times 1.5}{CT_{LV \ SEC} \times I_{pu \ PRI \ LV} \times \left(\frac{CT_{LV \ PRI}}{CT_{LV \ SEC}}\right)} = \frac{1154.7 \ A \times 1.5}{5 \ A \times 0.96 \times \left(\frac{1200 \ A}{5 \ A}\right)} = 1.5 \ x \ In$$

The currents of the HV side are as follows:

$$I_{HV} = \frac{\left(\frac{I_{N\,LV} \times 1.5}{TR_{CORR}}\right)}{CT_{HV\,SEC} \times I_{pu\,PRI\,HV} \times \left(\frac{CT_{HV\,PRI}}{CT_{HV\,SEC}}\right)} = \frac{\left(\frac{1154.7\text{ A} \times 1.5}{8.75}\right)}{5\text{ A} \times 0.77 \times \left(\frac{150\text{ A}}{5\text{ A}}\right)} = 1.7 \text{ x In}$$

These currents present the worst-case scenario that the tap changer effect can cause to the differential relay's measured currents.

Next, we need to calculate the differential current. In theory there are two ways to use biasing calculation to do this, but in practice only one: the results of add and subtract modes are the same because they just compensate the connected CTs differently (starpoint towards or away from the transformer). Thus, the differential current is always calculated as follows:

$$|I_{HV} - I_{LV}|$$

This gives the absolute difference in the measured currents.

If the user wants more sensitive settings, the Average mode is selected and the Slope 1 calculation is as follows:

$$L_{x BIAS AVG} = \frac{|I_{Lx HV}| + |I_{Lx LV}|}{2}$$

 $Slope \ 1 = \frac{I_{diff \ TP2}}{L_{x \ BIAS \ AVG}} \times 100 \ \% = \frac{|I_{LV} - I_{HV}|}{\left(\frac{I_{LV} + I_{HV}}{2}\right)} \times 100 \ \% = \frac{1.5 - 1.7}{\left(\frac{1.5 + 1.7}{2}\right)} \times 100 \ \% = 12.5 \ \%$

If the user wants more stable settings, the Maximum mode is selected and the Slope 1 calculation is as follows:

 $L_{x BIAS MAX} = \max\left(|I_{Lx HV}|, |I_{Lx LV}|\right)$

$$Slope \ 1 = \frac{I_{diff \ TP2}}{L_{x \ BIAS \ max}} \times 100 \ \% = \frac{|I_{LV} - I_{HV}|}{\max(|I_{LV}|, |I_{HV}|)} \times 100 \ \% = \frac{1.5 - 1.7}{1.7} \times 100 \ \% = 11.7 \ \%$$

If the user wants to be on the safe side, yet another safety margin (in addition to the 5 % already in the base sensitivity settings) can be added to ensure stability.

At this point the only setting still missing is that of **Slope 2**. This setting is used for biasing the differential characteristics against heavy faults outside the differential zone that can cause heavy saturation on one or both sides of the CTs causing heavy differential current in the measurements even though the transformer itself does not have a fault. Please note that if there is a heavy end fault causing the biasing current to increase, this setting should not be set to maximum as the biasing may block the differential characteristics. This makes the trip not applicable even if there is an end fault.

When the transformer is fed from the HV side and the differential current is direct, the fault that feeds the end current can be accounted in the Slope 2 setting.

If the Average mode is used for biasing (due to a single end fault), the bias current is calculated as follows:

$$L_{x BIAS AVG} = \frac{|I_{Lx HV}| + |0|}{2}$$

Therefore, the differential current is the following:

 $|I_{Lx HV}|$

Slope 2 =
$$\frac{|I_{Lx HV}|}{|I_{Lx HV}|} \times 100 \% = \frac{|1|}{(\frac{1}{2})} \times 100 \% = 200 \%$$

If the Maximum mode is used for biasing (due to a single end fault), the bias current is the same as the differential current. Therefore, the Slope 2 setting is calculated as follows:

Slope 2 =
$$\frac{|I_{LX HV}|}{|I_{LX HV}|} \times 100 \% = \frac{|1|}{|1|} \times 100 \% = 100 \%$$

Calculating the generated differential current — The non-biased settings

Now that the biased characteristic is set, we consider the settings for the non-biased stage Idi>Pick-up.

The purpose of this stage is to ensure fast and selective tripping of faults inside the differential zone, and also to ensure a stable operation on heavy outside faults. This stage operates only on the measured absolute differential current and is not blocked by harmonics or bias restraints. The setting of the stage should be based on the weakest full saturation of the CT under worst-case fault conditions because then only the other side current is measured and all current seen is differential current.

Let us calculate the maximum three-phase short-circuit current on the LV side in our example case from earlier:

$$I_{3ph SC LV} = \frac{S_N}{\sqrt{3} \times Z_k} = \frac{S_N}{\sqrt{3} \times \left(\frac{U_{LV}}{S_N}^2 \times \frac{Z_{k\%}}{100\%}\right)} = \frac{2\ 000\ 000\ VA}{\sqrt{3} \times \left(\frac{10\ 000\ V^2}{2\ 000\ 000\ VA} \times \frac{4.95\ \%}{100\ \%}\right)} = 23327\ A$$

On the HV side this current is seen as:

$$I_{3ph SC LV \to HV} = \frac{I_{3ph SC LV}}{\left(\frac{U_{HV}}{U_{LV}}\right)} = \frac{23\ 327\ A}{\left(\frac{10\ 000\ V}{1\ 000\ V}\right)} = 2\ 332\ A$$

Next, let us remind ourselves of the given CT ratings for our example: $CT_{pri,HV}$ = 150/5A (10P10) $CT_{pri,LV}$ = 1200/5A (5P10)

Now we can calculate the secondary currents:

$$I_{HV MAX} = \frac{I_{3ph SC LV \to HV}}{CT_{HV PRI}} = \frac{2 \ 332 \ A}{\frac{150 \ A}{5 \ A}} = 77.7 \ A_{SEC} \ (20.18 \ x \ In)$$
$$I_{LV MAX} = \frac{I_{3ph SC LV}}{CT_{HV PRI}} = \frac{23 \ 327 \ A}{\frac{1200 \ A}{5 \ A}} = 97.2 \ A_{SEC} \ (20.2 \ x \ In)$$

This is the theoretical maximum of the current flowing in the CTs, when a bolted and symmetrical threephase fault occurs in the LV side of the transformer. Based on the previous calculations, we can see that the HV side maximum current is approximately 15 times higher than the CT rating, and the LV side appr. 19 times higher. No full CT saturation should be seen in either side even though the accuracy limit factor for both CTs is ten times the nominal. The protection class information in the CT ratings tell us that the CT output is for both CTs ten times the rated current in their given measurement class (5 % and 10 %, respectively). However, this is related to the nominal burden that is normally very high compared to the CT input in modern protection relays.

Next, the real CT accuracy limit factor needs to be checked in both CTs, in both sides. This check has much important initial data: the VA of the CTs on both sides, the length of the wiring between the relay and the CTs, the connection between the CTs, as well as the cross-section and material of the wires. Let us begin with the burden the wiring causes to the relay, and calculate the resistance in a conductor:

 $R_{Cond} = \frac{\rho \times l}{A}$, where R_{Cond} = resistance of conductor (Ω) ρ = resistivity of the conductor material (Ω /m) l = length of the wire in meters (m) A = cross-section of the conductor (m²)

When designing the CTs and their wiring, please keep in mind the following: the resistance of the wire doubles when the length is doubled, and the resistance halves when the wire's cross-section are doubles. When 1 A secondary is used (instead of 5 A secondary), all burdens drop to a level smaller to portion of $5A^2$, e.g. 1/25.

Although copper cables are normally used to connect CTs to a relay, the table below also presents the resistivity (rho) and conductivity (sigma) properties of aluminum (at +20 °C):

Material	ρ (<u>Ω</u>•m) at 20 °C (68 °F, 293 K)	σ (S/m) at 20 °C	Temperature coefficient (K-1)
Copper	1.68×10-8	5.96×107	0.003862
Aluminum	2.82×10-8	3.5×10 ⁷	0.0039

You can use the following formula to calculate the resistivity in temperatures other than +20 °C:

 $\Delta_{\rho} = ((\alpha \times \Delta T) \times \rho_0, \text{ where})$

 $\begin{array}{l} \Delta_{\rho} = \mbox{change of resistivity } (\Omega \ / \ m) \\ \alpha = \mbox{temperature coefficient } (K-1) \\ \Delta T = \mbox{temperature change } (t_1 \ -t_0) \\ \rho_0 = \mbox{resistivity in given temperature } (^{\circ}C) \end{array}$

For example, the resistivity of copper at +75 °C is calculated like this:

$$\rho_0 + \Delta_{\rho} = \rho_0 + (\alpha \times \Delta T \times \rho_0)$$

 $1.68 \times 10^{-8} + ((0.003862 \times (75 \text{ °C} - 20 \text{ °C})) \times 1.68 \times 10^{-8}) = 0.0203 \,\mu\Omega \,/\,\mathrm{m}$

With this value we can calculate the resistances (per meter) of the most commonly used copper wires given value most common used copper wires at +75 °C by using the above-mentioned formula for R_{cond} :

Cross-section (mm ²)	Resistance (Ω /m)
1.5	0.0135
2.5	0.00812
4.0	0.00508
6.00	0.00338

It is recommended that you use the worst-case scenario as the basis for calculating the CT burden. In most cases these +75 °C values are sufficient. If the ambient temperature in your application is higher than +75 °C, the resistance should be calculated for that specific temperature.

It is also Important to know the wiring of the CTs: do the CTs have a common return wire or are both ends of both CTs wired to the terminal connector? Usually there are four wires coming from the CTs to the terminal: in these cases the length per phase is the sum of the distance from the CT to the relay and the distance from the relay OR from the CTs to the common coupling point. When both sides of all CTs are wired to the relay or to the terminal, the length of the wiring is double the distance from the CTs to the relay. If the connection is a combination of these two wiring types, the length can be estimated by increasinf the distance in proportion to the six-wire or four-wire connection. For example, if six wires connecting the CTs to the terminal account for 30 % of the wiring (in addition to the four wires connecting the and the terminal), the estimated length of the wire is 1.3 times the distance between the relay and the CTs.

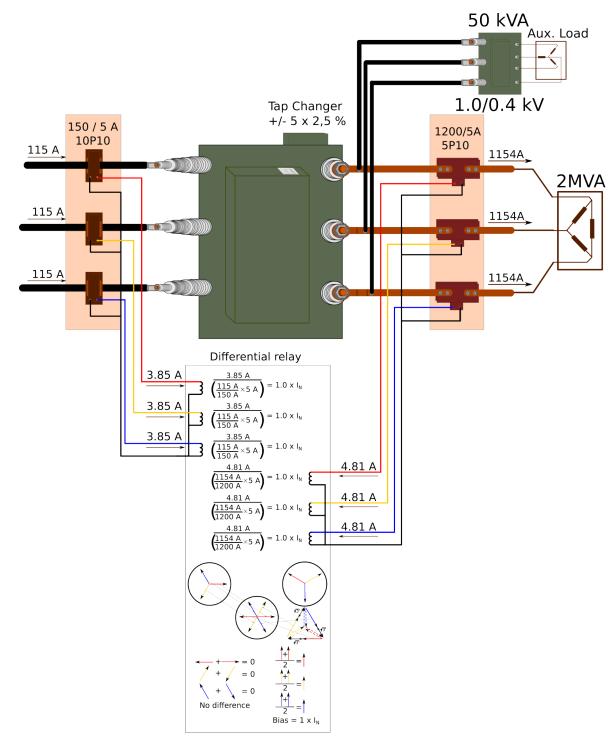
The next loading factor is the resistance of the relay's measuring input. In this relay type the resistance is 0.0005 for the current input, which gives approximately 0.001 VA with a current of 1 A. Then we need to calculate the accuracy limit factor (ALF). This requires the CT nominal ALF value and we can get that from the above-mentioned CT rating: the figure after P gives the current overload as a factor of the nominal rated value and therefore gives the ALF applicable at that overload of the CT. The actual ALF can be calculated with the following common method:

$$ALF_{act} = ALF_{rated} \times \left| \frac{S_{ctrn} + S_{rated}}{S_{ctrn} + S_{actual}} \right|$$
, where
$$ALF_{rated} = \text{the rated accuracy limit factor, the "factor after P"}$$
$$S_{ctrn} = \text{internal burden of the CT secondary (VA)}$$
$$S_{rated} = \text{the rating of the CT (VA)}$$
$$S_{actual} = \text{the actual power taken from the CT (VA)}$$

The main issue with this equation is the *S*_{CTRN}, the internal burden of the CT secondary. The internal resistance is related to the CT rating, to the winding length as well as to the dimensions of the wire used in the winding. Some CT manufacturers include the SCTRN value in their product documentation. However, as the value is only a small portion of the CT burden as a whole (the wirings cause most of it in typical relay applications), one should not worry if the value is unknown.

For example, let us assume that the internal resistance of the CT's HV side is 0.05Ω and is rated 5 VA, and that the internal resistance of the CT's LV side 0.09Ω , also rated 5 VA. The wiring from the HV side to the relay is 10 m and from the LV side to the relay 5 m; both sides have 30% of the wiring made with a six-wire connection and 70% of the wiring with a four-wire connection. The wirings on both sides are made with 4 mm² wires. The HV side is 150/5 A, with the protection class 10P10; the LV side is 1200/5 A, with the protection class 5P10. Therefore, the actual accuracy limit factor on both sides is as follows (the HV side on the left, the LV side on the right):

$ALF_{rated} = 10$	$ALF_{rated} = 10$
$S_{rated} = 5 \text{ VA}$	$S_{rated} = 5 \text{ VA}$
$S_{ctrn} = I_{NS}^2 \times CT_{RS} = 5^2 \text{ A} \times 0.05 \ \Omega = 1.25 \text{ VA}$	$S_{ctrn} = I_{NS}^2 \times CT_{RS} = 5^2 A \times 0.09 \ \Omega = 2.25 \text{ VA}$
$R_{wire} = (10 \ m \times 1.3) \times \ 0.00508 \ \frac{\Omega}{m} = 0.066 \ \Omega$	$R_{wire} = (5 \ m \times 1.3) \times \ 0.00508 \frac{\Omega}{m} = 0.033 \ \Omega$
$S_{actual} = I_{NS}^{2} \times (R_{wire} + R_{relay}) = 5^{2} \text{ A} \times (0.066 \ \Omega + 0.0005 \ \Omega) = 1.65 \text{ VA}$	$S_{actual} = I_{NS}^{2} \times (R_{wire} + R_{relay}) = 5^{2} A \times (0.033 \Omega + 0.0005 \Omega) = 0.838 \text{ VA}$
$ALF_{act} = ALF_{rated} \times \left \frac{S_{ctrn} + S_{rated}}{S_{ctrn} + S_{actual}} \right = 10 \times \left \frac{1.25 \text{ VA} + 5 \text{ VA}}{1.25 \text{ VA} + 1.65 \text{ VA}} \right = 21.55$	$ALF_{act} = ALF_{rated} \times \left \frac{S_{ctrn} + S_{rated}}{S_{ctrn} + S_{actual}} \right = 10 \times \left \frac{2.25 VA + 5 VA}{2.25 VA + 0.838 VA} \right = 23.5$


When comparing the corrected CT accuracy limit factors to the estimated maximum through fault currents, we can see that the current will not saturate the CTs. The HV side can repeat the current $21.6 \times I_n$, while the calculated HV through fault current is at maximum $20.2 \times I_n$. The same is true for the LV side where the maximum output is $20.2 \times I_n$ when the LV side CT is able to repeat $23.5 \times I_n$. From this we can expect that through faults will not cause problems with this power transformer and CT combination. It also shows us that the non-biased differential stage can be set to operate sensitively during in-zone faults. If the CTs have the possibility to saturate (that is, the calculated through fault current is bigger than the ALF on either CT side), the setting of the instant stage must be set high enough so that it does not operate on through fault saturation.

The inrush peak current should also be considered when setting the instant stage. In normal-power transformers the energizing inrush current may be $10 \times I_n$, while the measured current is FFT-filtered for the fundamental frequency which is used for differential calculation. Typically, the found differential current is half of the maximum peak current. The instant stage should be $5 \times I_n$ if the setting should be according to the theoretical maximum and the margin. Conservative settings should use the $10 \times I_n$. The setting value should never cause trips for energizing, but still operate fast during energizing fault cases. This stage is usually never blocked in applications, and therefore the stage settings should consider the absolute differential current that is possible in normal operations while keeping the settings sensitive enough for inrush currents (especially in energizing cases).

Thus, the setting suggestion for this $I_{di>Pick-up}$ stage is $6.0 \times I_n \dots 10 \times I_n$ for sensitive and conservative operations respectively.

Finalising the settings

Now the basic settings for the differential stages are applied and the differential protection is ready to operate. Our example transformer is very small but the formulas presented in this manual can be applied to transformers of all sizes. If so selected, the relay automatically calculates these settings (using these same formulas) in the Transformer status monitoring (TRF) module. When everything is set up correctly in the relay and when the transformer is feeding the load with nominal power, the result should look like the following example configuration when the example settings and transformer are used.

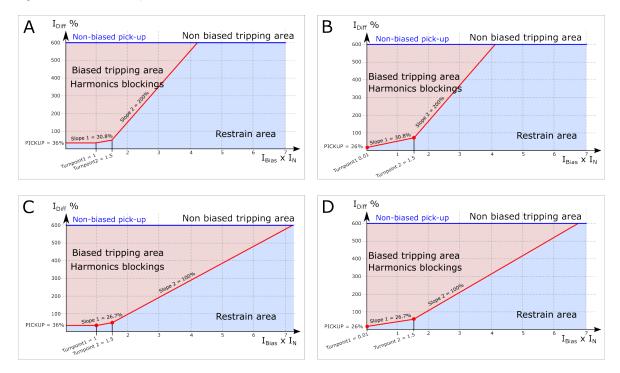


Figure. 5.4.27 - 143. Example differential characteristics

The four characteristics (the image above) present the setting variations based to the Average restraint calculation mode (figures A and B) and the Maximum restraint calculation modes (figures C and D). The characteristics are set to be equally sensitive in each of them. You can also see the variations in Turnpoint 1 settings: in Figures A and C it is set at $1.0 \times I_n$, whereas in Figures B and D it is set at $0.01 \times I_n$.

Zero sequence compensation for external earth faults

Our example presented only one type of transformer and its properties. Another very common variation is the type of transformer where the star side (HV, LV, or both) is earthed and thus forms a route outside the differential zone (see the image below).

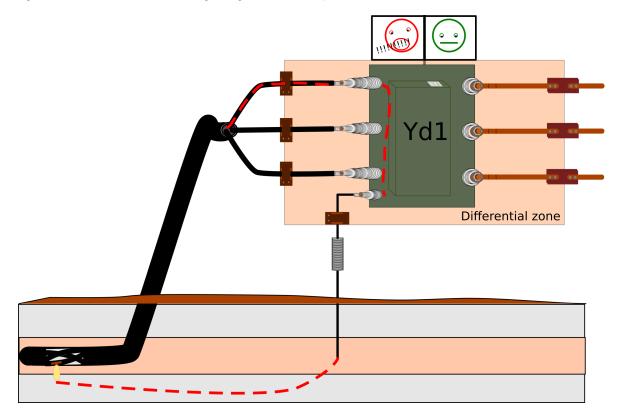


Figure. 5.4.27 - 144. Transformer earthing settings that do not compensate for external earth faults.

The differential relay looks at this situation and sees a fault inside the differential zone. This is because the other side is not affected at all by the fault (or only very little), and the relay sees a high current entering but not exiting the zone.

In many cases the zero sequence current is monitored by the CT in the earthing.

Earthing (directly or via a resistor) forms a route outside the differential zone.

When an external earth fault happens, only the earthed side of the transformer is involved in the fault.

The differential earthing requires the earthing to be known: if not compensated, any low-impedance earth fault outside the differential zone causes a differential current and possibly trips the differential protection. This is why the calculated zero sequence compensation is used. The vector group selection has either "N" or "n" to signify either HV side or LV side earthing. The selection then deducts the calculated zero sequence currents (in p.u.) before differential calculation and thus negates the effect of an external earth fault. Correctly selected transformer settings prevent the differential function from being tripped by out-of-zone earth faults (see the image below).

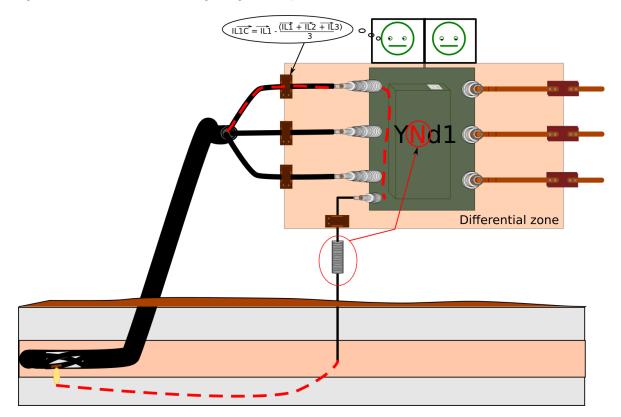


Figure. 5.4.27 - 145. Transformer earthing settings that compensates for external earth faults.

When the transformer settings are correct, the differential relay compensates the zero sequence current and does not trip due to earth faults outside the differential zone.

Earthing (directly or via a resistor) forms a route outside the differential zone.

When an external earth fault happens, only the earthed side of the transformer is involved in the fault.

The "N" or "n" selection applies the correction and eliminates the zero sequence effect with the following formulas:

$$\overline{IL1}_{corr} = \overline{IL1} - \frac{\overline{IL1} + \overline{IL2} + \overline{IL3}}{3}$$
$$\overline{IL2}_{corr} = \overline{IL2} - \frac{\overline{IL1} + \overline{IL2} + \overline{IL3}}{3}$$
$$\overline{IL3}_{corr} = \overline{IL3} - \frac{\overline{IL1} + \overline{IL2} + \overline{IL3}}{3}$$

Note! When you enable the zero sequence compensation by selecting the "N" or "n" in the transformer vector group, the sensitivity to single-phase one end fault decreases by a third simultaneously. This is why restricted earth fault protection (I0>, REF) should be enabled for the side where the zero sequence is compensated. However, enabling the REF protection requires that both the phase current measurements and the starpoint current are available and can be connected to the relay's residual current channel on the corresponding (HV/LV) side measurement.

Restricted earth fault

When the transformer's earthed side is compensated with afore-mentioned zero sequence compensation, that side will be a third (appr. 33 %) less sensitive in detecting single-phase faults inside the differential zone. For this reason it is advised that the restricted earth fault (REF) stage is activated on the transformer side that compensates the zero sequence current. Additionally, it should be enabled whenever the Y side of the starpoint is earthed; normal phase differential protection cannot be set to provide the maximum sensitivity to detect single-phase (earth) faults within the differential are because the properties dependent on the transformer and the application that were described in the previous section. This differential stage monitors the incoming calculated residual current and compares it to the outgoing starpoint current. If the single-phase (earth) fault occurs outside the differential zone, this function operate; if the fault occurs inside the differential zone, this function operate; if the fault occurs inside the differential zone is referred to as the "restricted earth fault protection".

The transformer differential functions offers two stages of low-impedance, restricted earth fault protection.

The operating characters of the restricted earth fault function (I0d>) on both the high voltage and the low voltage side are more similar to each other than to the percentage characteristics presented by the Idb> function, even though both sides are independent and can be set freely. The calculation of differential and biasing currents on both sides is as follows (the HV side on the left, the LV side on the right).

$HV_{I0d\ bias\ avg} = \frac{\left (\overline{IL1}_{HV} + \overline{IL2}_{HV} + \overline{IL3}_{HV}) + \overline{I0}_{HV\ meas} \right }{2}$	$LV_{I0d\ bias\ avg} = \frac{\left (\overline{IL1}_{LV} + \overline{IL2}_{LV} + \overline{IL3}_{LV}) + \overline{I0}_{LV\ meas} \right }{2}$
$HV_{I0d\ bias\ max} = \max\left(\left(\overrightarrow{IL1}_{HV} + \overrightarrow{IL2}_{HV} + \overrightarrow{IL3}_{HV}\right), \overrightarrow{I0}_{HV\ meas}\right)$	$LV_{I0d\ bias\ max} = \max\left(\left(\overrightarrow{IL1}_{LV} + \overrightarrow{IL2}_{LV} + \overrightarrow{IL3}_{LV}\right), \overrightarrow{I0}_{LV\ meas}\right)$
$HV_{I0d>diff\ add} = \left (\overrightarrow{IL1}_{HV} + \overrightarrow{IL2}_{HV} + \overrightarrow{IL3}_{HV}) + \overrightarrow{I0}_{HV\ meas} \right $	$LV_{I0d> diff add} = \left (\overline{IL1}_{LV} + \overline{IL2}_{LV} + \overline{IL3}_{LV}) + \overline{I0}_{LV meas} \right $
$HV_{I0d> diff \ substract} = \left \left(\overrightarrow{IL1}_{HV} + \overrightarrow{IL2}_{HV} + \overrightarrow{IL3}_{HV} \right) - \overrightarrow{I0}_{HV \ meas} \right $	$LV_{I0d> diff \ subtract} = \left \left(\overrightarrow{IL1}_{LV} + \overrightarrow{IL2}_{LV} + \overrightarrow{IL3}_{LV} \right) - \overrightarrow{I0}_{LV \ meas} \right $

Similarly to the phase differential stages, both sides with the restricted earth fault stages have options between the average and the maximum bias current calculation, as well as the option between the add and the subtract current calculation. The use of these stages depends on the CTs' installation directions and the desired sensitivity for bias calculation.

In the transformer differential stage the reference current for the REF protection is always the protected side nominal current, which is calculated in the relay's Transformer status monitoring (TRF) module.

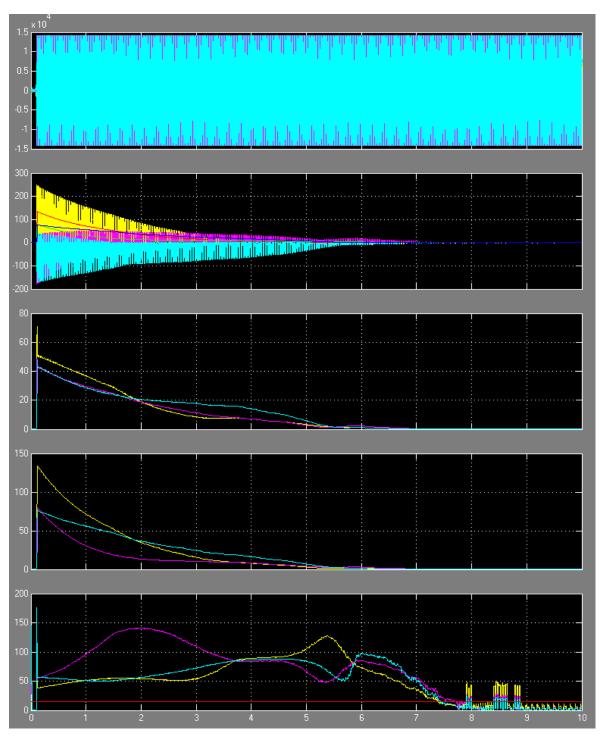
The transformer REF stage (regardless of the side) may be set to be a lot more sensitive than the phase differential. The setting sensitivity should be defined by whether or not one expects CT saturation (transformer's maximum single-phase output compared to the neutral point CT ratings). The tripping characteristics may be set differently when the network is earthed either directly or through impedance, and therefore the fault current may be expected to saturate the CTs even during external faults. For this reason there are three sections also in the REF function characteristics (non-biased, slightly biased, and heavily biased). For high-impedance or close-to-neutral winding faults the first (non-biased) section should consider the CTs' possible measurement errors as well as the desired sensitivity for internal faults close-to-neutral. The Turnpoint 1 setting should be twice the CT's nominal current. Normally the setting calculation is guided by the primary-to-maximum current rating because the CTs' neutral point has a lower primary current rating than the phase current. The first biased section (that is, Slope 1) should consider how a possible saturation in the CTs' neutral point affects normal (external) earth faults, and the how a heavy fault going fully through the second biased section (Slope 2) can cause saturation in the CTs' phase currents.

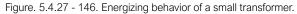
The recommended base settings:

• Pick-up (base sensitivity): typically 5 % to 10 % of the phase current CT error (Px)

- Turnpoint 1: double the neutral current CT nominal primary to transformer nominal current ratio
- Slope 1: calculate the maximum single-phase through fault overcurrent to nominal ratio and used biasing mode ratio
- Turnpoint2: set to maximum accuracy limit factor to transformer nominal ratio of the neutral point CT (typically 5 or 10); if the single-phase overcurrent fault exceeds this value, set Turnpoint 2 to that value
- Slope 2: set the maximum restraint calculation mode to 100 % and the average mode to 200 %.

Blockings from harmonics (2nd and 5th)


In transformer protection harmonics are always present in energizing situations: they are generated by the high current in the transformer inductances when the coils are energized. They are also preent in the currents during overfluxing and overvoltage situations. Energizing situations generate even harmonics: the 2nd harmonic is the most commonly used harmonic in inrush blocking. Overvoltage (and overexcitation) situations generate odd harmonics: the 5th harmonic is mainly used for blocking (the 3rd harmonic is also present in Y windings but absent in delta windings which is why the 5th harmonic has been chosen for overfluxing and excitation detection). In this chapter 'blocking' refers to the ldb> (the biased differential) stage and it has both these blocking (2nd and 5th) applied internally. If the ldi> stage (the non-biased differential) needs to be blocked, external blocking must be used.


2nd harmonic for magnetizing inrush blocking (principle and usage)

When the primary side of a power transformer is energized (secondary side open), the transformer acts as a simple inductance. During normal operation the flux produced in the transformer core lags behind the fed voltage by 1.58 radians (90 degrees). This means that when the voltage is in zero crossing, the steady state value of the flux is in its negative or positive maximum value. In energizing situations there is no flux available at the instant the winding is energized because there is no (live) magnetic flux linked to the transformer core prior to switching on the supply (however, remanence flux may still exist). The flux reaches its steady state operation some time after energization (depends on the transformer's properties such as its size, its R/X ratio, etc.). In practice this means that the flux in the transformer core starts from zero, as does the voltage in the winding; when energizing the transformer's primary side, the flux ends up 90 degrees behind the winding voltage and the system is in a steady state.

This start-up transition in the transformer has the effect of making the flux value be double the nominal flux value in the first half of the cycle after energization. The transformer core is generally saturated just above the steady state value of the flux and because of this the transformer core is decreasingly saturated during the transition time. During this saturation time the transformer's primary side draws a very high current with a heavy amount of even harmonics (the highest being the 2nd). This current is called the "magnetizing inrush current in transformer". The inrush current can be up to ten times higher than the nominal rated current of a transformer. The energizing characteristics of a transformer depend on the ratings of the transformer as well on the transformer's design (limb constructions, etc.).

The differential relay sees the energization current as a differential current since it only flows through the primary side winding only. The saturation of the transformer core generates the 2nd harmonic component which can be used to block the biased sensitive differential stage during energization.

The figure above presents the energizing behavior of a small transformer. The first graph depicts the applied voltage, the second graph depicts the phase currents' peak and FFT values (as mentioned earlier, the calculated FFT value is about 50% of the peak value), the third graph depicts the 2nd harmonic absolute values (in amperes), the fourth graph depicts the fundamental (50 Hz) FFT-calculated currents (in amperes), and fifth graph depicts the 2nd harmonic components relative to the corresponding fundamental component currents (with the 15% setting limit).

The magnetizing inrush current in a 2 MVA transformer is over quickly, in about seven seconds. Afterwards there is still the nominal measurable current (seen only in the transformer's primary side) which would cause the differential relay to trip if energized without magnetizing the inrush blocking. Looking at the currents more closely one can see that the input values of the fundamental frequency currents (used for differential calculations) are roughly as follows:

 $I_{L1 peak} = 140 \text{ A} = 1.2 \text{ x In}$ $I_{L2 peak} = 75 \text{ A} = 0.65 \text{ x In}$ $I_{L3 peak} = 70 \text{ A} = 0.60 \text{ x In}$

In our previous example the transformer's nominal current on the HV (primary) side was 115.5 A; with it we can count the following:

 $I_{L1 \ diff} = 120 \ \%, \ I_{L1 \ bias \ avg} = \frac{1.2 \ x \ ln}{2} = 0.6 \ x \ ln, \ I_{L1 \ bias \ max} = 1.2 \ x \ ln$ $I_{L2 \ diff} = 65 \ \%, \ I_{L2 \ bias \ avg} = \frac{0.65 \ x \ ln}{2} = 0.33 \ x \ ln, \ I_{L2 \ bias \ max} = 0.65 \ x \ ln$ $I_{L3 \ diff} = 60 \ \%, \ I_{L3 \ bias \ avg} = \frac{0.60 \ x \ ln}{2} = 0.30 \ x \ ln, \ I_{L3 \ bias \ max} = 0.60 \ x \ ln$

The graph below shows how the differential currents look like when used in the set characteristics.

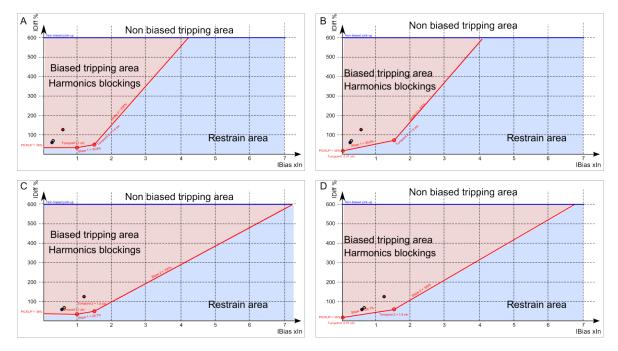


Figure. 5.4.27 - 147. Differential currents in the energization of a 2 MVA transformer.

While the results are very low compared to the magnetizing inrush current magnitudes, the differential relay would still definitely trip without the 2nd harmonic blocking. The situation is the same with all of the calculted setting variations.

The following figure presents the principle operation of the harmonic blocking in the transformer differential. When the transformer is energized, both the fundamental frequency and the 2nd harmonic increase significantly. In this example the harmonic blocking limit was set to 15 % (the ratio between the 2nd harmonic and the fundamental frequency, all phases), which seems more than sufficient for this transformer. The pick-up in the example is set to 30 %. Now, when the flux in the transformer core starts to catch up, the saturation in the core is reduced and the current for magnetizing is reduced as well. The blocking remains active until the setting is reached after which the blocking limit could be set to 30 % and the energizing would still be successful because the 2nd harmonic is still heavily present by the time the fundamental currents are reduced below the differential stage's pick-up limit.

Figure. 5.4.27 - 148. Inrush blocking by using the 2nd harmonic (relative to fundamental frequency).

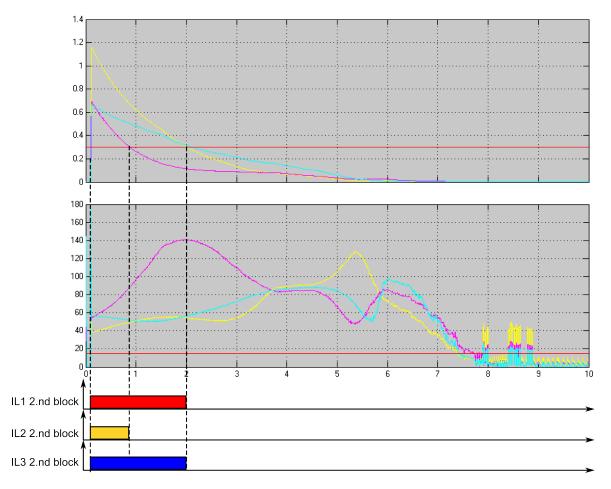
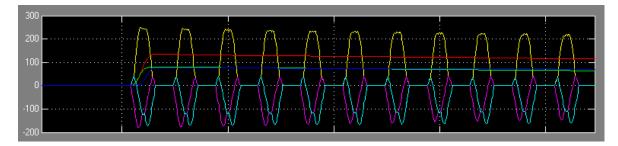



Figure. 5.4.27 - 149. Example of transformer magnetizing inrush currents.

A conservative setting recommendation for standard type transformers:

• enabling the 2nd harmonic blocking

- sensitivity appr. 15...20 %
- harmonic content compared to the fundamental frequency.

The user can fine-tune the transformer settings during the commissioning phase if there are any issues with the transformer energization.

5th harmonic for overexcitation blocking (principle and usage)

When the transformer's primary side voltage increases for some reason, the voltage-frequency (V/ f) ratio exceeds the desing limits and the transformer overexcited very quickly. This may be caused by two things: a fault in the LV side can throw off the loading and cause a temporary overvoltage, or the frequency in the network decreases for some reason (e.g. overloading or generation drop). The differential relay should not trip in either of these cases even though the overexcitation in the transformer's core result in the primary side measured currents being higher than those on the secondary side.

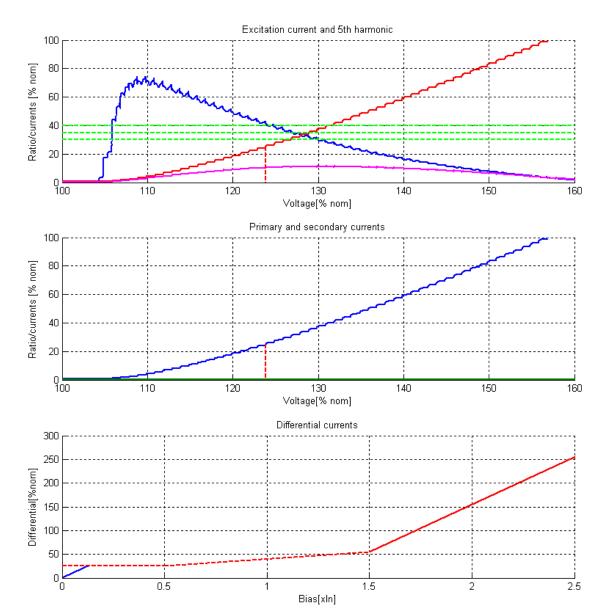


Figure. 5.4.27 - 150. Transformer behavior in case of overvoltage caused by overexcitation.

The figure above presents the simulated behavior of a power transformer when overvoltage occurs. In the simulation the transformer was unloaded on the secondary side while the voltage on the primary side was increased with a ramp. The first graph depicts the excitation current, the 5th harmonic component and their relation (which is used in the blocking); the green lines represents the suggested setting limits for 5th harmonic detection (30 %, 35 %, and 40 %). The second graph depicts the primary and secondary currents, plotted as a function of the voltage. The third graph depicts the differential characteristics as well as the differential and bias currents.

As can be noted from the first graph, the 5th harmonic component begins increasing rapidly (compared to the fundamental) in the start situation when the voltage is about 120 % of the nominal (depends entirely on the transformer properties and its saturation characteristics). This behavior is common to all transformers: when the core starts to be saturated there is a heavy amount of the 5th harmonic in the magnetizing current. When the overvoltage exceeds a certain point in the magnetizing characteristics, the 5th harmonic remains; however, the fundamental component of the current starts to grow very rapidly and as a result the relation of the 5th harmonic to fundamental decreases rapidly as a function of the primary side voltage. The growing magnetizing current is only seen on the transformer's primary side and the differential relay sees it as pure differential current. From the third graph we can see that the differential pick-up setting is reached when the voltage is approximately 125 % of the nominal value. This means that the differential current generated by the overexcitation could trip the transformer, as the ratio between the 5th harmonic and the fundamental magnitude decreases. If the overvoltage were, for example, 130 % of the nominal value, no blocking would be available; even the differential current would be greatly over the setting limit (appr. 40 % vs. the set 25 %). Nevertheless, this behavior can still be considered to be correct for the power transformer because an overvoltage like this can cause many serious problems and therefore tripping is desired.

The figures below present example waveforms of a transformer that is running with a 200 % rated voltage with the corresponding ratio between the 5th harmonic and the fundamental frequency component.

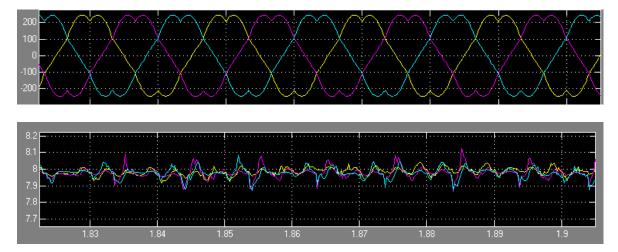
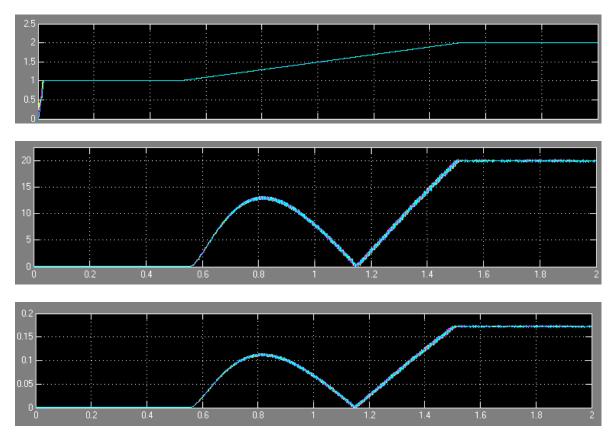
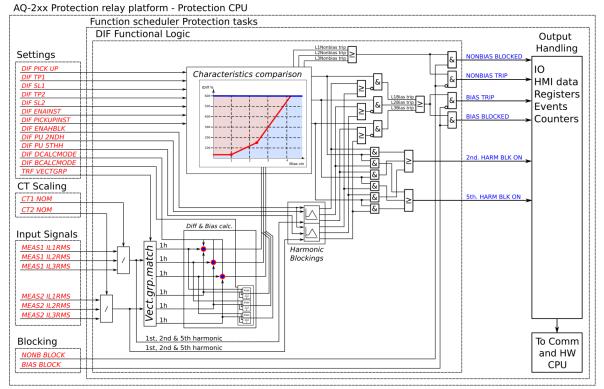


Figure. 5.4.27 - 151. Example waveforms.

Traditionally, the ratio between the 5th harmonic and the fundamental frequency component has been used in blocking the differential relay from tripping in overvoltage and overexcitation situations. However, the ratio is not a reliable method because you need to know the magnetizing properties and the hysteresis values exactly in order to set it correctly and for it to be of any use.

The figures below present the system voltage and the magnitude of the 5th harmonic component (both in per-unit), absolute and scaled to the transformer nominal.




Figure. 5.4.27 - 152. System voltage and magnitude of the 5th harmonic component.

As can be seen in the figure above, the 5th harmonic component first increases, then decreases and then increases again as the system voltage rises. In this case the 5th harmonic seems to disappear completely when around an overvoltage of 160 %. When the harmonic behaves this way, the previously mentioned blocking can be used as it automatically blocks on a smaller overvoltage (in case there is any differential current) and releases when the overvoltage is too heavy and the differential current is most probably over the tripping limit.

However, one should note that the behavior of this blocking is very unpredictable if the exact saturation characteristic and the transformer design are not known. If there is a chance that the overexcitation can cause problems (that is, no overvoltage relays are available), this blocking can be enabled with the setting of 30...40 % with the disturbance recorder enabled. If a trip occurs as a result of overexcitation, the settings can be adjusted based on the data captured by the disturbance recorder.

Differential function details

Figure. 5.4.27 - 153. Simplified function block diagram of the transformer differential function.

The transformer differential function outputs TRIP and BLOCKED signals from the biased and nonbiased functions as well as the 2nd and 5th harmonic block activation signals. These signals can be used in protection applications.

Settings and signals

The settings of the differential function are a combination of transformer monitor and differential stage function settings. The following table shows the function's settings, including the general settings (in p.u.) used for pre-calculations.

Name	Range	Step	Default	Function	Description
ldx> LN mode	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	1: On	-	Set mode of DIF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

Table. 5.4.27 - 226. Settings related to the differential function's pre-calculation.

AQ-G257 Instruction manual

Version: 2.08

Name	Range	Step	Default	Function	Description
ldx> force status to	0: Normal 1: Idb Blocked 2: Idb Trip 3: Idi Blocked 4: Idi Trip 5: H2block On 6: H5block On 7: HV I0d> Block On 8: HV I0d> Trip On 9: LV I0d> Block On 10: LV I0d> Trip On	-	0: Normal	-	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
ldx> LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	-	-	Displays the mode of DIF block. This parameter is visible only when <i>Allow setting of</i> <i>individual LN mode</i> is enabled in <i>General</i> menu.
Transformer nominal	0.1500.0MVA	0.1MVA	1.0MVA	All	The nominal MVA of the transformer. This value is used to calculate the nominal currents onf both the HV and the LV side.
HV side nominal voltage	0.1500.0kV	0.1kV	110.0kV	All	The HV side nominal voltage of the transformer. This value is used to calculate the nominal currents of the HV side.
LV side nominal voltage	0.1500.0kV	0.1kV	110.0kV	All	The LV side nominal voltage of the transformer. This value is used to calculate the nominal currents of the LV side.
Transformer Zk%	0.0125.00%	0.01%	3.00%	Info	The transformer's short-circuit impedance in percentages. Used for calculating short-circuit current.
Transformer nom. freq.	1075Hz	1Hz	50Hz	Info	The transformer's nominal frequency. Used for calculating the transformer's nominal short-circuit inductance.
Transf. vect. group	0: Manual 1: Yy0 2: Yyn0 3: YNy0 4: YNyn0 5: Yy6 6: Yyn6 7: YNy6 8: YNyn6 9: Yd1 10: YNd1 11: Yd7 12: YNd7 13: Yd11 14: YNd7 13: Yd11 14: YNd7 13: Yd5 16: YNd5 17: Dy1 18: Dyn1 19: Dy7 20: Dyn7 21: Dy11 22: Dyn11 23: Dy5 24: Dyn5 25: Dd0 26: Dd6	-	1: Yy0	- transformer status monitoring - transformer differential	The selection of the transformer's vector group. The selection values (1–26) are predefined so that the scaling and vector matching are applied in the relay automatically when the correct vector group is selected. The predefinitions assume that the HV side is connected to the CT1 module and that the LV side is connected to the CT2 module. If the protected transformer vector group is not found in the predefined list, it can be manually set by selecting the option "0: Manual set".

Name	Range	Step	Default	Function	Description
HV side Star or Zigzag/ Delta	0: Star/Zigzag 1: Delta	-	0: Star/ Zigzag	- transformer status monitoring - transformer differential	The selection of the HV side connection. Can be selected between star or zigzag and delta. This selection is visible only if the option "Manual set" is selected for the vector group setting.
HV side grounded	0: Not grounded 1: Grounded	-	0: Not grounded	- transformer status monitoring - transformer differential	The selection of whether or not the zero sequence compensation is applied in the HV side current calculation. The selection is visible only if the option "Manual set" is selected for the vector group setting.
HV side lead or lag LV	0: Lead 1: Lag	-	0: Lead	- transformer status monitoring - transformer differential	The selection of whether the HV side leads or lags the LV side. The selection is visible only if the option "Manual set" is selected for the vector group setting.
LV side Star/ Zigzag or Delta	0: Star/Zigzag 1: Delta	-	0: Star/ Zigzag	- transformer status monitoring - transformer differential	The selection of the LV side connection. Can be selected between star or zigzag and delta. This selection is visible only if the option "Manual set" is selected for the vector group setting.
LV side grounded	0: Not grounded 1: Grounded	-	0: Not grounded	- transformer status monitoring - transformer differential	The selection of whether or not the zero sequence compensation is applied in the LV side current calculation. The selection is visible only if the option "Manual set" is selected for the vector group setting.
LV side lead or lag HV	0: Lead 1: Lag	-	0: Lead	- transformer status monitoring - transformer differential	The selection of whether the LV side leads or lags the HV side. The selection is visible only if the option "Manual set" is selected for the vector group setting.
HV-LV side phase angle	0.0360.00deg	0.1deg	0.0deg	- transformer status monitoring - transformer differential	The angle correction factor for HV/LV sides, looked from the HV side. E.g. if the transformer is Dy1, this is set to 30 degrees. The selection is visible only if the option "Manual set" is selected for the vector group setting.
HV-LV side mag correction	0.0100.0×I _n	0.1×In	0.0×In	- transformer status monitoring - transformer differential	The magnitude correction for the HV-LV side currents (in p.u.), if the currents are not directly matched through the calculations of the nominal values. The selection is visible only if the option "Manual set" for the vector group setting.
Check online HV-LV configuration	0: - 1: Check	-	0: -	- transformer status monitoring - transformer differential	The selection of whether or not the function checks the current going through the transformer and then compares it to the settings. For this to work, the transformer needs to have a current flowing on both sides and "see" no faults. The selection is visible only if the option "Manual set" is selected for the vector group setting.
Enable I0d> (REF) HV side	0: Disabled 1: Enabled	-	0: Disabled	- transformer status monitoring - transformer differential	The selection of whether the restricted earth fault stage on the HV side is enabled or disabled.
HV side starpoint meas.	0: IO1 1: IO2	-	0: IO1	- transformer status monitoring - transformer differential	The selection of the starpoint measurement channel for the restricted earth fault protection on the HV side. This setting is only visible if the option "Enabled" is selected for the "Enable IOd> (REF) HV side" setting.
Enable I0d> (REF) LV side	0: Disabled 1: Enabled	-	0: Disabled	- transformer status monitoring - transformer differential	The selection of whether the restricted earth fault stage on the LV side is enabled or disabled.

AQ-G257 Instruction manual

Version: 2.08

Name	Range	Step	Default	Function	Description
LV side starpint meas.	0: IO1 1: IO2	-	0: IO1	- transformer status monitoring - transformer differential	The selection of the starpoint measurement channel for the restricted earth fault protection on the LV side. This setting is only visible if the option "Enabled" is selected for the "Enable IOd> (REF) LV side" setting.

Table. 5.4.27 - 227. Settings for the operating characteristics.

Name	Range	Step	Default	Description
Differential calculation mode	0: Add 1: Subtract	-	1: Subtract	The calculation mode of the differential current. The mode selection depends on the CTs' installation direction and the desired current directions. If the current flow on both sides is in the same direction, the differential current is subtracted. If the current flows are in the opposite directions, the differential current is added.
Bias calculation mode	0: Average 1: Maximum	-	0: Average	The calculation mode of the biasing current. With the average mode the operation may be set to be more sensitive. With the maximum mode the bias is always higher and thus provides a more stable operation.
ldb> Pick- up	0.01100.00%	0.01%	10.00%	The base sensitivity for the differential characteristics.
Turnpoint 1	0.0150.00×I _n	0.01×I _n	1.00×I _n	Turnpoint 1 for the differential characteristics.
Slope 1	0.01250.00%	0.01%	10.00%	Slope 1 for the differential characteristics.
Turnpoint 2	0.0150.00×I _n	0.01×In	3.00×In	Turnpoint 2 for the differential characteristics.
Slope 2	0.01250.00%	0.01%	200.00%	Slope 2 of the differential characteristics-
Enable harmonic blocking	0: No harmonic blocking 1: 2 nd harmonic blocking 2: 5 th harmonic blocking 3: 2 nd and 5 th harmonic blocking	-	1: 2 nd harmonic blocking	The selection of the internal blockings to be used for the detection of transformer normal operations that cause differential currents.
2 nd harmonic blocking pick-up	0.0150.00%	0.01%	15.00%	The pick-up detection for the 2 nd harmonic blocking stage. This setting is only visible if the "Enable harmonic blocking" setting is set to "1" or "3".
5 th harmonic blocking pick-up	0.0150.00%	0.01%	35.00%	The pick-up detection for the 5 th harmonic blocking stage. This setting is only visible if the "Enable harmonic blocking" setting is set to "2" or "3".
Enable Idi> stage	0: Disabled 1: Enabled	-	1: Enabled	The selection of whether the non-biased and the non-blocked differential stage is enabled or disabled.
ldi> Non- biased pick-up	200.001500.00%	0.01%	600.00%	The pick-up setting for the non-biased and non-blocked differential stage. This setting is only visible if the "Enable Idi> stage" is disabled.
HV I0d> Pick-up	0.01100.00%	0.01%	10.00%	The base sensitivity for the HV side restricted earth fault differential characteristics. This setting is only visible if the "Enable IOd> (REF) HV side" setting is enabled.
HV I0d> Turnpoint 1	0.0150.00×I _n	0.01×I _n	1.00×I _n	Turnpoint 1 for the HV side restricted earth fault differential characteristics. This setting is only visible if the "Enable I0d> (REF) HV side" setting is enabled.
HV I0d> Slope 1	0.01250.00%	0.01%	10.00%	Slope 1 of the HV side restricted earth fault differential characteristics. This setting is only visible if the "Enable I0d> (REF) HV side" setting is enabled.

Name	Range	Step	Default	Description
HV I0d> Turnpoint 2	0.0150.00×I _n	0.01×In	3.00×In	Turnpoint 2 for the HV side restricted earth fault differential characteristics. This setting is only visible if the "Enable I0d> (REF) HV side" setting is enabled.
HV I0d> Slope 2	0.01250.00%	0.01%	200.00%	Slope 2 of the HV side restricted earth fault differential characteristics. This setting is only visible if the "Enable I0d> (REF) HV side" setting is enabled.
LV I0d> Pick-up	0.01100.00%	0.01%	10.00%	The base sensitivity for the LV side restricted earth fault differential characteristics. This setting is only visible if the "Enable IOd> (REF) LV side" setting is enabled.
LV I0d> Turnpoint 1	0.0150.00×I _n	0.01×In	1.00×I _n	Turnpoint 1 for the LV side restricted earth fault differential characteristics. This setting is only visible if the "Enable I0d> (REF) LV side" setting is enabled.
LV I0d> Slope 1	0.01250.00%	0.01%	10.00%	Slope 1 of the LV side restricted earth fault differential characteristics. This setting is only visible if the "Enable I0d> (REF) LV side" setting is enabled.
LV I0d> Turnpoint2	0.0150.00×I _n	0.01×In	3.00×In	Turnpoint 2 for the LV side restricted earth fault differential characteristics. This setting is only visible if the "Enable I0d> (REF) LV side" setting is enabled.
LV I0d> Slope 2	0.01250.00%	0.01%	200.00%	Slope 2 of the LV side restricted earth fault differential characteristics. This setting is only visible if the "Enable I0d> (REF) LV side" setting is enabled.

Table. 5.4.27 - 228. Calculations of the transformer differential function.

Name	Description
L1Bias	The calculated phase L1 bias current
L2Bias	The calculated phase L2 bias current
L3Bias	The calculated phase L3 bias current
L1Diff	The calculated phase L1 differential current
L2Diff	The calculated phase L2 differential current
L3Diff	The calculated phase L3 differential current
L1Char	The calculated phase L1 maximum differential current allowed with current bias level
L2Char	The calculated phase L1 maximum differential current allowed with current bias level
L3Char	The calculated phase L1 maximum differential current allowed with current bias level
HV I0d> Bias current	The calculated HV side restricted earth fault bias current
HV I0d> Diff current	The calculated HV side restricted earth fault differential current
HV I0d> Char current	The calculated HV side restricted earth fault differential current allowed with current bias level
LV I0d> Bias current	The calculated LV side restricted earth fault bias current
LV I0d> Diff current	The calculated LV side restricted earth fault differential current
LV I0d> Char current	The calculated LV side restricted earth fault differential current allowed with current bias level

Table. 5.4.27 - 229. Output signals of the transformer differential function.

Name	Description
Idb> Bias Trip	The TRIP output signal from the biased differential stage
Idi> Nobias Trip	The TRIP output signal from the non-biased and non-blocked differential stage
Idb> Bias Blocked	The BLOCKED output from the biased differential stage (external blocking)

Name	Description
Idi> Bias Blocked	The BLOCKED output from the non-biased and non-blocked differential stage (external blocking)
Idb> 2 nd harm block on	The output of the 2 nd harmonic activation signal
ldb> 5 th harm block on	The output of the 5 th harmonic activation signal
HV I0d> Trip	The TRIP output signal from the biased restricted earth fault differential stage on the HV side
HV I0d> Trip	The BLOCKED output signal from the biased restricted earth fault differential stage on the HV side
LV I0d> Trip	The TRIP output signal from the biased restricted earth fault differential stage on the LV side
LV I0d> Trip	The BLOCKED output signal from the biased restricted earth fault differential stage on the LV side

Events and registers

The transformer differential function (abbreviated "DIF" in event block names) generates events from internal status changes. The data register is available, based on the changes in the tripping events.

Table. 5.4.27 - 230. Event messages.

Event block name	Event names
DIF1	ldb> Trip ON
DIF1	Idb> Trip OFF
DIF1	Idb> Blocked (ext) ON
DIF1	Idb> Blocked (ext) OFF
DIF1	Idi> Trip ON
DIF1	Idi> Trip OFF
DIF1	Idi> Blocked (ext) ON
DIF1	Idi> Blocked (ext) OFF
DIF1	2 nd Harmonic Block ON
DIF1	2 nd Harmonic Block OFF
DIF1	5 th Harmonic Block ON
DIF1	5 th Harmonic Block OFF
DIF1	L1 2 nd harmonic ON
DIF1	L1 2 nd harmonic OFF
DIF1	L2 2 nd harmonic ON
DIF1	L2 2 nd harmonic OFF
DIF1	L3 2 nd harmonic ON
DIF1	L3 2 nd harmonic OFF
DIF1	L1 5 th harmonic ON
DIF1	L1 5 th harmonic OFF
DIF1	L2 5 th harmonic ON
DIF1	L2 5 th harmonic OFF

Event block name	Event names
DIF1	L3 5 th harmonic ON
DIF1	L3 5 th harmonic OFF
DIF1	HV I0d> Block ON
DIF1	HV I0d> Block OFF
DIF1	HV I0d> Trip ON
DIF1	HV I0d> Trip OFF
DIF1	LV I0d> Block ON
DIF1	LV I0d> Block OFF
DIF1	LV I0d> Trip ON
DIF1	LV I0d> Trip OFF

The function registers its operation into the last twelve (12) time-stamped registers. The table below presents the structure of the function's register content.

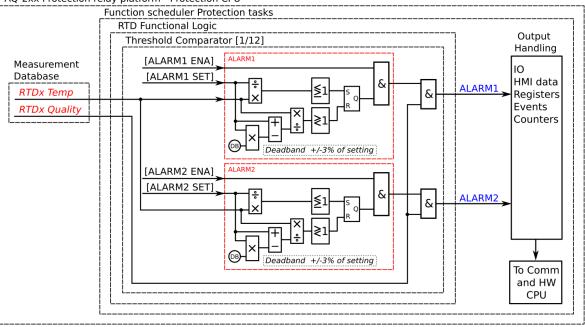

Name	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
L1 bias current	Phase L1 bias current
L1 diff. current	Phase L1 maximum differential current
L1 char. current	Phase L1 maximum differential current with bias
L2 bias current	Phase L2 bias current
L2 diff. current	Phase L2 maximum differential current
L2 char. current	Phase L2 maximum differential current with bias
L3 bias current	Phase L3 bias current
L3 diff. current	Phase L3 maximum differential current
L3 char. current	Phase L3 maximum differential current with bias
HV I0d> bias current	HV side REF bias current
HV I0d> differential current	HV side REF differential current
HV I0d> characteristics current	HV side REF maximum differential current with bias
LV I0d> bias current	LV side REF bias current
LV I0d> differential current	LV side REF differential current
LV I0d> characteristics current	LV side REF maximum differential current with bias
Used SG	Setting group in use
Ftype	Detected fault type (faulty phases)

Table. 5.4.27 - 231. Register content.

5.4.28 Resistance temperature detectors (RTD)

Resistance temperature detectors (or RTDs) can be used to measure both temperatures of motors/ generators and ambient temperatures. Typically an RTD is a thermocouple or of type PT100. Up to three (3) separate RTD modules based on an external Modbus are supported; each can hold up to eight (8) measurement elements. Up to two (2) separate RTD option cards are supported by this function. Sixteen (16) individual element monitors can be set for this alarm function, and each of those can be set to alarm two (2) separate alarms from one selected input. The user can set alarms and measurements to be either in degrees Celsius or Fahrenheit.

The following figure shows the principal structure of the resistance temperature detection function.

AQ-2xx Protection relay platform - Protection CPU

Setting up an RTD measurement, the user first needs to set the measurement module to scan the wanted RTD elements. A multitude of Modbus-based modules are supported. Communication requires bitrate, databits, parity, stopbits and Modbus I/O protocol to be set; this is done at *Communication* \rightarrow *Connections.* Once communication is set, the wanted channels are selected at *Communication* \rightarrow *Protocols* \rightarrow *ModbusIO*. Then the user selects the measurement module from the three (3) available modules (A, B and C), as well as the poll address. Additionally, both the module type and the polled channels need to be set. When using a thermocouple module, the thermo element type also needs to be set for each of the measurement channels. Once these settings are done the RTDs are ready for other functions.

Figure. 5.4.28 - 154. RTD alarm setup.

eneratorModule SGSTAT <mark>O RTD</mark>		
T> [RTD1]		
RTD Settings		
RTD Sensor 1 setting	gs	
S1 enable	Yes *	
S1 Module	ExtModuleA 💌 👫	
51 Channel	Ch0 +*	
S1 Deg C / Deg F	Dea C 🔫 **	
51 Measurement(P)	0 deg -200.02000.0 [0.1]	
S1 Sensor	Invalid Open Circuit 💌	
S1 Enable Alarm1	Enable **	
51 Alarm1 > / <	> **	
51 Alarm1	0 deg	
51 Enable Alarm2	Enable **	
51 Alarm2 > / <	< **	
51 Alarm2	0 deg ** -200.02000.0 [0.1]	

Function can be set to monitor the measurement data from previously set RTD channels. A single channel can be set to have several alarms if the user sets the channel to multiple sensor inputs. In each sensor setting the user can select the monitored module and channel, as well as the monitoring and alarm setting units (°C or °F). The alarms can be enabled, given a setting value (in degrees), and be set to trigger either above or below the setting value. There are sixteen (16) available sensor inputs in the function. An active alarm requires a valid channel measurement. It can be invalid if communication is not working or if a sensor is broken.

Settings

Table. 5.4.28 - 232. General settings of the function.

Name	Range	Default	Description
RTD LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	0: On	Set mode of RTD block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
RTD LN behaviour	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	-	Displays the mode of RTD block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

Table. 5.4.28 - 233. Function settings for Channel x (Sx).

Name	Range	Step	Default	Description
S1S16 enable	S16 enable 0: No 1: Yes		0: No	Enables/disables the selecion of sensor measurements and alarms.
S1S16 module	0: InternalRTD1 1: InternalRTD2 2: ExtModuleA 3: ExtModuleB 4: ExtModuleC	-	0: InternalRTD1	Selects the measurement module. Internal RTD modules are option cards installed to the relay. External modules are Modbus based external devices.
S1S16 channel	0: Channel 0 1: Channel 1 3: Channel 2 4: Channel 3 5: Channel 4 6: Channel 5 7: Channel 6 8: Channel 7	-	0: Channel 0	Selects the measurement channel in the selected module.
S1S16 Deg C/Dec F	0: Deg C 1: Deg F	-	0: Deg C	Selects the measurement temperature scale (Celsius or Fahrenheit).
S1S16 Measurement	-	-	-	Displays the measurement value in the selected temperature scale.
S1S16 Sensor	0: Ok 1: Invalid	-	-	Displays the measured sensor's data validity. If the sensor reading has any problems, the sensor data is set to "Invalid" and the alarms are not activated.
S1S16 Enable alarm 1	0: Disable 1: Enable	-	0: Disable	Enables/disables the selection of Alarm 1 for the measurement channel x.
S1S16 Alarm1 >/<	0: > 1: <	-	0: >	Selects whether the alarm activates when measurement is above or below the pick-up setting value.
S1S16 Alarm1	-101.02000.0deg	0.1deg	0.0deg	Sets the pick-up value for Alarm 1. The alarm is activated if the measurement goes above or below this setting mode (depends on the selected mode in "Sx Alarm1 >/<").
S1S16 sensor	0: Ok 1: Invalid	-	-	Displays the measured sensor's data validity. If the sensor reading has any problems, the sensor data is set to "Invalid" and the alarms are not activated.
S1S16 Enable alarm 2	0: Disable 1: Enable	-	0: Disable	Enables/disables the selection of Alarm 2 for the measurement channel x.
S1S16 Alarm2 >/<	0: > 1: <	-	0: >	Selects whether the measurement is above or below the setting value.

Name	Range	Step	Default	Description
S1S16 Alarm2	-101.02000.0deg	0.1deg	0.0deg	Sets the value for Alarm 2. The alarm is activated if the measurement goes above or below this setting mode (depends on the selected mode in "Sx Alarm2 >/<").

When the RTDs have been set, the values can be read to SCADA (or some other control system). The alarms can also be used for direct output control as well as in logics.

Events

The resistance temperature detector function (abbreviated "RTD" in event block names) generates events and registers from the status changes in ALARM and MEAS INVALID. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers sixteen (16) independent stages; the events are segregated for each stage operation.

The events triggered by the function are recorded with a time stamp and with process data values. The function registers its operation into the last twelve (12) time-stamped registers.

Event block name	Event names
RTD1	S1 Alarm1 ON
RTD1	S1 Alarm1 OFF
RTD1	S1 Alarm2 ON
RTD1	S1 Alarm2 OFF
RTD1	S2 Alarm1 ON
RTD1	S2 Alarm1 OFF
RTD1	S2 Alarm2 ON
RTD1	S2 Alarm2 OFF
RTD1	S3 Alarm1 ON
RTD1	S3 Alarm1 OFF
RTD1	S3 Alarm2 ON
RTD1	S3 Alarm2 OFF
RTD1	S4 Alarm1 ON
RTD1	S4 Alarm1 OFF
RTD1	S4 Alarm2 ON
RTD1	S4 Alarm2 OFF
RTD1	S5 Alarm1 ON
RTD1	S5 Alarm1 OFF
RTD1	S5 Alarm2 ON
RTD1	S5 Alarm2 OFF
RTD1	S6 Alarm1 ON
RTD1	S6 Alarm1 OFF
RTD1	S6 Alarm2 ON
RTD1	S6 Alarm2 OFF

Table. 5.4.28 - 234. Event messages.

AQ-G257 Instruction manual

Version: 2.08

Event block name	Event names
RTD1	S7 Alarm1 ON
RTD1	S7 Alarm1 OFF
RTD1	S7 Alarm2 ON
RTD1	S7 Alarm2 OFF
RTD1	S8 Alarm1 ON
RTD1	S8 Alarm1 OFF
RTD1	S8 Alarm2 ON
RTD1	S8 Alarm2 OFF
RTD1	S9 Alarm1 ON
RTD1	S9 Alarm1 OFF
RTD1	S9 Alarm2 ON
RTD1	S9 Alarm2 OFF
RTD1	S10 Alarm1 ON
RTD1	S10 Alarm1 OFF
RTD1	S10 Alarm2 ON
RTD1	S10 Alarm2 OFF
RTD1	S11 Alarm1 ON
RTD1	S11 Alarm1 OFF
RTD1	S11 Alarm2 ON
RTD1	S11 Alarm2 OFF
RTD1	S12 Alarm1 ON
RTD1	S12 Alarm1 OFF
RTD1	S12 Alarm2 ON
RTD1	S12 Alarm2 OFF
RTD1	S13 Alarm1 ON
RTD1	S13 Alarm1 OFF
RTD1	S13 Alarm2 ON
RTD1	S13 Alarm2 OFF
RTD1	S14 Alarm1 ON
RTD1	S14 Alarm1 OFF
RTD1	S14 Alarm2 ON
RTD1	S14 Alarm2 OFF
RTD1	S15 Alarm1 ON
RTD1	S15 Alarm1 OFF
RTD1	S15 Alarm2 ON
RTD1	S15 Alarm2 OFF
RTD1	S16 Alarm1 ON
RTD1	S16 Alarm1 OFF

Event block name	Event names
RTD1	S16 Alarm2 ON
RTD1	S16 Alarm2 OFF
RTD2	S1 Meas Ok
RTD2	S1 Meas Invalid
RTD2	S2 Meas Ok
RTD2	S2 Meas Invalid
RTD2	S3 Meas Ok
RTD2	S3 Meas Invalid
RTD2	S4 Meas Ok
RTD2	S4 Meas Invalid
RTD2	S5 Meas Ok
RTD2	S5 Meas Invalid
RTD2	S6 Meas Ok
RTD2	S6 Meas Invalid
RTD2	S7 Meas Ok
RTD2	S7 Meas Invalid
RTD2	S8 Meas Ok
RTD2	S8 Meas Invalid
RTD2	S9 Meas Ok
RTD2	S9 Meas Invalid
RTD2	S10 Meas Ok
RTD2	S10 Meas Invalid
RTD2	S11 Meas Ok
RTD2	S11 Meas Invalid
RTD2	S12 Meas Ok
RTD2	S12 Meas Invalid
RTD2	S13 Meas Ok
RTD2	S13 Meas Invalid
RTD2	S14 Meas Ok
RTD2	S14 Meas Invalid
RTD2	S15 Meas Ok
RTD2	S15 Meas Invalid
RTD2	S16 Meas Ok
RTD2	S16 Meas Invalid

5.4.29 Arc fault protection (IArc>/I0Arc>; 50Arc/50NArc)

Arc faults occur for a multitude of reasons: e.g. insulation failure, incorrect operation of the protected device, corrosion, overvoltage, dirt, moisture, incorrect wiring, or even because of aging caused by electric load. It is important to detect the arc as fast as possible in order to minimize its effects. Using arc sensors to detect arc faults is much faster than merely measuring currents and voltages. In busbar protection IEDs with normal protection can be too slow to disconnect arcs within a safe time frame. For example, it may be necessary to delay operation time for hundreds of milliseconds when setting up an overcurrent protection relay to control the feeder breakers to achieve selectivity. This delay can be avoided by using arc protection. The arc protection card has a high-speed output to trip signals faster as well as to extend the speed of arc protection.

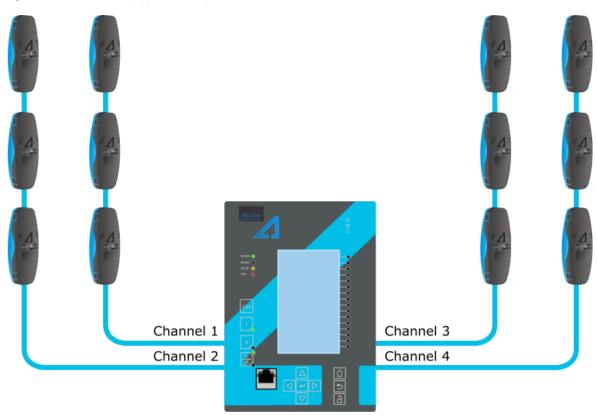


Figure. 5.4.29 - 155. IED equipped with arc protection.

The arc protection card has four (4) sensor channels, and up to three (3) arc point sensors can be connected to each channel. The sensor channels support Arcteq AQ-01 (light sensing) and AQ-02 (pressure and light sensing) units. Optionally, the protection function can also be applied with a phase current or a residual current condition: the function trips only if the light and overcurrent conditions are met.

The outputs of the function are the following:

- Light In
- Pressure In
- Arc binary input signal status
- Zone trip
- Zone blocked
- Sensor fault signals.

The arc protection function uses a total of eight (8) separate setting groups which can be selected from one common source.

Table. 5.4.29 - 235. Output signals of the IArc>/I0Arc> function.

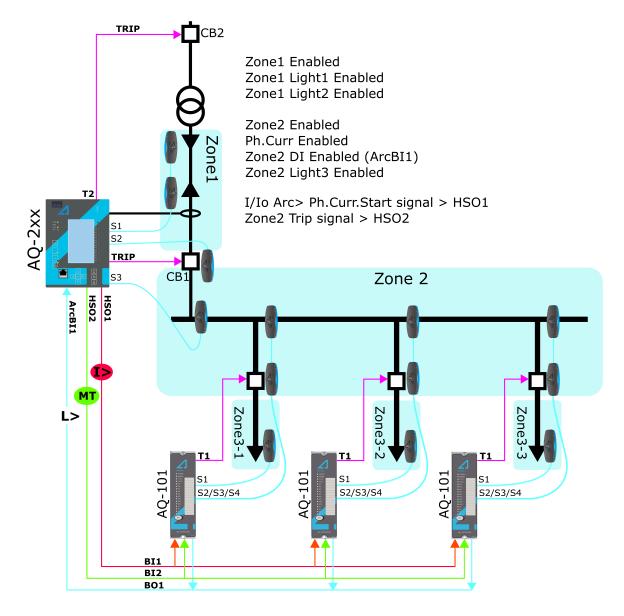
Outputs	Activation condition
Channel 1 Light In Channel 2 Light In Channel 3 Light In Channel 4 Light In	The arc protection card's sensor channel detects light.
Channel 1 Pressure In Channel 2 Pressure In Channel 3 Pressure In Channel 4 Pressure In	The arc protection card's sensor channel detects pressure.
ARC Binary input signal	The arc protection card's binary input is energized.
I/I0 Arc> Ph. curr. START I/I0 Arc> Res. curr. START	The measured phase current or the residual current is over the set limit.
I/I0 Arc> Ph. curr. BLOCKED I/I0 Arc> Res. curr. BLOCKED	The phase current or the residual current measurement is blocked by an input.
I/I0 Arc> Zone 1 TRIP I/I0 Arc> Zone 2 TRIP I/I0 Arc> Zone 3 TRIP I/I0 Arc> Zone 4 TRIP	All required conditions for tripping the zone are met (light OR light and current).
I/I0 Arc> Zone 1 BLOCKED I/I0 Arc> Zone 2 BLOCKED I/I0 Arc> Zone 3 BLOCKED I/I0 Arc> Zone 4 BLOCKED	All required conditions for tripping the zone are met (light OR light and current) but the tripping is blocked by an input.
I/I0 Arc> S1 Sensor fault I/I0 Arc> S2 Sensor fault I/I0 Arc> S3 Sensor fault I/I0 Arc> S4 Sensor fault	The detected number of sensors in the channel does not match the settings.
I/I0 Arc> IO unit fault	The number of connected AQ-100 series units does not match the number of units set in the settings.

The operational logic consists of the following:

- input magnitude selection
- input magnitude processing
- threshold comparator
- block signal check
- output processing.

The inputs for the function are the following:

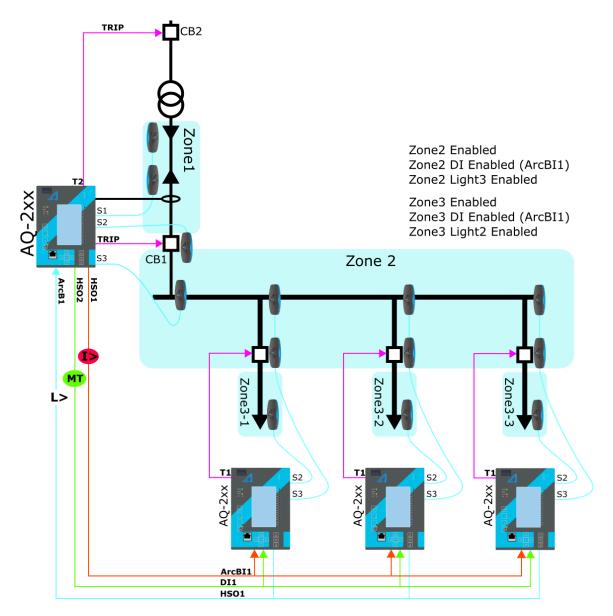
- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed current magnitudes.


The function's outputs are TRIP, BLOCKED, light sensing etc. signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the 26 output signals. The time stamp resolution is 1 ms. The function also a resettable cumulative counter for the TRIP and BLOCKED events for each zone.

Example of scheme setting

The following examples helps the user better understand how the arc protection function is set. In the examples AQ-101 models are used to extend the protection of Zone 2 and to protect each outgoing feeder (Zone 3).

Scheme IA1 is a single-line diagram with AQ-2xx series relays and with AQ-101 arc protection relays. The settings are for an incomer AQ-200 relay.


Figure. 5.4.29 - 156. Scheme IA1 (with AQ-101 arc protection relays).

To set the zones for the AQ-2xx models sensor channels start by enabling the protected zones (in this case, Zones 1 and 2). Then define which sensor channels are sensing which zones (in this case, sensor channels S1 and S2 are protecting Zone 1). Enable Light 1 of Zone 1 as well as Light 2 of Zone 2. The sensor channel S3 deals with Zone 2. Enable Light 3 of Zone 2. The high-speed output contacts HSO1 and HSO2 have been set to send overcurrent and master trip signals to the AQ-101 arc protection relays. The AQ-100 series units send out test pulses in specific intervals to check the health of the wiring between the AQ-100 series units. The parameter *I/I0 Arc> Self supervision test pulse* should be activated when connecting the AQ-100 series units to the AQ-200 series arc protection card to prevent the pulses from activating ArcBI1.

The next example is almost like the previous one: it is also a single-line diagram with AQ-2xx series relays. However, this time each outgoing feeder has an AQ-2xx protection relay instead of an AQ-101 arc protection relay.

Figure. 5.4.29 - 157. Scheme IA1 (with AQ-200 protection relays).

The settings for the relay supervising the incoming feeder are the same as in the first example. The relays supervising the busbar and the outgoing feeder, however, have a different setting. Both Zones 2 and 3 need to be enabled as there are sensors connected to both Zone 2 and 3 starts. Sensors connected to the channel S3 are in Zone 2. Then enable Light 3 of Zone 2. The sensor connected to the channel S2 is in Zone 3. Then enable Light 2 of Zone 3.

If any of the channels have a pressure sensing sensor, enable it the same way as the regular light sensors. If either phase overcurrent or residual overcurrent is needed for the tripping decision, they can be enabled in the same way as light sensors in the zone. When a current channel is enabled, the measured current needs to be above the set current limit in addition to light sensing.

Measured input

Arc protection uses samples based on current measurements. If the required number of samples is found to be above the setting limit, the current condition activates. The arc protection can alternatively use either phase currents or residual currents in the tripping decision.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description		
I/I0 Arc> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of ARC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.		
I/I0 Arc> force status to	0: Normal 1: PH curr blocked 2: PH curr Start 3: ResCurr Blocked 4: ResCurr Start 5: Zone 1 Trip 6: Zone 1 Blocked 7: Zone2 Trip 8: Zone2 Blocked 9: Zone3 Trip 10: Zone3 Blocked 11: Zone4 Trip 12: Zone4 Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.		
Channel 1 sensors					
Channel 2 sensors	0: No sensors	1: No			
Channel 3 sensors	1: 1 sensor 2: 2 sensors 3: 3 sensors	sensors	Defines the number of sensors connected to the channel (channels 1/2/3/4).		
Channel 4 sensors					
Channel 1 sensor status	0: Sensors OK		Displays the status of the sensor channel. If the number of sensors connected to the		
Channel 2 sensor status	e en igeneriten		channel does not match with the set "Channel 1/2/3/4 sensors" setting, this parameter will go to the "Configuration fault" state.		

Name	Range	Default	Description
Channel 3 sensor status			
Channel 4 sensor status			

Pick-up

The pick-up of each zone of the larc>/I0arc> function is controlled by one of the following: the phase current pick-up setting, the residual current pick-up setting, or the sensor channels. The pick-up setting depends on which of these are activated in the zone.

Table. 5.4.29 - 237	Enabled Zone pick-up settings.
---------------------	--------------------------------

Name	Description	Range	Step	Default
Phase current pick-up	The phase current measurement's pick-up value (in p.u.).	0.0540.00 x I _n	0.01 x I _n	1.2 x I _n
I0 input selection	Selects the residual current channel (101 or 102).	0: None 1: I01 2: I02	-	0: None
Res.current pick-up	The residual current measurement's pick-up value (in p.u.).	0.0540.00 x I _{0n}	0.01 x l _{0n}	1.2 x I _{0n}
Zone1/2/3/ 4 Enabled	Enables the chosen zone. Up to 4 zones can be enabled.	0: Disabled 1: Enabled	-	0: Disabled
Zone1/2/3/ 4 Ph. curr. Enabled	The phase overcurrent allows the zone to trip when light is detected.	0: Disabled 1: Enabled	-	0: Disabled
Zone1/2/3/ 4 Res. curr. Enabled	The residual overcurrent allows the zone to trip when light is detected.	0: Disabled 1: Enabled	-	0: Disabled
Zone1/2/3/ 4 Light 1 Enabled	Light detected in sensor channel 1 trips the zone.	0: Disabled 1: Enabled	-	0: Disabled
Zone1/2/3/ 4 Light 2 Enabled	Light detected in sensor channel 2 trips the zone.	0: Disabled 1: Enabled	-	0: Disabled
Zone1/2/3/ 4 Light 3 Enabled	Light detected in sensor channel 3 trips the zone.	0: Disabled 1: Enabled	-	0: Disabled
Zone1/2/3/ 4 Light 4 Enabled	Light detected in sensor channel 4 trips the zone.	0: Disabled 1: Enabled	-	0: Disabled
Zone1/2/3/ 4 Pres. 1 Enabled	Pressure detected in sensor channel 1 trips the zone.	0: Disabled 1: Enabled	-	0: Disabled
Zone1/2/3/ 4 Pres. 2 Enabled	Pressure detected in sensor channel 2 trips the zone.	0: Disabled 1: Enabled	-	0: Disabled
Zone1/2/3/ 4 Pres. 3 Enabled	Pressure detected in sensor channel 3 trips the zone.	0: Disabled 1: Enabled	-	0: Disabled

Name	Description	Range	Step	Default
Zone1/2/3/ 4 Pres. 4 Enabled	Pressure detected in sensor channel 4 trips the zone.	0: Disabled 1: Enabled	-	0: Disabled
Zone1/2/3/ 4 DI Enabled	Arc protection option card digital input function selection. "Light In" mode trips the zone when digital input is active. In "Current In" mode digital input must be active at the same time as any of the sensor channels for the zone to trip.	0: Disabled 1: Light In 2: Current In	-	0: Disabled

The pick-up activation of the function is not directly equal to the TRIP signal generation of the function. The TRIP signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Description
I/I0 Arc> LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	Displays the mode of ARC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I/I0 Arc> condition	0: Z1 Trip 1: Z1 Blocked 2: Z2 Trip 3: Z2 Blocked 4: Z3 Trip 5: Z3 Blocked 6: Z4 Trip 7:Z4 Blocked	Displays status of the protection function.
Sensor status	0: Ph Curr Blocked 1: Ph Curr Start 2: Res Curr Blocked 3: Res Curr Start 4: Channel1 Light 5: Channel1 Pressure 6: Channel2 Light 7: Channel2 Pressure 8: Channel3 Light 9: Channel3 Pressure 10: Channel4 Ligh t11: Channel4 Pressure 12: Digital input 13: I/I0 Arc> Sensor 1 Fault 14: I/I0 Arc> Sensor 2 Fault 15: I/I0 Arc> Sensor 3 Fault 16: I/I0 Arc> Sensor 4 Fault 17: I/I0 Arc> I/O-unit Fault	Displays the general status of sensors.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a TRIP signal is generated.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup current values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

The arc fault protection function (abbreviated "ARC" in event block names) generates events and registers from the status changes in START, TRIP, and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names		
ARC1	Zone 1 Trip ON		
ARC1	Zone 1 Trip OFF		
ARC1	Zone 1 Block ON		
ARC1	Zone 1 Block OFF		
ARC1	Zone 2 Trip ON		
ARC1	Zone 2 Trip OFF		
ARC1	Zone 2 Block ON		
ARC1	Zone 2 Block OFF		
ARC1	Zone 3 Trip ON		
ARC1	Zone 3 Trip OFF		
ARC1	Zone 3 Block ON		
ARC1	Zone 3 Block OFF		
ARC1	Zone 4 Trip ON		
ARC1	Zone 4 Trip OFF		
ARC1	Zone 4 Block ON		
ARC1	Zone 4 Block OFF		
ARC1	Phase current Blocked ON		
ARC1	Phase current Blocked OFF		
ARC1	Phase current Start ON		

Table. 5.4.29 - 239. Event messages.

AQ-G257 Instruction manual

Version: 2.08

Event block name	Event names			
ARC1	Phase current Start OFF			
ARC1	Residual current Blocked ON			
ARC1	Residual current Blocked OFF			
ARC1	Residual current Start ON			
ARC1	Residual current Start OFF			
ARC1	Channel 1 Light ON			
ARC1	Channel 1 Light OFF			
ARC1	Channel 1 Pressure ON			
ARC1	Channel 1 Pressure OFF			
ARC1	Channel 2 Light ON			
ARC1	Channel 2 Light OFF			
ARC1	Channel 2 Pressure ON			
ARC1	Channel 2 Pressure OFF			
ARC1	Channel 3 Light ON			
ARC1	Channel 3 Light OFF			
ARC1	Channel 3 Pressure ON			
ARC1	Channel 3 Pressure OFF			
ARC1	Channel 4 Light ON			
ARC1	Channel 4 Light OFF			
ARC1	Channel 4 Pressure ON			
ARC1	Channel 4 Pressure OFF			
ARC1	DI Signal ON			
ARC1	DI Signal OFF			
ARC1	I/I0 Arc> Sensor 1 Fault ON			
ARC1	I/I0 Arc> Sensor 1 Fault OFF			
ARC1	I/I0 Arc> Sensor 2 Fault ON			
ARC1	I/I0 Arc> Sensor 2 Fault OFF			
ARC1	I/I0 Arc> Sensor 3 Fault ON			
ARC1	I/I0 Arc> Sensor 3 Fault OFF			
ARC1	I/I0 Arc> Sensor 4 Fault ON			
ARC1	I/I0 Arc> Sensor 4 Fault OFF			
ARC1	I/I0 Arc> I/O-unit Fault ON			
ARC1	I/I0 Arc> I/O-unit Fault OFF			

The function registers its operation into the last twelve (12) time-stamped registers. The table below presents the structure of the function's register content.

Table. 5.4.29 - 240. Register content.

Dat	e and time	Event	Phase A current	Phase B current	Phase C current	Residual current	Active sensors	Used SG
	m.yyyy m:ss.mss	Event name	Trip current	Trip current	Trip current	Trip current	14	Setting group 18 active

5.4.30 Voltage memory

Certain protection functions (such as impedance or directional overcurrent) use the relay's measured current and voltage to determine whether the electrical network fault appears to be inside the protected area. The determination is made by comparing the angle between the operating quantity (zone/tripping area) and the actual measured quantity. The function then produces an output when the required terms are met.

In close-in faults the system voltage on the secondary side may fall down to a few volts or close to nothing. In such cases, when the measured voltage is absent, the fault direction cannot be solved. As backup, non-directional protection can be used for tripping, but in such cases the selectivity of the network will reduce. However, an angle memory for voltage can be used to prevent this from happening. An adjustable voltage level with pre-fault voltage angles can be used as a reference for fault direction and/or distance. The reference can be set manually for duration. Thanks to the configurable voltage memory even time-delayed backup tripping can be initiated.

The user can activate voltage memory (and find all related settings) by following this path in relay settings: *Measurement* \rightarrow *Transformers* \rightarrow *VT Module* (*3U/4U*) 1 \rightarrow *Voltage memory* ("Activated"/"Disabled").

The activation of voltage memory depends of following criteria:

- 1. All used line-to-line or line-to-neutral voltages need to be below the set value for the "VMEM activation voltage" parameter.
- 2. At least one phase current must be above the set value for the "Measured current condition 3I>" parameter. This setting limit is <u>optional</u>.

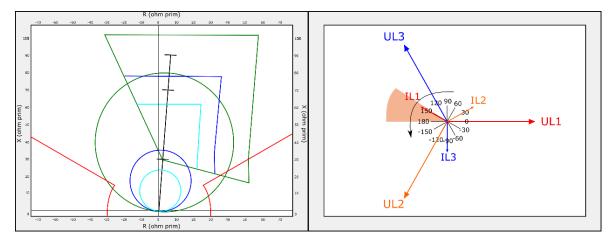
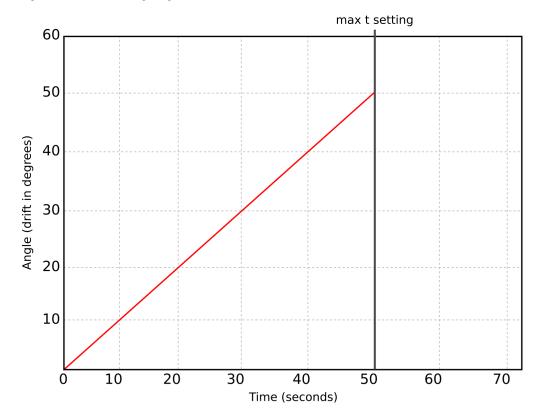



Figure. 5.4.30 - 158. Distance protection characteristics and directional overcurrent.

Voltage memory activates when the above-mentioned criteria are met. Voltage memory uses the "VMEM activation voltage" parameter as voltage amplitude even when the actual measured voltage has decreased below it or close to zero. The angle used by this function is the one captured the moment before the fault occurred and voltage memory was activated. When voltage memory is activated, the output "Voltage memory on" signal is activated. This signal can be found in the device's I/ O matrix.

While voltage memory is active, voltages are absent and therefore angle measurement is not possible. Healthy state angles (before a fault) are used during a fault. This is why a drift between the assumed voltage angle and the actual measured phase current angle takes place. While voltage memory is used, the angle of phase currents drifts approximately one degree for each passing second (see the graph below).

The blocking signal for voltage memory can be found among other stage-related settings in the tab VT *Module (3U/4U)* 1. The blocking signal is checked in the beginning of each program cycle.

Measured input

The function block uses analog voltage and current measurements' RMS values.

Table. 5.4.30 - 241. Measurement inputs of the voltage memory function.

Signal	Description	Time base
IL1RMS	RMS measurement of phase L1 (A) current	5ms
IL2RMS	RMS measurement of phase L2 (B) current	5ms
IL3RMS	RMS measurement of phase L3 (C) current	5ms
U1RMS	RMS measurement of voltage U1/V	5ms
U2RMS	RMS measurement of voltage U ₂ /V	5ms
U3RMS	RMS measurement of voltage U ₃ /V	5ms
U4RMS	RMS measurement of voltage U4/V	5ms

Voltage measurement modes 3LN and 3LL use three voltage inputs: channels U_A , U_B and U_C . When the voltage mode is set to 2LL, only two channels (U_A and U_B) are in use, and the memory is based on the line-to-line voltages U_{12} and U_{32} . When the mode 2LL+U0 is used, the memory is based on calculated phase-to-neutral voltages.

Pick-up

VMEM activation voltage and Measured current condition 3I>

When the voltage memory function is enabled, it activates when all line voltages drop below the "VMEM activation voltage" threshold limit. This limit can be set to be anything between 2...50 V AC. When "Measured current condition 3I>" is used, activation cannot be based on just the voltage. Therefore, at least one of the three-phase currents must also rise above the set current pick-up setting.

VMEM max active time

Voltage memory can be active for a specific period of time, set in "VMAX active time". It can be anything between 0.02...50.00 seconds. The function supports the definite time (DT) delay type. It depends on the application for how long the memory should be used. During massive bolted faults, the fault should be cleared and the breaker opened as soon as possible; therefore, a short operating time for voltage memory is usually applied. A typical delay for voltage memory is between 0.5...1.0 s. When the operating time passes and voltage memory is no longer used, directional overcurrent and/or distance protection goes to the unidirectional mode to secure a safe tripping. The memory uses longer operating times when a backup protection is applied (e.g. in distance-protection zones are farther away).

Forced CT f tracking on VMEM

While fixed frequency tracking is used, all protection stage-based sampling (apart from frequency protection) is based on a set fixed frequency such as 50 Hz or 60 Hz. When the frequency drops massively during a fault while angle memory is in use, it is also possible that the frequency of the system starts to fluctuate. In such cases, if current sampling of used protection stages is based on 50/ 60 Hz, there could be an error in current magnitude and in angle measurement. To minimize these errors, it is recommended that the frequency is measured and protection-based sampling from the current is performed while voltages are gone.

When the "Forced CT f tracking" parameter is activated and voltages are gone, the frequency from the selected current-based reference channel 3 (the current from IL3) is used for current sampling. This eliminates any possible measurement errors in the fixed frequency mode.

Freq. Settings	
f Ref1	¥T1U1 👻 ***
f Ref2	¥T1U2 <
f Ref3	CT11L3

Figure. 5.4.30 - 160. Frequency reference channels.

For example, let us say a 500 A current is measured on the primary side while the <u>fixed</u> frequency is set to 50 Hz. This results in the frequency dropping to 46 Hz, while the actual current measurement would be 460 A. Therefore, the system would have an error of 40 A.

Events

The voltage memory function (abbreviated "M1VT" in event block names) generates events from the status changes in various activities. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

Table. 5.4.30 - 242. Event messages.

Event block name	Event names		
M1VT1	Voltage memory enabled		

Event block name	Event names
M1VT1	Voltage memory disabled
M1VT1	Voltage low detected ON
M1VT1	Voltage low detected OFF
M1VT1	Current high detected ON
M1VT1	Current high detected OFF
M1VT1	Frequency tracked from CT ON
M1VT1	Frequency tracked from CT OFF
M1VT1	Using Voltage memory ON
M1VT1	Using Voltage memory OFF
M1VT1	Voltage memory blocked ON
M1VT1	Voltage memory blocked OFF

5.5 Control functions

5.5.1 Common signals

Common signals function has all protection function start and trip signals internally connected to Common START and TRIP output signals. When any of the activated protection functions generate a START or a TRIP signal, Common signals function will also generate the same signal.

The function's outputs are START and TRIP signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the two (2) output signals. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START and TRIP events.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
Common force status to	0: Normal 1: Start 2: Trip	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Table. 5.5.1 - 243. General settings of the function.

Common signals function has all START and TRIP signals of protection functions internally connected to Common START and TRIP output signals. But it is also possible to assign extra signals to activate Common START and TRIP.

Table. 5.5.1 - 2	244. Common	signals	extra inputs.
------------------	-------------	---------	---------------

Name	Description
Common Start In	Assign extra signals to activate common START signal. Please note that all protection function START signals are already assigned internally to Common START.
Common Trip In	Assign extra signals to activate common TRIP signal. Please note that all protection function TRIP signals are already assigned internally to Common TRIP.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table. 5.5.1 - 245. Information displayed by the function.

Name	Range	Step	Description
Common signals condition	0: Normal 1: Start 2: Trip	-	Displays status of the function.

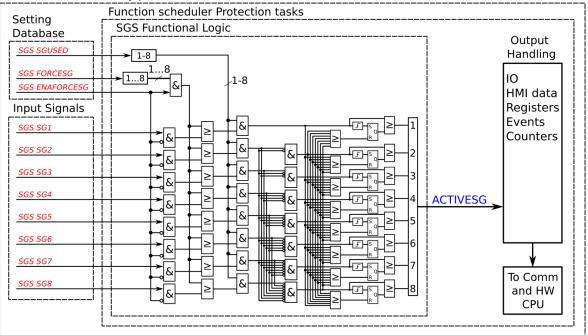
Function blocking

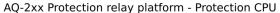
Common signals function itself doesn't have blocking input signals. Blocking of tripping should be done in each protection function settings.

Events and registers

The common signals function (abbreviated "GNSIG" in event block names) generates events and registers from the status changes in START and TRIP. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

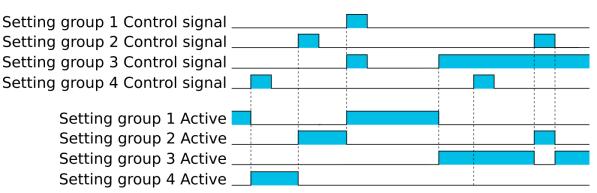

Event block name	Event names
GNSIG	Common Start ON
GNSIG	Common Start OFF
GNSIG	Common Trip ON
GNSIG	Common Trip OFF


5.5.2 Setting group selection

All relay types support up to eight (8) separate setting groups. The Setting group selection function block controls the availability and selection of the setting groups. By default, only Setting group 1 (SG1) is active and therefore the selection logic is idle. When more than one setting group is enabled, the setting group selector logic takes control of the setting group activations based on the logic and conditions the user has programmed.

The following figure presents a simplified function block diagram of the setting group selection function.

Figure. 5.5.2 - 161. Simplified function block diagram of the setting group selection function.



Setting group selection can be applied to each of the setting groups individually by activating one of the various internal logic inputs and connected digital inputs. The user can also force any of the setting groups on when the "Force SG change" setting is enabled by giving the wanted quantity of setting groups as a number in the communication bus or in the local HMI, or by selecting the wanted setting group from *Control* \rightarrow *Setting groups*. When the forcing parameter is enabled, the automatic control of the local device is overridden and the full control of the setting groups is given to the user until the "Force SG change" is disabled again.

Setting groups can be controlled either by pulses or by signal levels. The setting group controller block gives setting groups priority values for situations when more than one setting group is controlled at the same time: the request from a higher-priority setting group is taken into use.

Setting groups follow a hierarchy in which setting group 1 has the highest priority, setting group 2 has second highest priority etc. If a static activation signal is given for two setting groups, the setting group with higher priority will be active. If setting groups are controlled by pulses, the setting group activated by pulse will stay active until another setting groups receives and activation signal.

Figure. 5.5.2 - 162. Example sequences of group changing (control with pulse only, or with both pulses and static signals).

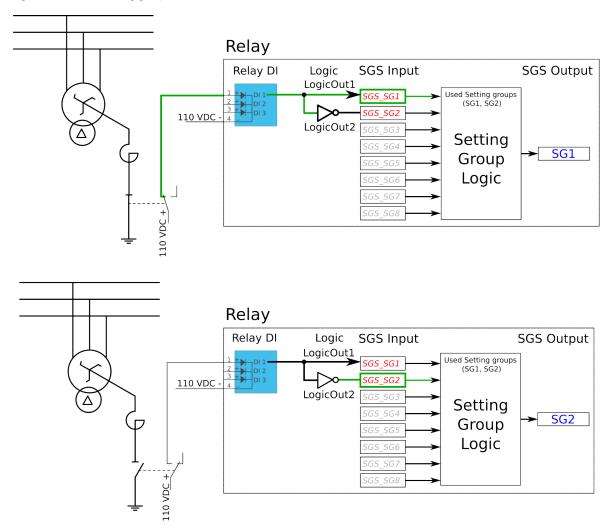
Settings and signals

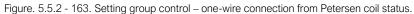
The settings of the setting group control function include the active setting group selection, the forced setting group selection, the enabling (or disabling) of the forced change, the selection of the number of active setting groups in the application, as well as the selection of the setting group changed remotely. If the setting group is forced to change, the corresponding setting group must be enabled and the force change must be enabled. Then, the setting group can be set from communications or from HMI to any available group. If the setting group control is applied with static signals right after the "Force SG" parameter is released, the application takes control of the setting group selection.

Table. 5.5.2 - 247.	Settings of the setting group	selection function.

Name	Range	Step	Default	Description
Active setting group			SG1	Displays which setting group is active.
Force setting group	0: None 1: SG1 2: SG2 3: SG3 4: SG4 5: SG5 6: SG6 7: SG7 8: SG8	-	0: None	The selection of the overriding setting group. After "Force SG change" is enabled, any of the configured setting groups in the relay can be overriden. This control is always based on the pulse operating mode. It also requires that the selected setting group is specifically controlled to ON after "Force SG" is disabled. If there are no other controls, the last set setting group remains active.
Force setting group change	0: Disabled 1: Enabled	-	0: Disabled	The selection of whether the setting group forcing is enabled or disabled. This setting has to be active before the setting group can be changed remotely or from a local HMI. This parameter overrides the local control of the setting groups and it remains on until the user disables it.
Used setting groups	0: SG1 1: SG12 2: SG13 3: SG14 4: SG15 5: SG16 6: SG17 7: SG18	-	0: SG1	The selection of the activated setting groups in the application. Newly-enabled setting groups use default parameter values.
Remote setting group change	0: None 1: SG1 2: SG2 3: SG3 4: SG4 5: SG5 6: SG6 7: SG7 8: SG8	-	0: None	This parameter can be controlled through SCADA to change the setting group remotely. Please note that if a higher priority setting group is being controlled by a signal, a lower priority setting group cannot be activated with this parameter.

Table. 5.5.2 - 248. Signals of the setting group selection function.


Name	Range	Step	Default	Description
Setting group 1	0: Not active 1: Active	-	0: Not active	The selection of Setting group 1 ("SG1"). Has the highest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, no other SG requests will be processed.


Name	Range	Step	Default	Description
Setting group 2	0: Not active 1: Active	-	0: Not active	The selection of Setting group 2 ("SG2"). Has the second highest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, no requests with a lower priority than SG1 will be processed.
Setting group 3	0: Not active 1: Active	-	0: Not active	The selection of Setting group 3 ("SG3"). Has the third highest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, no requests with a lower priority than SG1 and SG2 will be processed.
Setting group 4	0: Not active 1: Active	-	0: Not active	The selection of Setting group 4 ("SG4"). Has the fourth highest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, no requests with a lower priority than SG1, SG2 and SG3 will be processed.
Setting group 5	0: Not active 1: Active	-	0: Not active	The selection of Setting group 5 ("SG5"). Has the fourth lowest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, SG6, SG7 and SG8 requests will not be processed.
Setting group 6	0:Not active 1:Active	-	0:Not active	The selection of Setting group 6 ("SG6"). Has the third lowest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, SG7 and SG8 requests will not be processed.
Setting group 7	0: Not active 1: Active	-	0: Not active	The selection of Setting group 7 ("SG7"). Has the second lowest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, only SG8 requests will not be processed.
Setting group 8	0: Not active 1: Active	-	0: Not active	The selection of Setting group 8 ("SG8"). Has the lowest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, all other SG requests will be processed regardless of the signal status of this setting group.

Example applications for setting group control

This chapter presents some of the most common applications for setting group changing requirements.

A Petersen coil compensated network usually uses directional sensitive earth fault protection. The user needs to control its characteristics between varmetric and wattmetric; the selection is based on whether the Petersen coil is connected when the network is compensated, or whether it is open when the network is unearthed.

Depending on the application's requirements, the setting group control can be applied either with a one-wire connection or with a two-wire connection by monitoring the state of the Petersen coil connection.

When the connection is done with one wire, the setting group change logic can be applied as shown in the figure above. The status of the Petersen coil controls whether Setting group 1 is active. If the coil is disconnected, Setting group 2 is active. This way, if the wire is broken for some reason, the setting group is always controlled to SG2.

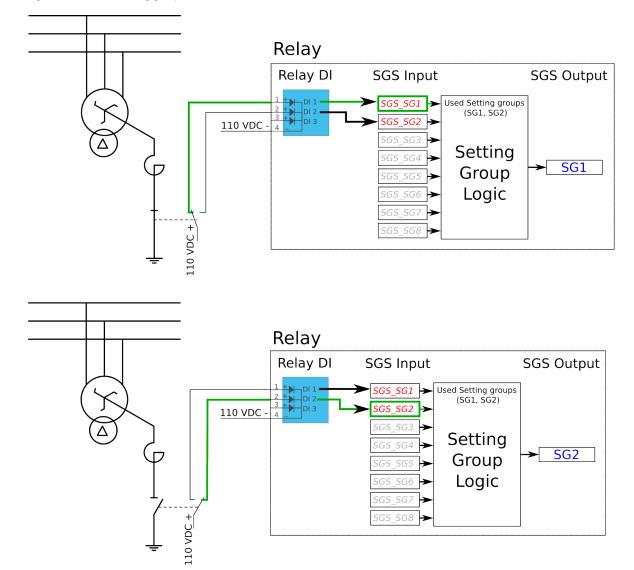


Figure. 5.5.2 - 164. Setting group control – two-wire connection from Petersen coil status.

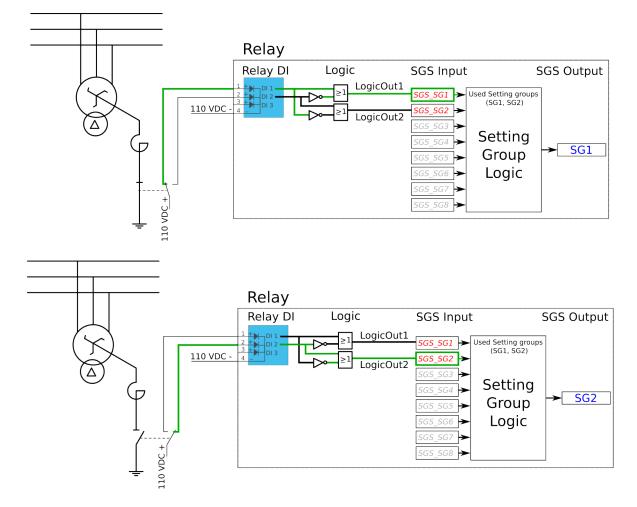


Figure. 5.5.2 - 165. Setting group control – two-wire connection from Petersen coil status with additional logic.

The images above depict a two-wire connection from the Petersen coil: the two images at the top show a direct connection, while the two images on the bottom include additional logic. With a two-wire connection the state of the Petersen coil can be monitored more securely. The additional logic ensures that a single wire loss will not affect the correct setting group selection.

The application-controlled setting group change can also be applied entirely from the relay's internal logics. For example, the setting group change can be based on the cold load pick-up function (see the image below).

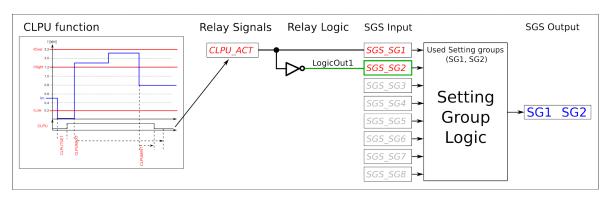
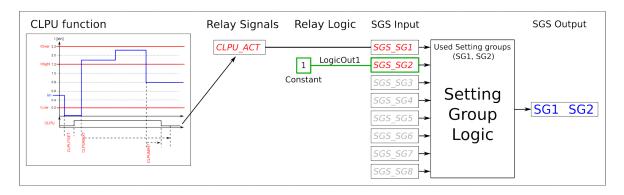



Figure. 5.5.2 - 166. Entirely application-controlled setting group change with the cold load pick-up function.

In these examples the cold load pick-up function's output is used for the automatic setting group change. Similarly to this application, any combination of the signals available in the relay's database can be programmed to be used in the setting group selection logic.

As all these examples show, setting group selection with application control has to be built fully before they can be used for setting group control. The setting group does not change back to SG1 unless it is controlled back to SG1 by this application; this explains the inverted signal NOT as well as the use of logics in setting group control. One could also have SG2 be the primary SG, while the ON signal would be controlled by the higher priority SG1; this way the setting group would automatically return to SG2 after the automatic control is over.

Events

The setting group selection function block (abbreviated "SGS" in event block names) generates events from its controlling status, its applied input signals, enabling and disabling of setting groups, as well as unsuccessful control changes. The function does not have a register.

Event block name	Event names
SGS	SG2 Enabled
SGS	SG2 Disabled
SGS	SG3 Enabled
SGS	SG3 Disabled
SGS	SG4 Enabled
SGS	SG4 Disabled
SGS	SG5 Enabled
SGS	SG5 Disabled

Table. 5.5.2 - 249. Event messages.

Event block name	Event names
SGS	SG6 Enabled
SGS	SG6 Disabled
SGS	SG7 Enabled
SGS	SG7 Disabled
SGS	SG8 Enabled
SGS	SG8 Disabled
SGS	SG1 Request ON
SGS	SG1 Request OFF
SGS	SG2 Request ON
SGS	SG2 Request OFF
SGS	SG3 Request ON
SGS	SG3 Request OFF
SGS	SG4 Request ON
SGS	SG4 Request OFF
SGS	SG5 Request ON
SGS	SG5 Request OFF
SGS	SG6 Request ON
SGS	SG6 Request OFF
SGS	SG7 Request ON
SGS	SG7 Request OFF
SGS	SG8 Request ON
SGS	SG8 Request OFF
SGS	Remote Change SG Request ON
SGS	Remote Change SG Request OFF
SGS	Local Change SG Request ON
SGS	Local Change SG Request OFF
SGS	Force Change SG ON
SGS	Force Change SG OFF
SGS	SG Request Fail Not configured SG ON
SGS	SG Request Fail Not configured SG OFF
SGS	Force Request Fail Force ON
SGS	Force Request Fail Force OFF
SGS	SG Req. Fail Lower priority Request ON
SGS	SG Req. Fail Lower priority Request OFF
SGS	SG1 Active ON
SGS	SG1 Active OFF
SGS	SG2 Active ON
SGS	SG2 Active OFF

AQ-G257 Instruction manual

Version: 2.08

Event block name	Event names
SGS	SG3 Active ON
SGS	SG3 Active OFF
SGS	SG4 Active ON
SGS	SG4 Active OFF
SGS	SG5 Active ON
SGS	SG5 Active OFF
SGS	SG6 Active ON
SGS	SG6 Active OFF
SGS	SG7 Active ON
SGS	SG7 Active OFF
SGS	SG8 Active ON
SGS	SG8 Active OFF

5.5.3 Object control and monitoring

The object control and monitoring function takes care of both for circuit breakers and disconnectors. The monitoring and controlling are based on the statuses of the relay's configured digital inputs and outputs. The number of controllable and monitored objects in each relay depends on the device type and amount of digital inputs. One controllable object requires a minimum of two (2) output contacts. The status monitoring of one monitored object usually requires two (2) digital inputs. Alternatively, object status monitoring can be performed with a single digital input: the input's active state and its zero state (switched to 1 with a NOT gate in the Logic editor).

An object can be controlled manually or automatically. Manual control can be done by local control, or by remote control. Local manual control can be done by relays front panel (HMI) or by external push buttons connected to relays digital inputs. Manual remote control can be done through one of the various communication protocols available (Modbus, IEC101/103/104 etc.). The function supports the modes "Direct control" and "Select before execute" while controlled remotely. Automatic controlling can be done with functions like auto-reclosing function (ANSI 79).

Object control consists of the following:

- control logic
- control monitor
- output handler.

The main outputs of the function are the OBJECT OPEN and OBJECT CLOSE control signals. Additionally, the function reports the monitored object's status and applied operations. The setting parameters are static inputs for the function, which can only be changed by the user in the function's setup phase.

The inputs for the function are the following:

- digital input status indications (the OPEN and CLOSE status signals)
- blockings (if applicable)
- the OBJECT READY and SYNCHROCHECK monitor signals (if applicable).
- Withdrawable cart IN and OUT status signals (if applicable).

The function generates general time stamped ON/OFF events to the common event buffer from each of the two (2) output signals as well as several operational event signals. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for OPEN, CLOSE, OPEN FAILED, and CLOSE FAILED events.

The following figure presents a simplified function block diagram of the object control and monitoring function.

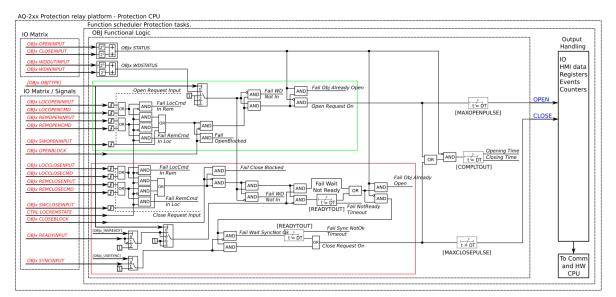


Figure. 5.5.3 - 167. Simplified function block diagram of the object control and monitoring function.

Settings

The following parameters help the user to define the object. The operation of the function varies based on these settings and the selected object type. The selected object type determines how much control is needed and which setting parameters are required to meet those needs.

Table. 5.5.3 - 250. Object settings and status parameters.

Name	Range	Default	Description
Local/Remote status	0: Local 1: Remote	1: Remote	Displays the status of the relay's "local/remote" switch. Local controls cannot override the open and close commands while device is in "Remote" status. The remote controls cannot override the open and close commands while device is in "Local" status.

Version: 2.08

Name	Range	Default	Description
Object status force to	0: Normal 1: Openreq On 2: Closereq On 3: Opensignal On 4: Closesignal On 5: WaitNoRdy On 6: WaitNoSnc On 7: NotrdyFail On 8: NosyncFail On 9: Opentout On 10: Clotout On 11: OpenreqUSR On 12: CloreqUSR On	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
OBJ LN mode	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	1: On	Set mode of OBJ block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
OBJ LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of OBJ block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Object name	-	Objectx	The user-set name of the object, at maximum 32 characters long.
Object type	0: Withdrawable circuit breaker 1: Circuit breaker 2: Disconnector (MC) 3: Disconnector (GND)	1: Circuit breaker	The selection of the object type. This selection defines the number of required digital inputs for the monitored object. This affects the symbol displayed in the HMI and the monitoring of the circuit breaker. It also affects whether the withdrawable cart is in/out status is monitored. See the next table ("Object types") for a more detailed look at which functionalities each of the object types have.
Objectx Breaker status	0: Intermediate 1: Open 2: Closed 3: Bad	-	Displays the status of breaker. Intermediate is displayed when neither of the status signals (open or close) are active. Bad status is displayed when both status signals (open and close) are active.
Objectx Withdraw status	0: WDIntermediate 1: WDCartOut 2: WDCart In 3: WDBad 4: Not in use	-	Displays the status of circuit breaker cart. WDIntermediate is displayed when neither of the status signals (in or out) are active. WDBad status is displayed when both status signals (in and out) are active. If the selected object type is not set to "Withdrawable circuit breaker", this setting displays the "No in use" option.
Additional status information	0: Open Blocked 1: Open Allowed 2: Close Blocked 3: Close Allowed 4: Object Ready 5: Object Not Ready 6: Sync Ok 7: Sync Not Ok	-	Displays additional information about the status of the object.

Name	Range	Default	Description
Use	0: Not in use 1: Synchrocheck in use	0: Not in use	Selects whether the "Synchrocheck" condition is in use for the circuit breaker close command. If "In use" is selected the input chosen to "Sync.check status in" has to be active to be able to close circuit breaker.
Synchrocheck			Synchrocheck status can be either an internal signal generated by synchrocheck function or digital input activation with an external synchrocheck device.
Use Object ready	0: Ready High 1: Ready Low 2: Not in use	2: Not in use	Selects whether the "Object ready" condition is in use for the circuit breaker close command. If in use the signal connected to "Object ready status In" has to be high or low to be able to close the breaker (depending on "Ready High or Low" selection).
Open requests	02 ³² –1	-	Displays the number of successful "Open" requests.
Close requests	02 ³² –1	-	Displays the number of successful "Close" requests.
Open requests failed	02 ³² –1	-	Displays the number of failed "Open" requests.
Close requests failed	02 ³² –1	-	Displays the number of failed "Close" requests.
Clear statistics	0: - 1: Clear	0: -	Clears the request statistics, setting them back to zero (0). Automatically returns to "-" after the clearing is finished.

Table. 5.5.3 - 251. Object types.

Name	Functionalities	Description
Withdrawable circuit breaker	Breaker cart position Circuit breaker position Circuit breaker control Object ready check before closing breaker Synchrochecking before closing breaker Interlocks	The monitor and control configuration of the withdrawable circuit breaker.
Circuit breaker	Position indication Control Object ready check before closing breaker Synchrochecking before closing breaker Interlocks	The monitor and control configuration of the circuit breaker.
Disconnector (MC)	Position indication Control	The position monitoring and control of the disconnector.
Disconnector (GND)	Position indication	The position indication of the earth switch.

Table. 5.5.3 - 252. I/O.

Signal	Range	Description
Objectx Open input ("Objectx Open Status In")	Digital input or other logical signal selected	A link to a physical digital input. The monitored object's OPEN status. "1" refers to the active open state of the monitored object. If IEC 61850 is enabled, GOOSE signals can be used for status indication.
Objectx Close input ("Objectx Close Status In")	by the user (SWx)	A link to a physical digital input. The monitored object's CLOSE status. "1" refers to the active close state of the monitored object. If IEC 61850 is enabled, GOOSE signals can be used for status indication.

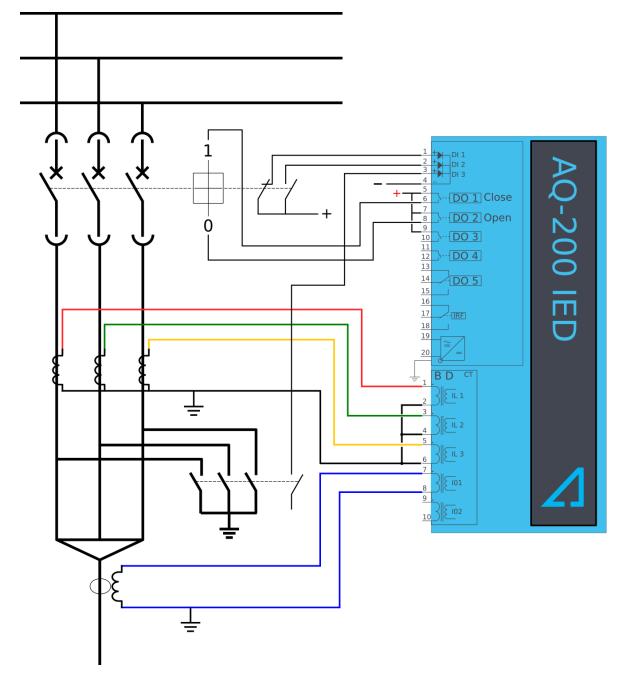
Signal	Range	Description
WD Object In ("Withdrw.CartIn.Status In")		A link to a physical digital input. The monitored withdrawable object's position is IN. "1" means that the withdrawable object cart is in. If IEC 61850 is enabled, GOOSE signals can be used for status indication.
WD Object Out ("Withdrw.CartOut.Status In")		A link to a physical digital input. The monitored withdrawable object's position is OUT. "1" means that the withdrawable object cart is pulled out. If IEC 61850 is enabled, GOOSE signals can be used for status indication.
Object Ready (Objectx Ready status In")		A link to a physical digital input. Indicates that status of the monitored object. "1" means that the object is ready and the spring is charged for a close command. If IEC 61850 is enabled, GOOSE signals can be used for status indication.
Syncrocheck permission ("Sync.Check status In")		A link to a physical digital input or a synchrocheck function. "1" means that the synchrocheck conditions are met and the object can be closed. If IEC 61850 is enabled, GOOSE signals can be used for status indication.
Objectx Open command ("Objectx Open Command")		The physical "Open" command pulse to the device's output relay.
Objectx Close command ("Objectx Close Command")	OUT1OUTx	The physical "Close" command pulse to the device's output relay.

Table. 5.5.3 - 253. Operation settings.

Name	Range	Step	Default	Description
Breaker traverse time	0.02500.00 s	0.02 s	0.2 s	Determines the maximum time between open and close statuses when the breaker switches. If this set time is exceeded and both open and closed status inputs are active, the status "Bad" is activated in the "Objectx Breaker status" setting. If neither of the status inputs are active after this delay, the status "Intermediate" is activated.
Maximum Close command pulse length	0.02500.00 s	0.02 s	0.2 s	Determines the maximum length for a Close pulse from the output relay to the controlled object. If the object operates faster than this set time, the control pulse is reset and a status change is detected.
Maximum Open command pulse length	0.02500.00 s	0.02 s	0.2 s	Determines the maximum length for a Open pulse from the output relay to the controlled object. If the object operates faster than this set time, the control pulse is reset and a status change is detected.
Control termination timeout	0.02500.00 s	0.02 s	10 s	Determines the control pulse termination timeout. If the object has not changed it status in this given time the function will issue error event and the control is ended. This parameter is common for both open and close commands.
Final trip pulse length	0.00500.00 s	0.02 s	0.2 s	Determines the length of the final trip pulse length. When the object has executed the final trip, this signal activates. If set to 0 s, the signal is continuous. If auto-recloser function controls the object, "final trip" signal is activated only when there are no automatic reclosings expected after opening the breaker.

Table. 5.5.3 - 254	. Control settings	(DI and Application).
--------------------	--------------------	-----------------------

Signal	Range	Description
Access level for MIMIC control	0: User 1: Operator 2: Configurator 3: Super user	Defines what level of access is required for MIMIC control. The default is the "Configurator" level.
Objectx LOCAL Close control input	Digital input or other logical signal selected by the user	The local Close command from a physical digital input (e.g. a push button).


Signal	Range	Description
Objectx LOCAL Open control input		The local Open command from a physical digital input (e.g. a push button).
Objectx REMOTE Close control input		The remote Close command from a physical digital input (e.g. RTU).
Objectx REMOTE Open control input		The remote Open command from a physical digital input (e.g. RTU).
Objectx Application Close		The Close command from the application. Can be any logical signal.
Objectx Application Open		The Close command from the application. Can be any logical signal.

Blocking and interlocking

The interlocking and blocking conditions can be set for each controllable object, with Open and Close set separately. Blocking and interlocking can be based on any of the following: other object statuses, a software function or a digital input.

The image below presents an example of an interlock application, where the closed earthing switch interlocks the circuit breaker close command.

In order for the blocking signal to be received on time, it has to reach the function 5 ms before the control command.

Events and registers

The object control and monitoring function (abbreviated "OBJ" in event block names) generates events and registers from the status changes in monitored signals as well as control command fails and operations. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The function registers its operation into the last twelve (12) time-stamped registers. The events triggered by the function are recorded with a time stamp and with process data values.

Table. 5.5.3 - 255. Event messages of the OBJ function instances $1-10. \label{eq:abs}$

Event block name	Description
OBJ1OBJ10	Object Intermediate
OBJ1OBJ10	Object Open
OBJ1OBJ10	Object Close
OBJ1OBJ10	Object Bad
OBJ1OBJ10	WD Intermediate
OBJ1OBJ10	WD Out
OBJ1OBJ10	WD in
OBJ1OBJ10	WD Bad
OBJ1OBJ10	Open Request On
OBJ1OBJ10	Open Request Off
OBJ1OBJ10	Open Command On
OBJ1OBJ10	Open Command Off
OBJ1OBJ10	Close Request On
OBJ1OBJ10	Close Request Off
OBJ1OBJ10	Close Command On
OBJ1OBJ10	Close Command Off
OBJ1OBJ10	Open Blocked On
OBJ1OBJ10	Open Blocked Off
OBJ1OBJ10	Close Blocked On
OBJ1OBJ10	Close Blocked Off
OBJ1OBJ10	Object Ready
OBJ1OBJ10	Object Not Ready
OBJ1OBJ10	Sync Ok
OBJ1OBJ10	Sync Not Ok
OBJ1OBJ10	Open Command Fail
OBJ1OBJ10	Close Command Fail
OBJ1OBJ10	Final trip On
OBJ1OBJ10	Final trip Off
OBJ1OBJ10	Contact Abrasion Alarm On
OBJ1OBJ10	Contact Abrasion Alarm Off
OBJ1OBJ10	Switch Operating Time Exceeded On
OBJ1OBJ10	Switch Operating Time Exceeded Off
OBJ1OBJ10	XCBR Loc On
OBJ1OBJ10	XCBR Loc Off
OBJ1OBJ10	XSWI Loc On
OBJ1OBJ10	XSWI LOC Off

Table. 5.5.3 - 256. Register content.

Name	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Recorded Object opening time	Time difference between the object receiving an "Open" command and the object receiving the "Open" status.
Recorded Object closing time	Time difference between the object receiving a "Close" command and object receiving the "Closed" status.
Object status	The status of the object.
WD status	The status of the withdrawable circuit breaker.
Open fail	The cause of an "Open" command's failure.
Close fail	The cause of a "Close" command's failure.
Open command	The source of an "Open" command.
Close command	The source of an "Open" command.
General status	The general status of the function.

5.5.4 Indicator object monitoring

The indicator object monitoring function takes care of the status monitoring of disconnectors. The function's sole purpose is indication and does not therefore have any control functionality. To control circuit breakers and/or disconnectors, please use the Object control and monitoring function. The monitoring is based on the statuses of the configured relay's digital inputs. The number of monitored indicators in a relay depends on the device type and available inputs. The status monitoring of one monitored object usually requires two (2) digital inputs. Alternatively, object status monitoring can be performed with a single digital input: the input's active state and its zero state (switched to 1 with a NOT gate in the Logic editor).

The outputs of the function are the monitored indicator statuses (Open, Close, Intermediate and Bad). The setting parameters are static inputs for the function, which can only be changed by the use in the function's setup phase.

The inputs of the function are the binary status indications. The function generates general time stamped ON/OFF events to the common event buffer from each of the following signals: OPEN, CLOSE, BAD and INTERMEDIATE event signals. The time stamp resolution is 1 ms.

Settings

Function uses available hardware and software digital signal statuses. These input signals are also setting parameters for the function.

Name	Range	Default	Description
Indicator name ("Ind. Name")	-	IndX	The user-set name of the object, at maximum 32 characters long.
IndicatorX Object status ("Ind.X Object Status")	0: Intermediate 1: Open 2: Closed 3: Bad	-	Displays the status of the indicator object. Intermediate status is displayed when neither of the status conditions (open or close) are active. Bad status is displayed when both of the status conditions (open and close) are active.

Table. 5.5.4 - 257. Indicator status.

Table. 5.5.4 - 258. Indicator I/O.

Signal	Range	Description
IndicatorX Open input ("Ind.X Open Status In")	Digital input or other logical signal selected by the user (SWx)	A link to a physical digital input. The monitored indicator's OPEN status. "1" refers to the active "Open" state of the monitored indicator. If IEC 61850 is enabled, GOOSE signals can be used for status indication.
IndicatorX Close input ("Ind.X Close Status In")	Digital input or other logical signal selected by the user (SWx)	A link to a physical digital input. The monitored indicator's CLOSE status. "1" refers to the active "Close" state of the monitored indicator. If IEC 61850 is enabled, GOOSE signals can be used for status indication.

Events

The indicator object monitoring function (abbreviated "CIN" in event block names) generates events from the status changes in the monitored signals, including the continuous status indications. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

Table. 5.5.4 - 259. Event messages (instances 1-10).

Event block name	Event names
CIN1	Intermediate
CIN1	Open
CIN1	Close
CIN1	Bad
CIN2	Intermediate
CIN2	Open
CIN2	Close
CIN2	Bad
CIN3	Intermediate
CIN3	Open
CIN3	Close
CIN3	Bad
CIN4	Intermediate
CIN4	Open
CIN4	Close
CIN4	Bad
CIN5	Intermediate
CIN5	Open
CIN5	Close
CIN5	Bad
CIN6	Intermediate
CIN6	Open

Event block name	Event names
CIN6	Close
CIN6	Bad
CIN7	Intermediate
CIN7	Open
CIN7	Close
CIN7	Bad
CIN8	Intermediate
CIN8	Open
CIN8	Close
CIN8	Bad
CIN9	Intermediate
CIN9	Open
CIN9	Close
CIN9	Bad
CIN10	Intermediate
CIN10	Open
CIN10	Close
CIN10	Bad

5.5.5 Synchrocheck ($\Delta V / \Delta a / \Delta f$; 25)

Checking the synchronization is important to ensure the safe closing of the circuit breaker between two systems. Closing the circuit breaker when the systems are not synchronized can cause several problems such as current surges which damage the interconnecting elements. The synchrocheck function has three stages: SYN1, SYN2 and SYN3. Their function and availability of these stages depend on which voltage channels are set to "SS" mode or not. Voltage measurement settings are located at *Measurements* \rightarrow *Transformers* \rightarrow *VT module*. SYN1 also includes synchroswitching. When synchroswitching is used, the function automatically closes the breaker when both sides of the breaker are synchronized.

When only U3 or U4 voltage measurement channel has been set to "SS" mode:

- SYN1 Supervises the synchronization condition between the channel set to "SS" mode and the selected system voltage (UL1, UL2, UL3, UL12, UL23 or UL31). Synchroswitch is available.
- SYN2 Not active and not visible.
- SYN3 Not active and not visible.

When both U3 and U4 have been set to "SS" mode:

- SYN1 Supervises the synchronization condition between the U3 channel and the selected system voltage (UL12, UL23 or UL31). Synchroswitch is available.
- SYN2 Supervises the synchronization condition between the U4 channel and the selected system voltage (UL12, UL23 or UL31).
- SYN3 Supervises the synchronization condition between the channels U3 and U4.

The seven images below present three different example connections and four example applications of the synchrocheck function.

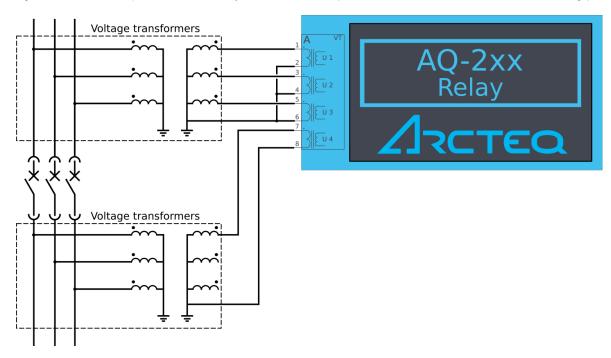
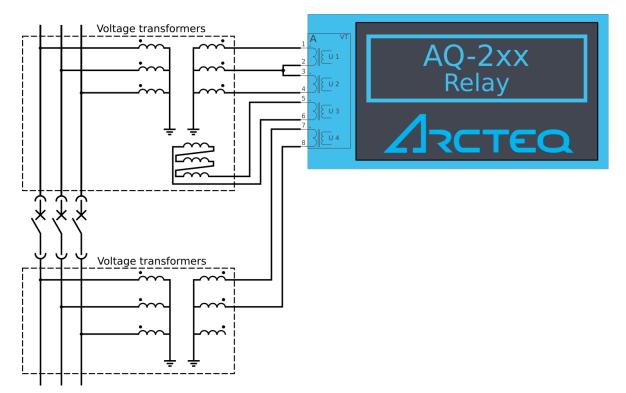



Figure. 5.5.5 - 169. Example connection of the synchrocheck function (3LN+U4 mode, SYN1 in use, UL1 as reference voltage).

Figure. 5.5.5 - 170. Example connection of the synchrocheck function (2LL+U0+U4 mode, SYN1 in use, UL12 as reference voltage).

Version: 2.08

Figure. 5.5.5 - 171. Example connection of the synchrocheck function (2LL+U3+U4 mode, SYN3 in use, UL12 as reference voltage).

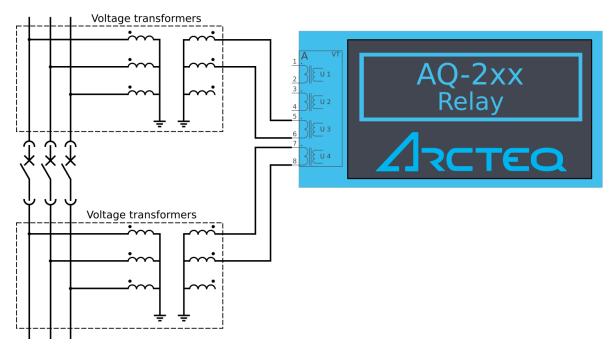


Figure. 5.5.5 - 172. Example application (synchrocheck over one breaker, with 3LL and 3LN VT connections).

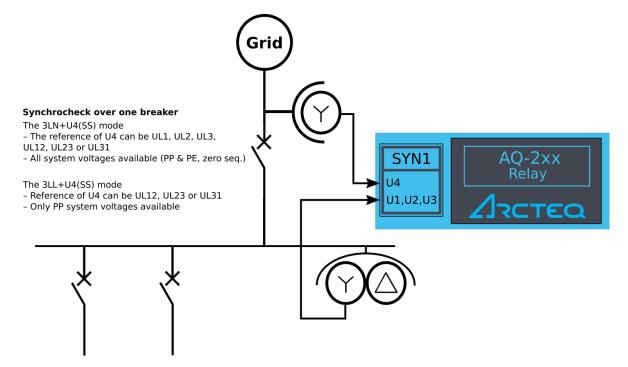


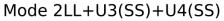
Figure. 5.5.5 - 173. Example application (synchrocheck over one breaker, with 2LL VT connection).

Synchrocheck over one breaker OPTIONAL CONNECTION

Mode 2LL+U3(U0)+U4(SS)

(PP & PE, zero seq.)

- All system voltages available


Mode 2LL+U3(SS)+U4(U0)

- Reference of U4 can be UL1, UL2,
 Reference of U3 can be UL1, UL2, UL3, UL12, UL23 or UL31
 All system voltages available (PP & PE, zero seq.)

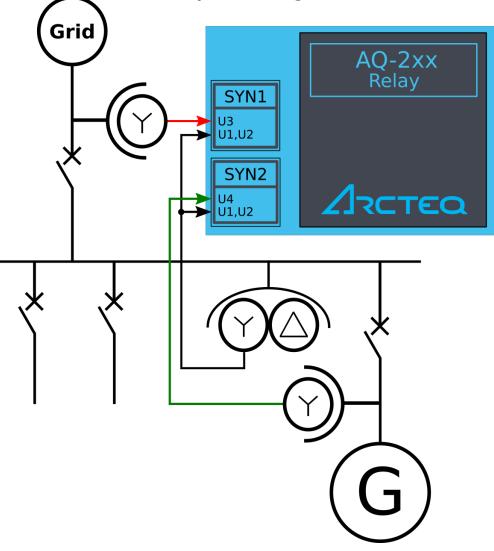

SYN1 Grid AQ-2xx U4 Relay U3 U1,U2 SYN1 U3 RCTEQ U4 U1,U2

Figure. 5.5.5 - 174. Example application (synchrocheck over two breakers, with 2LL VT connection).

Synchrocheck over two breakers

- Reference of U3 and U4 can be UL12, UL23 or UL31
- PP system voltages available

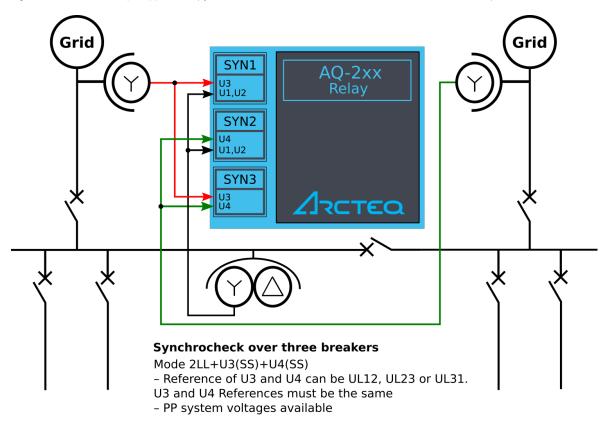
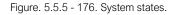
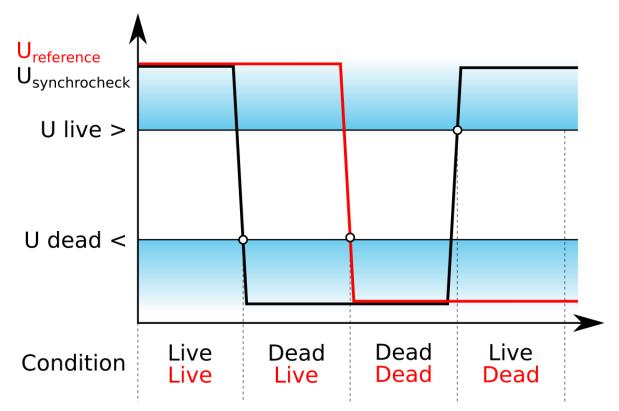


Figure. 5.5.5 - 175. Example application (synchrocheck over three breakers, with 2LL+U3+U4 connection).

The following aspects of the compared voltages are used in synchorization:

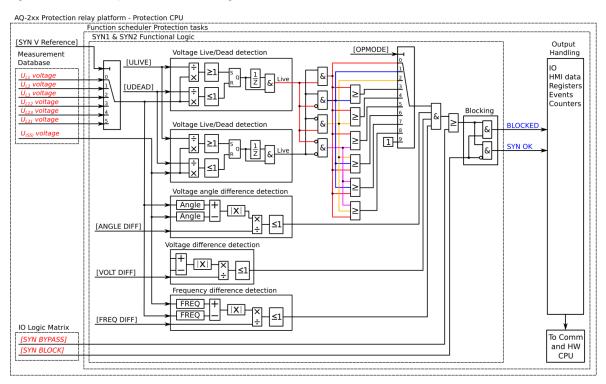
- voltage magnitudes
- voltage frequencies
- voltage phase angles

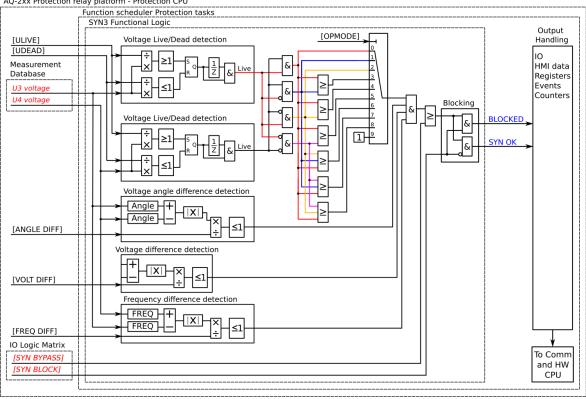

The two systems are synchronized when these three aspects are matched. All three cannot, of course, ever be exactly the same so the function requires the user to set the maximum difference between the measured voltages.


The function's outputs are SYN OK, BYPASS, and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the output signals. The time stamp resolution is 1 ms.

The synchrocheck function uses a total of eight (8) separate setting groups which can be selected from one common source.

Depending on how the measured voltage compares to the set *U live>* and *U dead<* parameters, either system can be in a "live" or a "dead" state. The parameter *SYNx U conditions* is used to determine the conditions (in addition to the three aspects) which are required for the systems to be considered synchronized.


The image below shows the different states the systems can be in.



The following figures present simplified function block diagrams of the synchrocheck function.

Figure. 5.5.5 - 177. Simplified function block diagram of the SYN1 and SYN2 function.

AQ-2xx Protection relay platform - Protection CPU

Figure. 5.5.5 - 178. Simplified function block diagram of the SYN3 function.

Measured input

The function block uses analog current measurement values. The monitored magnitude is equal to RMS values.

Table. 5.5.5 - 260. Measurement inputs of the synchrocheck function.

Signal	Description	Time base
U1RMS	RMS measurement of voltage U1/V	5ms
U ₂ RMS	RMS measurement of voltage U ₂ /V	5ms
U3RMS	RMS measurement of voltage U ₃ /V	5ms
U4RMS	RMS measurement of voltage U4/V	5ms

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
dV / da / df LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of SYN block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

Version: 2.08

Name Range Step		Step	Description	
0: SYN1 Blocked 1: SYN1 Ok 2: SYN1 Bypass 3: SYN1 Vcond Ok 5: SYN1 Vdiff Ok 5: SYN1 Adiff Ok 6: SYN1 fdiff Ok 6: SYN1 fdiff Ok		Displays status of the control function.		
SYN volt status	0: Dead Dead 1: Live Dead 2: Dead Live 3: Live Live 4: Undefined 5: Not monitored	-	Displays the voltage status of both sides.	
SYN Mag diff	-120120%Un	0.01%Un	Displays voltage difference between the two measured voltages.	
SYN Ang diff	-360'360deg	0.01deg	Displays angle difference between the two measured voltages.	
SYN Freq diff	-7575Hz	0.001Hz	Displays frequency difference between the two measured voltages.	
SYN Switch status	0: Still 1: Departing 2: Enclosing	-	Displays the synchroswitching status. This parameter is visible when "SYN1 Switching" parameter has been set to "Use SynSW".	
Estimated BRK closing time	0360s	0.005s	Estimated time left to breaker closing.	
Networks rotating time	0360s	0.005s	Estimated time how long it takes for the network to rotate fully.	
Networks placement atm	-360360deg	0.001deg	Networks placement in degrees.	

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the synchronization is OK, a SYN OK signal is generated.

If the blocking signal is active when the SYN OK activates, a BLOCKED signal is generated and the function does not process the situation further. If the SYN OK function has been activated before the blocking signal, it resets.

The blocking of the function causes an HMI display event and a-time stamped blocking event with information of the startup voltage values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*). The variables the user can set are binary signals from the system.

Setting parameters

NOTE! Before these settings can be accessed, a voltage channel (U3 or U4) must be set into the synchrocheck mode ("SS") in the voltage transformer settings (*Measurements* \rightarrow *VT Module*).

The general settings can be found at the synchrocheck function's *INFO* tab, while the synchrocheck stage settings can be found in the *Settings* tab (*Control* \rightarrow *Control* functions \rightarrow *Synchrocheck*).

	Table.	5.5.5 -	262.	General	settings.
--	--------	---------	------	---------	-----------

Name	Range	Step	Default	Description
dV / da / df LN mode	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	1: On	Set mode of SYN block. This parameter is visible only when <i>Allow setting of individual</i> <i>LN mode</i> is enabled in <i>General</i> menu.
SYN(1,2,3) Status Force to	0: Normal 1: SYN1 Blocked 2: SYN1 Ok 3: SYN2 Blocked 4: SYN2 Ok 5: SYN3 Blocked 6: SYN3 Ok	-	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Use SYNx	0: No 1: Yes	-	0: No	Activated/de-activates the individual stages (SYN1, 2, and 3) of the synchrocheck function. Activating a stage reveals the parameter settings for the configuration.
SYNx V Start check	0: Always 1: On start	-	0: Always	Selects synchrocheck start behaviour. If "On start" is selected "SYNx START" input must be active for synchrochecking to begin. "SYNx START" input signal can be defined at $IO \rightarrow Input$ <i>control</i> menu. If "Always" is selected "SYNx START" input is not needed for synchrochecking to start.
SYN1 V Reference	0: Not in use 1: UL12 2: UL23 3: UL31 4: UL1 5: UL2 6: UL3	-	0: Not in use	Selects the reference voltage of the stage. Please note that the available references depend on the selected mode. All references available: - 3LN+U4(SS) - 2LL+U3(U0)+U4(SS) - 2LL+U3(SS)+U4(U0) Reference options 03 available: - 3LL+U4(SS) - 2LL+U3(Not in use)+U4(SS) - 2LL+U3(SS)+U4(Not in use)
SYN1 Switching	0: Not in use 1: Use SynSW	-	0: Not in use	Disables or enables synchroswitching. Synchroswitching is available only for SYN1. When synchroswitching is used, the function automatically closes the breaker when both sides of the breaker are synchronized. This setting is only visible when "Use SYN1" is activated.
SYN1 Switch bk time	0.0001800.000s	0.005s	0.05s	Estimated time between a close command given to a breaker and the breaker entering the closed state. This setting is used to time the closing of the breaker so that both sides are as synchronized as possible when the breaker is actually closed. This setting is only visible when "SYN1 switching" is activated.
SYN1 Switching object	0: Object 1 1: Object 2 2: Object 3 3: Object 4 4: Object 5	-	0: Object 1	When synchroswitching is enabled, this parameter defines which object receives the breaker's closing command. This setting is only visible when "SYN1 switching" is activated.
Estimated BRK closing time	0.000360.000s	0.005s	-	Displays the estimated time until networks are synchronized.
Networks rotating time	0.000360.000s	0.005s	-	Displays the time it takes for both sides of the network to fully rotate.

Version: 2.08

Name	Range	Step	Default	Description
Networks placement atm	-360.000360.000deg	0.001deg	-	Indicates the angle difference between the two sides of the breaker at the moment.
SYN2 V Reference	0: Not in use 1: UL12 2: UL23 3: UL31	-	0: Not in use	Selects the reference voltage of the stage. SYN2 is available when both U3 and U4 have been set to SS mode.
SYN3 V Reference	0: Not in use 1: U3–U4	-	0: Not in use	Enables and disables the SYN3 stage. Operable in the 2LL+U3+U4 mode, with references UL12, UL23 and UL31 can be connected to the channels

Table. 5.5.5 - 263. Synchrocheck stage settings.

Name	Range	Step	Default	Description
SYNx U conditions	0: LL only 1: LD only 2: DL only 3: LL & LD 4: LL & DL 5: LL & DD 6: LL & LD & DL 7: LL & LD & DD 8: LL & DL & DD 9: Bypass	-	0: LL only	Determines the allowed states of the supervised systems. L = Live D = Dead
SYNx U live >	0.10100.00%Un	0.01%Un	20%Un	The voltage limit of the live state.
SYNx U dead <	0.00100.00%Un	0.01%Un	20%Un	The voltage limit of the dead state.
SYNx U diff <	2.0050.00%Un	0.01%Un	2.00%Un	The maximum allowed voltage difference between the systems.
SYNx angle diff <	3.0090.00deg	0.01deg	3deg	The maximum allowed angle difference between the systems.
SYNx freq diff <	0.050.50Hz	0.01Hz	0.1Hz	The maximum allowed frequency difference between the systems.

Events and registers

The synchrocheck function (abbreviated "SYN" in event block names) generates events and registers from status changes such as SYN OK, BYPASS, and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers three (3) independent stages; the events are segregated for each stage operation.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names		
SYN1	SYN1 Blocked On		
SYN1	SYN1 Blocked OFF		
SYN1	SYN1 Ok ON		
SYN1	SYN1 Ok OFF		
SYN1	SYN1 Bypass ON		
SYN1	SYN1 Bypass OFF		
SYN1	SYN1 Volt condition OK		

Table. 5.5.5 - 264. Event messages.

Event block name	Event names
SYN1	SYN1 Volt cond not match
SYN1	SYN1 Volt diff Ok
SYN1	SYN1 Volt diff out of setting
SYN1	SYN1 Angle diff Ok
SYN1	SYN1 Angle diff out of setting
SYN1	SYN1 Frequency diff Ok
SYN1	SYN1 Frequency diff out of setting
SYN1	SYN2 Blocked ON
SYN1	SYN2 Blocked OFF
SYN1	SYN2 OK ON
SYN1	SYN2 Ok OFF
SYN1	SYN2 Bypass ON
SYN1	SYN2 Bypass OFF
SYN1	SYN2 Volt condition OK
SYN1	SYN2 Volt cond not match
SYN1	SYN2 Volt diff Ok
SYN1	SYN2 Volt diff out of setting
SYN1	SYN2 Angle diff Ok
SYN1	SYN2 Angle diff out of setting
SYN1	SYN2 Frequency diff Ok
SYN1	SYN2 Frequency diff out of setting
SYN1	SYN3 Blocked ON
SYN1	SYN3 Blocked OFF
SYN1	SYN3 Ok ON
SYN1	SYN3 Ok OFF
SYN1	SYN3 Bypass ON
SYN1	SYN3 Bypass OFF
SYN1	SYN3 Volt condition OK
SYN1	SYN3 Volt cond not match
SYN1	SYN3 Volt diff Ok
SYN1	SYN3 Volt diff out of setting
SYN1	SYN3 Angle diff Ok
SYN1	SYN3 Angle diff out of setting
SYN1	SYN3 Frequency diff Ok
SYN1	SYN3 Frequency diff out of setting
SYN1	SYN1 Switch ON
SYN1	SYN1 Switch OFF
SYN1	SYN2 Switch ON

Version: 2.08

Event block name	Event names
SYN1	SYN2 Switch OFF
SYN1	SYN3 Switch ON
SYN1	SYN3 Switch OFF

The function registers its operation into the last twelve (12) time-stamped registers. The table below presents the structure of the function's register content.

Table	555-	265	Register	content.
iubic.	0.0.0	200.	register	content.

Name	Range
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
SYNx Ref1 voltage	The reference voltage of the selected stage.
SYNx Ref2 voltage	The reference voltage of the selected stage.
SYNx Volt Cond	The voltage condition of the selected stage.
SYNx Volt status	The voltage status of the selected stage.
SYNx Vdiff	The voltage difference of the selected stage.
SYNx Vdiff cond	The set condition of the voltage difference of the selected stage.
SYNx Adiff	The angle difference of the selected stage.
SYNx Adiff cond	The set condition of the angle difference of the selected stage.
SYNx fdiff	The frequency difference of the selected stage.
SYNx fdiff cond	The set condition of the frequency difference of the selected stage.
Setting group in use	Setting group 18 active.

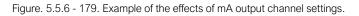
5.5.6 Milliampere output control

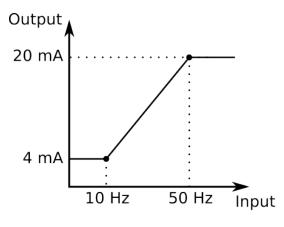
The milliamp current loop is the prevailing process control signal in many industries. It is an ideal method of transferring process information because a current does not change as it travels from a transmitter to a receiver. It is also much more simple and cost-effective.

The benefits of 4...20 mA loops:

- the dominant standard in many industries
- the simplest option to connect and configure
- uses less wiring and connections than other signals, thus greatly reducing initial setup costs
- good for travelling long distances, as current does not degrade over long connections like voltage does
- · less sensitive to background electrical noise
- detects a fault in the system incredibly easily since 4 mA is equal to 0 % output.

Milliampere (mA) outputs


AQ-200 series supports up to two (2) independent mA option cards. Each card has four (4) mA output channels and one (1) mA input channel. If the device has an mA option card, enable mA outputs at *Control* \rightarrow *Device IO* \rightarrow *mA outputs*. The outputs are activated in groups of two: channels 1 and 2 are activated together, as are channels 3 and 4.


Table. 5.5.6 - 266. Main settings (output channels).

Name		Range	Default	Description
mA option	Enable mA output channels 1 and 2	0: Dischlad	0:	Enables and disables the outputs of the mA output
card 1	Enable mA output channels 3 and 4	Enable mA output channels 3 1: Enabled Disabled Disabled		card 1.
mA option	Enable mA output channels 5 and 6	0: Disabled	0:	Enables and disables the outputs of the mA output
card 2	Enable mA output channels 7 and 8	Disabled 1: Enabled	Disabled	card 2.

Table. 5.5.6 - 267. Settings for mA output channels.

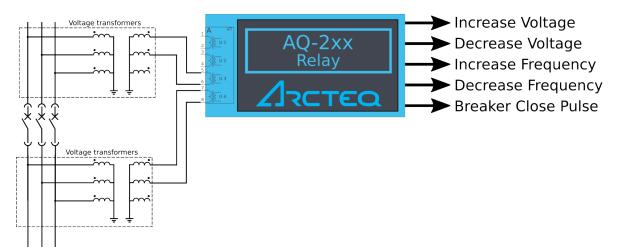
Name	Range	Step	Default	Description
Enable mA output channel	0: Disabled 1: Enabled	-	0: Disabled	Enables and disables the selected mA output channel. If the channel is disabled, the channel settings are hidden.
Magnitude selection for mA output channel	0: Currents 1: Voltages 2: Powers 3: Impedance and admittance 4: Other	-	0: Currents	Defines the measurement category that is used for mA output control.
Magnitude of mA output channel	(dependent on the measurement category selection)	-	(dependent on the measurement category selection)	Defines the measurement magnitude used for mA output control. The available measurements depend on the selection of the "Magnitude selection for mA output channel" parameter.
Input value 1	-10 ⁷ 10 ⁷	0.001	0	The first input point in the mA output control curve.
Scaled mA output value 1	0.000024.0000mA	0.0001mA	0mA	The mA output value when the measured value is equal to or less than Input value 1.
Input value 2	-10 ⁷ 10 ⁷	0.001	1	The second input point in the mA output control curve.
Scaled mA output value 2	0.000024.0000mA	0.0001mA	0mA	The mA output value when the measured value is equal to or greater than Input value 2.

nA Output Channel 1	
Enable mA Out Channel 1	Enabled 💌
mA Out Channel 1 Magnitude selection	Others 💌
mA Out Channel 1 Magnitude (Others)	System f.
Input value 1	10 - <i>1000000.0001000000.000 [0.001</i>]
Scaled mA output value 1	4 mA 0.0000024,00000 [0.00010]
Input value 2	50 -10000000.00010000000.000 [0.001]
Scaled mA output value 2	20 mA 0.0000024.00000 [0.00010]
mA Out Channel 1 Input Magnitude now	0 - <i>10000000.00010000000.000 [0.001</i>]
mA Out Channel 1 Outputs now	0 mA 0.0000024.00000 [0.00010]

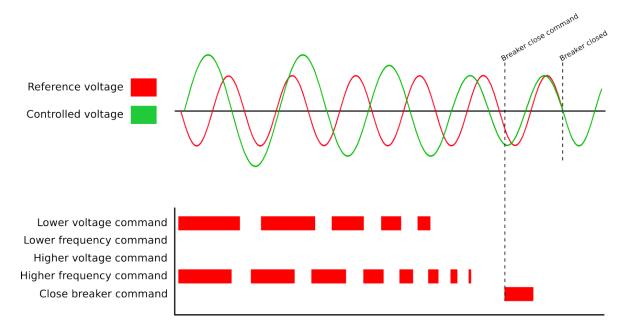
Version: 2.08

Table. 5.5.6 - 268. Hardware indications.

Name	Range	Step	Description
Hardware in mA output channels 14 Hardware in mA output channels 58	0: None 1: Slot A 2: Slot B 3: Slot C 4: Slot D 5: Slot E 6: Slot F 7: Slot G 8: Slot H 9: Slot I 10: Slot J 11: Slot K 12: Slot L 13: Slot M 14: Slot N 15: Too many cards installed	-	Indicates the option card slot where the mA output card is located.


Table. 5.5.6 - 269. Measurement values reported by mA output cards.

Name	Range	Step	Description	
mA in Channel 1	0.000024.0000mA	0.0001mA	Displays the measured mA value of the selected input	
mA in Channel 2	0.000024.0000MA	0.000 miA	channel.	
mA Out Channel Input Magnitude now	-10 ⁷ 10 ⁷	0.001 Displays the input value of the selected mA out channel at that moment.		
mA Out Channel Outputs now	0.000024.0000mA	0.0001mA	Displays the output value of the selected mA output channel at that moment.	


5.5.7 Synchronizer ($\Delta V / \Delta a / \Delta f$; 25)

The synchronizer function is used to automatically synchronize generators to power grids. Proper synchronizing is essential to avoid inrush currents, power system oscillations as well as thermal and mechanical stress on the generator when connecting a synchronous generator to a grid.

The user can synchronize up to eight (8) circuit breakers with the same synchronizing function by using different setting groups and the logic editor. The synchrocheck function is used to parallel or energize power lines.

The synchronizing function uses voltage signals from each side of the circuit breaker to be closed.

- The amplitude difference between the two voltages is used to send "Increase" and "Decrease" commands to the generator's voltage regulator. The pulse length for these commands can be set, and it is automatically adjusted depending on the difference between the two measured signals.
- The frequency difference between the two voltages (the slip frequency) is used to send "Increase" and "Decrease" commands to the turbine's speed governor. The pulse length for these commands can be adjusted individually to take into account turbine governors with different speeds. The pulse length is automatically adjusted depending on the difference between the two measured signals.
- Settings can be adjusted to only allow positive slip to avoid reverse power at synchronizing.
- When the amplitude, the speed, and the phase-angle between the two voltages match (within pre-set limits), a "Close" command signal is sent to the generator's circuit breaker.

Pre-closing time can be used to allow for delay time in a circuit breaker and any auxiliary relays. The pre-closing angle is adjusted automatically depending on the slip frequency.

The outputs of the function are the following signals:

- Voltage Magnitude Difference Ok
- Voltage Frequency Difference Ok
- Voltage Angle Difference Ok
- Blocked
- Running
- Increase Voltage
- Decrease Voltage
- Increase Frequency
- Decrease Frequency
- Breaker Close Pulse
- Long Sync Time
- Nets Standstill
- Nets Departing
- Nets Enclosing

The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed voltage magnitudes.

The function's output signals can be used for direct I/O controlling and user logic programming. The time stamp resolution is 1 ms.

Measured input

The function block uses analog voltage measurement values. The monitored magnitude is equal to RMS values.

Table. 5.5.7 - 270. Measurement inputs of the synchronizer function.

Signal	Description	Time base
U1RMS	RMS measurement of voltage U1/V	5ms
U2RMS	RMS measurement of voltage U ₂ /V	5ms
U ₃ RMS	RMS measurement of voltage U ₃ /V	5ms
U4RMS	RMS measurement of voltage U ₄ /V	5ms

Setting parameters

Table. 5.5.7 - 271. General setting parameters.

Name	Range	Step	Default
Voltage difference calculation mode	0: System is reference 1: U3/U4 input is reference	-	0: System is reference
Synchronizer voltage reference	0: UL12 1: UL23 2: UL31 3: UL1 4: UL2 5: UL3	-	0: UL12
Synchronizer measurement settings	0: Meas.Conf.Incorrect 1: PP and PE voltages 2: PP Voltages	-	-
Synchronizer status	0: Conf.Error 1: Idle Ready 2: Synchronizing 3: Blocked	-	-
Synchroswitch status	0: Standstill 1: Departing 2: Enclosing	-	-
Force control signals on	0: None 1: Blocked On 2: Running On 3: Increase U On 4: Decrease U On 5: Increase F On 6: Decrease F On 7: CB Close On 8: LongSyncTime On	-	0: None
Enable on-screen synchronizer view	0: Disabled 1: Enabled	-	0: Disabled
Magnitude difference	-200.000200.000%Un	0.001%Un	0%Un

Name	Range	Step	Default
Frequency difference	-100.000100.000Hz	0.001Hz	0Hz
Angle difference	-360.000360.000deg	0.001deg	0deg
Magnitude difference on closing BRK	-200.000200.000%Un	0.001%Un	0%Un
Frequency difference on closing BRK	-100.000100.000Hz	0.001Hz	0Hz
Angle difference on closing BRK	-360.000360.000deg	0.001deg	0deg
Estimated BRK Closing time	0.000360.000s	0.005s	Os
Networks rotating time	0.000360.000s	0.005s	0s
Networks placement atm	-360.000360.000deg	0.001deg	0deg
Synchronizing time left	0.0001800.000s	0.005s	0s
Get measurement errors for fine tuning	0: - 1: Get errors	-	0: -
Magnitude difference fine tune	-200.000200.000%	0.001%	0%
Frequency difference fine tune	-100.000100.000Hz	0.001Hz	OHz
Angle difference fine tune	-360.000360.000deg	0.001deg	0deg

Table. 5.5.7 - 272. Synchronizing settings.

Name	Range	Step	Default
Maximum allowed voltage difference	0.1050.00%Un	0.01%Un	2.00%Un
Maximum allowed overfrequency difference to allow synchronizing	0.002.00Hz	0.01Hz	0.2Hz
Maximum allowed underfrequency difference to allow synchronizing	0.002.00Hz	0.01Hz	0Hz
Maximum time for synchronizing	0.0001800.000s	0.005s	300.000s
Maximum allowed angular disposition to allow synchronizing	-25.0025.00deg	0.01deg	10.00deg
Adjustment for measurement inaccuracy or set of desired volt. offset	-95.000095.0000%Un	0.0001%Un	0%Un
Adjustment for measurement inaccuracy or set of desired angular offset	-60.000060.0000deg	0.0001deg	0deg
Adjustment for measurement inaccuracy or set of desired freq. offset	-0.50002.0000Hz	0.0001Hz	-0.1000Hz
Voltage adjustment slope	0.0025.00%/s	0.01%/s	0.20%/s
Volt. Max. adjustment pulse length	0.0001800.000s	0.005s	3.000s
Volt. Min. adjustment pulse length	0.0001800.000s	0.005s	0.100s
Volt. Min. Resting time between pulses	0.0001800.000s	0.005s	2.500s
Freq. Max. adjustment pulse length	0.0001800.000s	0.005s	3.000s
Freq. Min. adjustment pulse length	0.0001800.000s	0.005s	0.100s
Freq. Min. Resting time between pulses	0.0001800.000s	0.005s	2.500s
Frequency adjustment slope when increasing	0.0010.00Hz/s	0.01Hz/s	0.10Hz/s
Frequency adjustment slope when decreasing	-10.000.00Hz/s	0.01Hz/s	-0.10Hz/s
Circuit breaker pre-closing time incl auxiliary relays	0.0001800.000s	0.005s	0.100s
Lenght of circuit breaker closing pulse	0.0001800.000s	0.005s	0.250s

Name	Range	Step	Default
Multiple On pulses	0: Single On pulse 1: Multiple pulses	-	0: Single On pulse

Table. 5.5.7 - 273. Synchronizer internal parameters.

Name	Range	Step	Default
Maximum allowed voltage difference to start synchronizing	0.0050.00%Un	0.01%Un	20.00%Un
Block voltage up commands over	0.0050.00%Un	0.01%Un	20.00%Un
Block voltage down commands under	-50.0050.00%Un	0.01%Un	-20.00%Un
Integrator sum when voltage adjustment pulse is generated	0.0050.00%	0.01%	10.00%
Voltage adjustment pulse length constant	0.005000.00	0.01	1000.00
Maximum allowed frequency difference to start synchronizing	0.0025.00Hz	0.01Hz	5.00Hz
Integrator sum when frequency adjustment pulse is generated	0.0050.00Hz	0.01Hz	1.00Hz
Frequency adjustment pulse length constant	0.005000.00	0.01	1000.00
Filter time for angle derivative	0.0001800.000s	0.005s	1.000s
Circuit breaker pre-closing adjustment constant	0.0010.00	0.01	0.10

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a BREAKER CLOSE PULSE signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further.

The blocking of the function causes an HMI display event and a-time stamped blocking event with information of the startup voltage values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events

The synchronizing function (abbreviated "GSYN" in event block names) generates events and registers from the status changes in the following: VOLTAGE MAG/FREQ/ANG DIFFERENCE OK, RUNNING, DECREASE/INCREASE VOLTAGE/FREQUENCY, BREAKER CLOSE PULSE, LONG SYNC TIME, and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

Table. 5.5.7 - 274. I	Event messages.
-----------------------	-----------------

Event block name	Event names
GSYN	Synchronizing Blocked ON
GSYN	Synchronizing Blocked OFF

Event block name	Event names
GSYN	Synchronizing Running ON
GSYN	Synchronizing Running OFF
GSYN	Synchr. Increase Voltage ON
GSYN	Synchr. Increase Voltage OFF
GSYN	Synchr. Decrease Voltage ON
GSYN	Synchr. Decrease Voltage OFF
GSYN	Synchr. Increase Frequency ON
GSYN	Synchr. Increase Frequency OFF
GSYN	Synchr. Decrease Frequency ON
GSYN	Synchr. Decrease Frequency OFF
GSYN	Synchronizer BRK Close ON
GSYN	Synchronizer BRK Close OFF
GSYN	Synchronizer Long Sync. Time ON
GSYN	Synchronizer Long Sync. Time OFF
GSYN	Synchroswitch Close fail Re-init ON
GSYN	Synchroswitch Close fail Re-init OFF
GSYN	Synchroswitching requested ON
GSYN	Synchroswitching requested OFF

5.5.8 Vector jump ($\Delta \phi$; 78)

Distribution systems may include different kinds of distributed power generation sources, such as wind farms and diesel or fuel generators. When a fault occurs in the distribution system, it is usually detected and isolated by the protection system closest to the faulty point, resulting in the electrical power system shutting dow either partially or completely. The remaining distributed generators try to deliver the power to the part of the distribution system that has been disconnected from the grid, and usually an overload condition can be expected. Under such overload conditions, it is normal to have a drop in voltage and frequency. This overload results in the final system disconnection from the islanding generator(s). The disconnection depends greatly on the ratio between the power generation and the demand of the islanded system. When any power is supplied to a load only from distributed generators, (due to the opening of the main switch), the situation is called an isolated island operation or an islanded operation of the electrical distribution network.

The vector jump control function is suitable to detect most islanding situations and to switch off the mains breaker in order to let the generator only supply loads according to their rated power value. Therefore, an overload does not cause any mechanical stress to the generator unit(s). The vector jump relay should be located either on the mains side of the operated breaker or on the islanding generator side.

The vector jump function is used for instant tripping and has only one operating stage. The function has an algorithm which follows the samples of chosen measured voltages (64 samples/cycle). The reference voltage used can be all or any of the phase-to-phase or phase-to-neutral voltages.

The outputs of the function are the ALARM, TRIP and BLOCKED signals. Both ALARM and TRIP signals have an individual pick-up setting. The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running. The vector jump function uses a total of eight (8) separate setting groups which can be selected from one common source.

Version: 2.08

The operational logic consists of the following:

- input magnitude selection
- input magnitude processing
- threshold comparator
- two block signal checks (undervoltage block or stage external signal)
- time delay characteristics
- output processing.

The inputs for the function are the following:

- available stages
- setting parameters
- · digital inputs and logic signals
- measured and pre-processed voltage magnitudes.

The function's outputs are ALARM, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. When tripping, the function outputs ALARM and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the ALARM, TRIP and BLOCKED events.

The following figure presents a simplified function block diagram of the vector jump function.

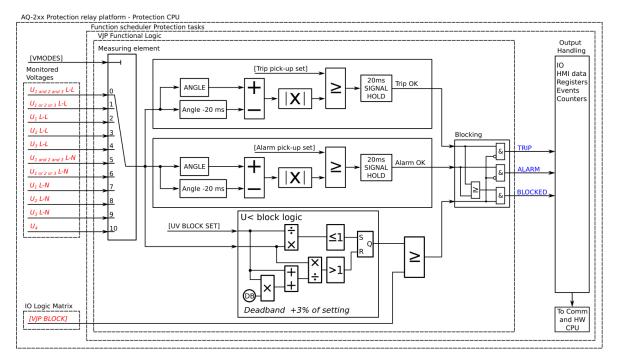
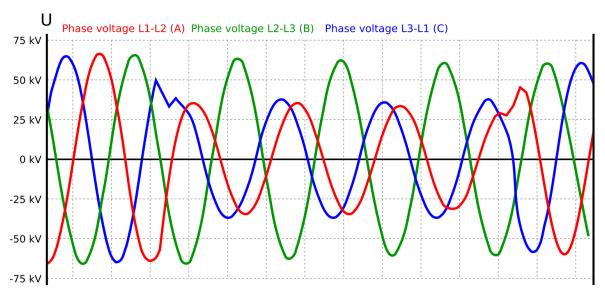


Figure. 5.5.8 - 181. Simplified function block diagram of the $\Delta \phi$ function.

Measured input

The function block uses analog voltage measurement values and always uses complex measurement from samples. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

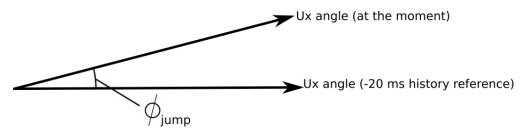
Table 558-275	Measurement inputs	of the vector ii	imp function
Table: 0.0.0 - 210.	measurement inputs	Of the vector ju	imp iunction.


Signal	Description	Time base
U1L-L	Measured line-to-line voltage U1/V	5ms
U ₂ L-L	Measured line-to-line voltage U2/V	5ms
U ₃ L-L	Measured line-to-line voltage U ₃ /V	5ms
U ₁ L-N	Measured line-to-neutral voltage U1/V	5ms
U ₂ L-N	Measured line-to-neutral voltage U ₂ /V	5ms
U3L-N	Measured line-to-neutral voltage U ₃ /V	5ms
U ₄	Measured voltage U ₄ /V	5ms

The selection of the used AI channel is made with a setting parameter. In all possible input channel variations the pre-fault condition is presented with a 20 ms averaged history value from -20 ms from ALARM or TRIP event.

Pick-up

When a fault appears in the power system and some areas are disconnected, normally the remaining generators connected to the network must supply the area disconnected from the utility side supply. This results in an instantaneous demand of power that the generators must tackle. The excitation and the mechanical systems cannot answer such a huge demand of power quickly even if there were enough reserve power. The worst of the situation is received by the rotors of the generator units: they suffer a torsion torque that can even break the rotor and cause subsequent damage not only for the generator but for the entire power plant too.



As can be seen in the example above, only phase-to-phase voltages L1-L2 and L3-L1 have been reduced, while voltage L2-L3 remains the same. This means that the problem occured in phase L1 of the network. The voltage level is not reduced to zero, nor is the voltage in any phase is totally lost. The phases without the fault condition remain normal with the same value. On the other hand, the frequency can sag as can be seen in the figure above.

The $\Delta \alpha$ setting parameter controls the pick-up of the vector jump function. This defines the minimum allowed rapid measured voltage angle change before action from the function. The function constantly calculates the ratio between the $\Delta \alpha_{set}$ and the measured magnitude ($\Delta \alpha_m$) for each of the selected voltages. The function's stage trip signal lasts for 20 ms and automatically resets after that time has passed. The setting value is common for all measured amplitudes.

Figure. 5.5.8 - 183. Vector jump from the relay's point of view.

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
Δα LN mode	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	0: On	Set mode of VJP block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Δα force status to	0: Normal 1: Blocked 2: Trip 3: Alarm	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Available stages	0: Trip 1: Trip and alarm	0: Trip	Defines if alarm is included with trip or not.
Monitored voltages	0: System all P-P Voltages 1: System any P- P Voltage 2: System L12 Voltage 3: System L23 Voltage 4: System L31 Voltage 5: System all P-E voltage 6: System any P- E voltage 7: System L1 Voltage 8: System L2 Voltage 9: System L3 Voltage 10: U4 Voltage	1: System any P-P Voltage	Defines the monitored voltage channel(s)

Table. 5.5.8 - 276. General settings of the function.

Table. 5.5.8 - 277. Pick-up settings.

Name	Range	Step	Default	Description
Pick-up setting $\Delta \alpha$ (lead or lag) Trip	0.0530.00°	0.01°	5°	Pick-up setting for trip signal
Pick-up setting $\Delta \alpha$ (lead or lag) Alarm	0.0530.00°	0.01°	5°	Pick-up setting for alarm signal

Name	Range	Step	Default	Description
Undervoltage block limit % < Un	0.01100.00%U _n	0.01%U _n	95%U _n	Block setting. When measured voltage is below this setting the function is blocked.

The pick-up activation of the function is not directly equal to the START or TRIP signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table. 5.5.8 - 278. Information displayed by the function.

Name	Range	Step	Description
Δα > LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of UEX block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
$\Delta \alpha$ > condition	0: Normal 1: Blocked 2: Trip 3: Alarm	-	Displays status of the protection function.
Voltage meas selected	0: Selection Ok 1: Selection not available	-	Displays validity of the voltage channel(s) selected in "Monitored voltages" parameter.
Δα > U1 Angle difference			
Δα > U2 Angle difference	-360360deg	0.01deg	Displays the angle difference between present time and 20 ms ago.
Δα > U3 Angle difference			
$\Delta \alpha$ > U1meas/set			
Δα > U2meas/set	-360360p.u.	0.01p.u.	Displays the ratio between the measured voltage and undervoltage block limit setting.
$\Delta \alpha$ > U3meas/set			

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a ALARM or TRIP signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup voltage values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

The vector jump function (abbreviated "VJP" in event block names) generates events and registers from the status changes in START, TRIP, and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Table. 5.5.8 - 279. Event messages.

Event block name	Event names		
VJP1	Block ON		
VJP1	Block OFF		
VJP1	Trip ON		
VJP1	Trip OFF		
VJP1	Alarm ON		
VJP1	Alarm OFF		

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.5.8 - 280. Register content.

Date and time	Event	Fault type	Trip Δα meas / dataset	Alarm Δα meas / dataset	Used SG
dd.mm.yyyy	Event	L1(2), L2(3), L3(1)	Trip angle difference	Alarm angle	Setting group 18
hh:mm:ss.mss	name	and U4		difference	active

5.5.9 Synchronizer (ΔV/Δa/Δf; 25)

The synchronizer function is used to automatically synchronize generators to power grids. Proper synchronizing is essential to avoid inrush currents, power system oscillations as well as thermal and mechanical stress on the generator when connecting a synchronous generator to a grid.

The user can synchronize up to eight (8) circuit breakers with the same synchronizing function by using different setting groups and the logic editor. The synchrocheck function is used to parallel or energize power lines.

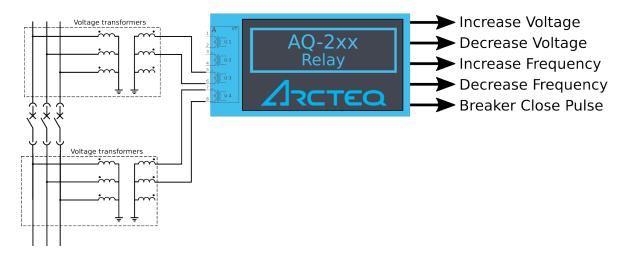
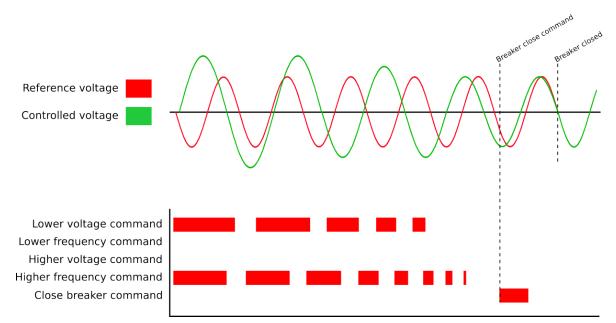



Figure. 5.5.9 - 184. Simplified presentation of synchronizer operation

The synchronizing function uses voltage signals from each side of the circuit breaker to be closed.

- The amplitude difference between the two voltages is used to send "Increase" and "Decrease" commands to the generator's voltage regulator. The pulse length for these commands can be set, and it is automatically adjusted depending on the difference between the two measured signals.
- The frequency difference between the two voltages (the slip frequency) is used to send "Increase" and "Decrease" commands to the turbine's speed governor. The pulse length for these commands can be adjusted individually to take into account turbine governors with different speeds. The pulse length is automatically adjusted depending on the difference between the two measured signals.
- Settings can be adjusted to only allow positive slip to avoid reverse power at synchronizing.
- When the amplitude, the speed, and the phase-angle between the two voltages match (within pre-set limits), a "Close" command signal is sent to the generator's circuit breaker.

Pre-closing time can be used to allow for delay time in a circuit breaker and any auxiliary relays. The pre-closing angle is adjusted automatically depending on the slip frequency.

The outputs of the function are the following signals:

• Voltage Magnitude Difference Ok

Version: 2.08

- Voltage Frequency Difference Ok
- Voltage Angle Difference Ok
- Blocked
- Running
- Increase Voltage
- Decrease Voltage
- Increase Frequency
- Decrease Frequency
- Breaker Close Pulse
- Long Sync Time
- Nets Standstill
- Nets Departing
- Nets Enclosing

The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed voltage magnitudes.

The function's output signals can be used for direct I/O controlling and user logic programming. The time stamp resolution is 1 ms.

Measured input

The function block uses analog voltage measurement values. The monitored magnitude is equal to RMS values.

Table 559-281	. Measurement inputs of the s	vnchronizer function

Signal	Description	Time base
U1RMS	RMS measurement of voltage U1/V	5ms
U2RMS	RMS measurement of voltage U ₂ /V	5ms
U ₃ RMS	RMS measurement of voltage U ₃ /V	5ms
U4RMS	RMS measurement of voltage U ₄ /V	5ms

Setting parameters

Table. 5.5.9 - 282. General setting parameters.

Name	Range	Step	Default
Voltage difference calculation mode	0: System is reference 1: U3/U4 input is reference	-	0: System is reference
Synchronizer voltage reference	0: UL12 1: UL23 2: UL31 3: UL1 4: UL2 5: UL3	-	0: UL12
Synchronizer measurement settings	0: Meas.Conf.Incorrect 1: PP and PE voltages 2: PP Voltages	-	-

Name	Range	Step	Default
Synchronizer status	0: Conf.Error 1: Idle Ready 2: Synchronizing 3: Blocked	-	-
Synchroswitch status	0: Standstill 1: Departing 2: Enclosing	-	-
Force control signals on	0: None 1: Blocked On 2: Running On 3: Increase U On 4: Decrease U On 5: Increase F On 6: Decrease F On 7: CB Close On 8: LongSyncTime On	-	0: None
Enable on-screen synchronizer view	0: Disabled 1: Enabled	-	0: Disabled
Magnitude difference	-200.000200.000%Un	0.001%Un	0%Un
Frequency difference	-100.000100.000Hz	0.001Hz	0Hz
Angle difference	-360.000360.000deg	0.001deg	Odeg
Magnitude difference on closing BRK	-200.000200.000%Un	0.001%Un	0%Un
Frequency difference on closing BRK	-100.000100.000Hz	0.001Hz	0Hz
Angle difference on closing BRK	-360.000360.000deg	0.001deg	Odeg
Estimated BRK Closing time	0.000360.000s	0.005s	Os
Networks rotating time	0.000360.000s	0.005s	0s
Networks placement atm	-360.000360.000deg	0.001deg	0deg
Synchronizing time left	0.0001800.000s	0.005s	0s
Get measurement errors for fine tuning	0: - 1: Get errors	-	0: -
Magnitude difference fine tune	-200.000200.000%	0.001%	0%
Frequency difference fine tune	-100.000100.000Hz	0.001Hz	0Hz
Angle difference fine tune	-360.000360.000deg	0.001deg	Odeg

Table. 5.5.9 - 283. Synchronizing settings.

Name	Range	Step	Default
Maximum allowed voltage difference	0.1050.00%Un	0.01%Un	2.00%Un
Maximum allowed overfrequency difference to allow synchronizing	0.002.00Hz	0.01Hz	0.2Hz
Maximum allowed underfrequency difference to allow synchronizing	0.002.00Hz	0.01Hz	0Hz
Maximum time for synchronizing	0.0001800.000s	0.005s	300.000s
Maximum allowed angular disposition to allow synchronizing	-25.0025.00deg	0.01deg	10.00deg
Adjustment for measurement inaccuracy or set of desired volt. offset	-95.000095.0000%Un	0.0001%Un	0%Un
Adjustment for measurement inaccuracy or set of desired angular offset	-60.000060.0000deg	0.0001deg	0deg

Name	Range	Step	Default
Adjustment for measurement inaccuracy or set of desired freq. offset	-0.50002.0000Hz	0.0001Hz	-0.1000Hz
Voltage adjustment slope	0.0025.00%/s	0.01%/s	0.20%/s
Volt. Max. adjustment pulse length	0.0001800.000s	0.005s	3.000s
Volt. Min. adjustment pulse length	0.0001800.000s	0.005s	0.100s
Volt. Min. Resting time between pulses	0.0001800.000s	0.005s	2.500s
Freq. Max. adjustment pulse length	0.0001800.000s	0.005s	3.000s
Freq. Min. adjustment pulse length	0.0001800.000s	0.005s	0.100s
Freq. Min. Resting time between pulses	0.0001800.000s	0.005s	2.500s
Frequency adjustment slope when increasing	0.0010.00Hz/s	0.01Hz/s	0.10Hz/s
Frequency adjustment slope when decreasing	-10.000.00Hz/s	0.01Hz/s	-0.10Hz/s
Circuit breaker pre-closing time incl auxiliary relays	0.0001800.000s	0.005s	0.100s
Lenght of circuit breaker closing pulse	0.0001800.000s	0.005s	0.250s
Multiple On pulses	0: Single On pulse 1: Multiple pulses	-	0: Single On pulse

Table. 5.5.9 - 284. Synchronizer internal parameters.

Name	Range	Step	Default
Maximum allowed voltage difference to start synchronizing	0.0050.00%Un	0.01%Un	20.00%Un
Block voltage up commands over	0.0050.00%Un	0.01%Un	20.00%Un
Block voltage down commands under	-50.0050.00%Un	0.01%Un	-20.00%Un
Integrator sum when voltage adjustment pulse is generated	0.0050.00%	0.01%	10.00%
Voltage adjustment pulse length constant	0.005000.00	0.01	1000.00
Maximum allowed frequency difference to start synchronizing	0.0025.00Hz	0.01Hz	5.00Hz
Integrator sum when frequency adjustment pulse is generated	0.0050.00Hz	0.01Hz	1.00Hz
Frequency adjustment pulse length constant	0.005000.00	0.01	1000.00
Filter time for angle derivative	0.0001800.000s	0.005s	1.000s
Circuit breaker pre-closing adjustment constant	0.0010.00	0.01	0.10

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a BREAKER CLOSE PULSE signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further.

The blocking of the function causes an HMI display event and a-time stamped blocking event with information of the startup voltage values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events

The synchronizing function (abbreviated "GSYN" in event block names) generates events and registers from the status changes in the following: VOLTAGE MAG/FREQ/ANG DIFFERENCE OK, RUNNING, DECREASE/INCREASE VOLTAGE/FREQUENCY, BREAKER CLOSE PULSE, LONG SYNC TIME, and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

Table. 5.5.9 - 285. Event messages.

Event block name	Event names
GSYN	Synchronizing Blocked ON
GSYN	Synchronizing Blocked OFF
GSYN	Synchronizing Running ON
GSYN	Synchronizing Running OFF
GSYN	Synchr. Increase Voltage ON
GSYN	Synchr. Increase Voltage OFF
GSYN	Synchr. Decrease Voltage ON
GSYN	Synchr. Decrease Voltage OFF
GSYN	Synchr. Increase Frequency ON
GSYN	Synchr. Increase Frequency OFF
GSYN	Synchr. Decrease Frequency ON
GSYN	Synchr. Decrease Frequency OFF
GSYN	Synchronizer BRK Close ON
GSYN	Synchronizer BRK Close OFF
GSYN	Synchronizer Long Sync. Time ON
GSYN	Synchronizer Long Sync. Time OFF
GSYN	Synchroswitch Close fail Re-init ON
GSYN	Synchroswitch Close fail Re-init OFF
GSYN	Synchroswitching requested ON
GSYN	Synchroswitching requested OFF

5.5.10 Programmable control switch

The programmable control switch is a control function that controls its binary output signal. This output signal can be controlled locally from the relay's mimic (displayed as a box in the mimic) or remotely from the RTU. The main purpose of programmable control switches is to block or enable function and to change function properties by changing the setting group. However, this binary signal can also be used for any number of other purposes, just like all other binary signals. Once a programmable control switch has been activated or disabled, it remains in that state until given a new command to switch to the opposite state (see the image below). The switch cannot be controlled by an auxiliary input, such as digital inputs or logic signals; it can only be controlled locally (mimic) or remotely (RTU).

PCS status PCS activation command PCS deactivation command

Settings.

These settings can be accessed at Control \rightarrow Device I/O \rightarrow Programmable control switch.

Table. 5.5.10 - 286. Settings.

Name	Range	Default	Description
Switch name	-	Switchx	The user-settable name of the selected switch. The name can be up to 32 characters long.
Access level for Mimic control	0: User 1: Operator 2: Configurator 3: Super user	2: Configurator	Determines which access level is required to be able to control the programmable control switch via the Mimic.

Events

The programmable control switch function (abbreviated "PCS" in event block names) generates events from status changes. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers five (5) independent switches.

Table. 5.5.10 - 287. Event messages.

Event block name	Event names
PCS	Switch 1 ON
PCS	Switch 1 OFF
PCS	Switch 2 ON
PCS	Switch 2 OFF
PCS	Switch 3 ON
PCS	Switch 3 OFF
PCS	Switch 4 ON
PCS	Switch 4 OFF
PCS	Switch 5 ON
PCS	Switch 5 OFF

5.5.11 Analog input scaling curves

Sometimes when measuring with RTD inputs, milliampere inputs and digital inputs the measurement might be inaccurate because the signal coming from the source is inaccurate. One common example of this is tap changer location indication signal not changing linearly from step to step. If the output difference between the steps are not equal to each other, measuring the incoming signal accurately is not enough. "Analog input scaling curves" menu can be used to take these inaccuracies into account.

Analog input scaling curve settings can be found at *Measurement* \rightarrow *AI(mA, DI volt) scaling* menu.

Currently following measurements can be scaled with analog input scaling curves:

- RTD inputs and mA inputs in "RTD & mA input" option cards
- mA inputs in "mA output & mA input" option cards
- Digital input voltages

Table. 5.5.11 - 288. Main settings (input channel).

Name	Range	Step	Default	Description
Analog input scaling	0: Disabled 1: Activated	-	0: Disabled	Enables and disables the input.
Scaling curve 14	0: Disabled 1: Activated	-	0: Disabled	Enables and disables the scaling curve and the input measurement.
Curve 14 input signal select	0: S7 mA Input 1: S8 mA Input 2: S15 mA Input 3: S16 mA Input 4: D11 Voltage 23: D120 Voltage 24: RTD S1 Resistance 39: RTD S16 Resistance 40: mA In 1 (I card 1) 41: mA In 2 (I card 2)	-	0: S7 mA Input	Defines the measurement used by scaling curve.
Curve 14 input signal filtering	0: No 1: Yes	-	0: No	Enables calculation of the average of received signal.
Curve 14 input signal filter time constant	0.0053800.000 s	0.005 s	1 s	Time constant for input signal filtering. This parameter is visible when "Curve 14 input signal filtering" has been set to "Yes".
Curve 14 input signal out of range set	0: No 1: Yes	-	0: No	Enables out of range signals. If input signal is out of minimum and maximum limits, "ASC14 input out of range" signal is activated.
Curve14 input minimum	-1 000 000.001 000 000.00	0.00001	0	Defines the minimum input of the curve. If input is below the set limit, "ASC14 input out of range" is activated.
Curve 14 input	-1 000 000.001 000 000.00	0.00001	-	Displays the input measurement received by the curve.
Curve14 input maximum	-1 000 000.001 000 000.00	0.00001	0	Defines the maximum input of the curve. If input is above the set limit, "ASC14 input out of range" is activated.
Curve14 output	-1 000 000.001 000 000.00	0.00001	-	Displays the output of the curve.

The input signal filtering parameter calculates the average of received signals according to the set time constant. This is why rapid changes and disturbances (such as fast spikes) are smothered. The Nyquist rate states that the filter time constant must be at least double the period time of the disturbance process signal. For example, the value for the filter time constant is 2 seconds for a 1 second period time of a disturbance oscillation.

$$H(s) = \frac{Wc}{s + Wc} = \frac{1}{1 + s/Wc}$$

When the curve signal is out of range, it activates the "ASC1...4 input out of range" signal, which can be used inside logic or with other relay functions. The signal can be assigned directly to an output relay or to an LED in the I/O matrix. The "Out of range" signal is activated, when the measured signal falls below the set input minimum limit, or when it exceeds the input maximum limit.

If for some reason the input signal is lost, the value is fixed to the last actual measured cycle value. The value does not go down to the minimum if it has been something else at the time of the signal breaking.

Name	Range	Step	Default	Description	
Curve 14 update cycle	510 000ms	5ms	150ms	Defines the length of the input measurement update cycle. If the user wants a fast operation, this setting should be fairly low.	
Scaled value handling	0: Floating point 1: Integer out (Floor) 2: Integer (Ceiling) 3: Integer (Nearest)	-	0: Floating point	5	
Input value 1	04000	0.000 01	0	The measured input value at Curve Point 1.	
Scaled output value 1	-10 ⁷ 10 ⁷	0.000 01	0	Scales the measured milliampere signal at Point 1.	
Input value 2	04000	0.000 01	1	The measured input value at Curve Point 2.	
Scaled output value 1	-10 ⁷ 10 ⁷	0.000 01	0	Scales the measured milliampere signal at Point 2.	
Add curvepoint 320	0: Not used 1: Used	-	0: Not used	Allows the user to create their own curve with up to twenty (20) curve points, instead of using a linear curve between two points.	

Table. 5.5.11 - 289. Output settings and indications.

5.5.12 Logical outputs

Logical outputs are used for sending binary signals out from a logic that has been built in the logic editor. Logical signals can be used for blocking functions, changing setting groups, controlling digital outputs, activating LEDs, etc. The status of logical outputs can also be reported to a SCADA system. 64 logical outputs are available. The figure below presents a logic output example where a signal from the circuit breaker failure protection function controls the digital output relay number 5 ("OUT5") when the circuit breaker's cart status is "In".

CBFP ACT		&		Logical Output 25
DeviceIO				
🚺 Binary Inputs 🌖 Binary Outputs 🌔 m/	A Outputs 🥚 LEI	D Settings 🕘 Dev	vice IO Matrix 🌔 Pro	ogrammable Control Switch 🚺
Control Settings				· · · ·
IO Matrix				
Show connected only				
Inputs	U OUT1	U OUT2	U OUT3 U	OUT4 OUT5
Logical Output 25				¢
I> START (General)				•
I> TRIP (General) I>> START (General)	÷		•	
I>> TRIP (General)				
IO> START	-			
IO> TRIP			•	

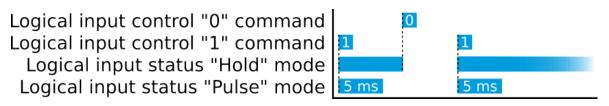
Figure. 5.5.12 - 185. Logic output example. Logical output is connected to an output relay in matrix.

Logical output descriptions

Logical outputs can be given a description. The user defined description are displayed in most of the menus (logic editor, matrix, block settings etc.).

Table. 5.5.12 - 290. Logical output user description.

Name	Range	Default	Description
User editable description LOx	131 characters	Logical output x	Description of the logical output. This description is used in several menu types for easier identification.


5.5.13 Logical inputs

Logical inputs are binary signals that a user can control manually to change the behavior of the AQ-200 unit or to give direct control commands. Logical inputs can be controlled with a virtual switch built in the mimic and from a SCADA system (IEC 61850, Modbus, IEC 101, etc.). Logical inputs are volatile signals: their status will always return to "0" when the AQ-200 device is rebooted. 32 logical inputs are available.

Logical inputs have two modes available: Hold and Pulse. When a logical input which has been set to "Hold" mode is controlled to "1", the input will switch to status "1" and it stays in that status until it is given a control command to go to status "0" or until the device is rebooted. When a logical input which has been set to "Pulse" mode is controlled to "1", the input will switch to status "1" and return back to "0" after 5 ms.

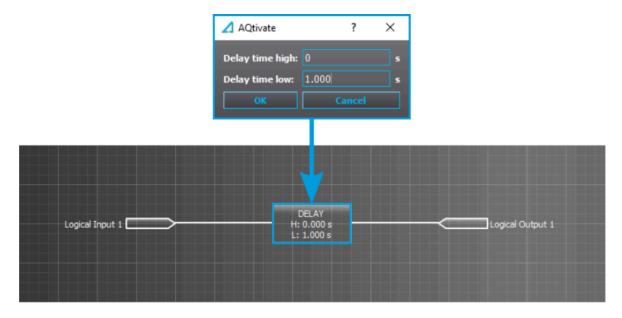

The figure below presents the operation of a logical input in Hold mode and in Pulse mode.

Figure. 5.5.13 - 186. Operation of logical input in "Hold" and "Pulse" modes.

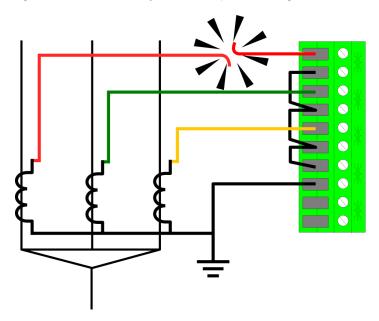
A logical input pulse can also be extended by connecting a DELAY-low gate to a logical output, as has been done in the example figure below.

Figure. 5.5.13 - 187. Extending a logical input pulse.

Logical input control "1" command Logical input status "Pulse" mode Logical output status

Logical input descriptions

Logical inputs can be given a description. The user defined description are displayed in most of the menus (logic editor, matrix, block settings etc.).


Name	Range	Default	Description
User editable description Llx	131 characters	Logical input x	Description of the logical input. This description is used in several menu types for easier identification.

5.6 Monitoring functions

5.6.1 Current transformer supervision

The current transformer supervision function (abbreviated CTS in this document) is used for monitoring the CTs as well as the wirings between the device and the CT inputs for malfunctions and wire breaks. An open CT circuit can generate dangerously high voltages into the CT secondary side, and cause unintended activations of current balance monitoring functions.

Figure. 5.6.1 - 188. Secondary circuit fault in phase L1 wiring.

The function constantly monitors the instant values and the key calculated magnitudes of the phase currents. Additionally, the residual current circuit can be monitored if the residual current is measured from a dedicated residual current CT. The user can enable and disable the residual circuit monitoring at will.

The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running.

The function uses a total of eight (8) separate setting groups which can be selected from one common source.

The operational logic consists of the following:

- input magnitude processing
- threshold comparator
- block signal check
- time delay characteristics
- output processing.

The following conditions have to met simultaneously for the function alarm to activate:

- None of the three-phase currents exceeds the Iset high limit setting.
- At least one of the three-phase currents exceeds the *Iset low limit* setting.
- At least one of the three-phase currents are below the *lset low limit* setting.
- The ratio between the calculated minum and maximum of the three-phase currents is below the *l_{set} ratio* setting.
- The ratio between the negative sequence and the positive sequence exceeds the *I2/I1* ratio setting.
- The calculated difference (IL1+IL2+IL3+I0) exceeds the *I_{sum} difference* setting (optional).
- The above-mentioned condition is met until the set time delay for alarm.

The inputs of the function are the following:

- setting parameters
- · measured and pre-processed current magnitudes.

The function's outputs are CTS ALARM and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the output signals. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the CTS ALARM and BLOCKED events.

The following figure presents a simplified function block diagram of the current transformer supervision function.

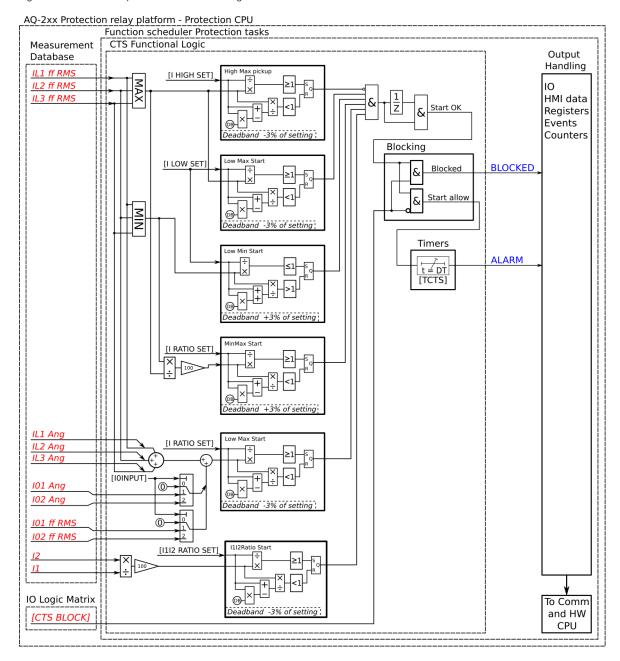


Figure. 5.6.1 - 189. Simplified function block diagram of the CTS function.

Measured input

The function block uses analog current measurement values, the RMS magnitude of the current measurement inputs, and the calculated positive and negative sequence currents. The user can select what is used for the residual current measurement: nothing, the I01 RMS measurement, or the I02 RMS measurement.

Table. 5.6.1 - 292. Measured inputs of the CTS function.

Signal	Description	Time base
IL1RMS	RMS measurement of phase L1 (A) current	5ms
IL2RMS	RMS measurement of phase L2 (B) current	5ms
IL3RMS	RMS measurement of phase L3 (C) current	5ms
I01RMS	RMS measurement of residual input I01	5ms
I02RMS	RMS measurement of residual input I02	5ms
11	Phase current's positive sequence component	5ms
12	Phase current's negative sequence component	5ms
IL1Ang	Angle of phase L1 (A) current	5ms
IL2 Ang	Angle of phase L2 (B) current	5ms
IL3 Ang	Angle of phase L3 (C) current	5ms
I01 Ang	Angle of residual input I01	5ms
I02 Ang	Angle of residual input I02	5ms

The selection of the AI channel in use is made with a setting parameter. In all possible input channel variations the pre-fault condition is presented with a 20 ms averaged history value from -20 ms from START or TRIP event.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.6.1 - 293. General settings of the function.

Name	Range	Default	Description
CTS LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	0: On	Set mode of CTS block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
CTS force status to	0: Normal 1: Alarm 2: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
10 input selection	0: Not in use 1: I01 2: I02	0: Not in use	Selects the measurement input for the residual current. If the residual current is measured with a separate CT, the residual current circuit can be monitored with the CTS function as well. However, this does not apply to summing connections (Holmgren, etc.). If the phase current CT is summed with I01 or I02, this selection should be set to "Not in use".
10 direction	0: Add 1: Subtract	0: Add	Defines the polarity of residual current channel connection.
Compensate natural unbalance	0: - 1: Comp	0: -	When activated while the line is energized, the currently present calculated residual current is compensated to 0.

Pick-up

The I_{set} and IO_{set} setting parameters control the current-dependent pick-up and activation of the current transformer supervision function. They define the minimum and maximum allowed measured current before action from the function. The function constantly calculates the ratio between the setting values and the measured magnitude (I_m) for each of the three phases and for the selected residual current input. The reset ratio of 97 % and 103% are built into the function and is always relative to the I_{set} value. The setting value is common for all measured amplitudes, and when the I_m exceeds the I_{set} value (in single, dual or all currents) it triggers the pick-up operation of the function.

Name	Range	Step	Default	Description
l _{set} high limit	0.0140.00×In	0.01×I _n	1.20×I _n	Determines the pick-up threshold for phase current measurement. This setting limit defines the upper limit for the phase current's pick-up element.
				If this condition is met, it is considered as fault and the function is not activated.
I _{set} Iow Iimit	0.0140.00×I _n	0.01×I _n	0.10×I _n	Determines the pick-up threshold for phase current measurement. This setting limit defines the lower limit for the phase current's pick-up element.
				This condition has to be met for the function to activate.
I _{set} ratio	0.01100.00%	0.01%	10.00%	Determines the pick-up ratio threshold between the minimum and maximum values of the phase current.
				This condition has to be met for the function to activate.
				Determines the pick-up ratio threshold for the negative and positive sequence currents calculated from the phase currents.
I2/I1 ratio	0.01100.00%	0.01%	49.00%	This condition has to be met for the function to activate.
				The ratio is 50 % for a full single-phasing fault (i.e. when one of the phases is lost entirely). Setting this at 49 % allows a current of 0.01 \times I _n to flow in one phase, wile the other two are at nominal current.
I _{sum} difference	0.0140.00×I _n	0.01×I _n	$\begin{array}{c} \label{eq:constraint} 0.10 \times I_n \end{array} \begin{array}{c} \mbox{Determines the pick-up ratio threshold for the calculated residual ph} \\ \mbox{current and the measured residual current. If the measurement circulated healthy, the sum of these two currents should be 0.} \end{array}$	
Time delay for alarm	0.0001800.000s	0.005s	0.5s	Determines the delay between the activation of the function and the alarm.

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active. When the activation of the pick-up is based on binary signals, the activation happens immediately after the monitored signal is activated.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table 5.6.1 - 295	Information displayed by the function.
10010.0.0.1 200.	information displayed by the function.

Name Range		Step	Description	
CTS LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of CTS block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
Uncompensated residual unbalance Pri 3: Blocked		-	Displays the natural unbalance of current after compensating it with <i>Compensate natural unbalance</i> parameter.	
Natural unbalance ang	-360.00360.00 deg	0.01 deg	Displays the natural unbalance of angle after compensating it with <i>Compensate natural unbalance</i> parameter.	
Measured current difference Isum, I0	0.0050.00 xln	0.01 xln	Current difference between summed phases and residual current.	
Measured angle difference Isum, I0	-360360 deg	0.01 deg	Angle difference between summed phases and residual current.	

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

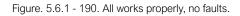
If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

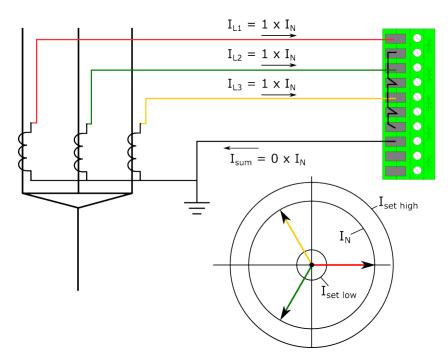
The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup current values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics


This function supports definite time delay (DT). For detailed information on this delay type please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".


Typical cases of current transformer supervision

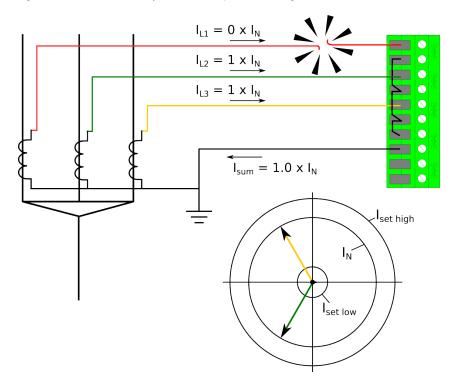
The following nine examples present some typical cases of the current transformer supervision and their setting effects.

AQ-G257 Instruction manual

Version: 2.08

Settings:

$$\begin{split} I_{set} & \text{High limit} = 1.20 \text{ x } I_{\text{N}} \\ I_{set} & \text{Low limit} = 0.10 \text{ x } I_{\text{N}} \\ I_{set} & \text{ratio} = 10.00 \ \% \\ I1/I2 & \text{ratio} = 49.00 \ \% \\ I_0 & \text{input} = \text{Not in use} \end{split}$$


Measurements:

$$\begin{split} I_{min} &= 1 \times I_{N} \\ I_{max} &= 1 \times I_{N} \\ I1 &= 1 \times I_{N} \\ I2 &= 0 \times I_{N} \\ I_{min}/I_{max} &= 1 \\ I2/I1 &= 0\% \end{split}$$

CTS conditions:

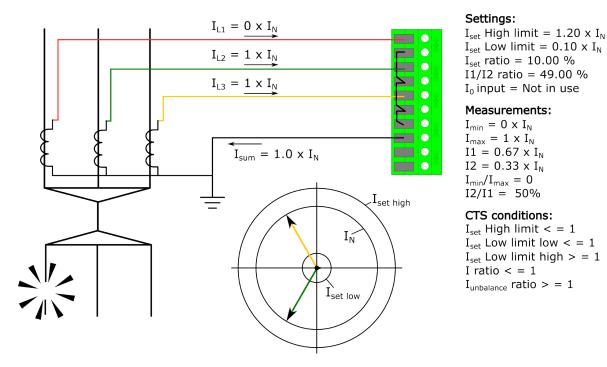
$$\begin{split} I_{set} & \text{High limit} < = 1\\ I_{set} & \text{Low limit low} < = 0\\ I_{set} & \text{Low limit high} > = 1\\ I & \text{ratio} < = 0\\ I_{unbalance} & \text{ratio} > = 0 \end{split}$$

Figure. 5.6.1 - 191. Secondary circuit fault in phase L1 wiring.

Settings:

$$\begin{split} I_{set} & \text{High limit} = 1.20 \text{ x } I_{\text{N}} \\ I_{set} & \text{Low limit} = 0.10 \text{ x } I_{\text{N}} \\ I_{set} & \text{ratio} = 10.00 \ \% \\ I1/I2 & \text{ratio} = 49.00 \ \% \\ I_0 & \text{input} = \text{Not in use} \end{split}$$

Measurements:


$$\begin{split} I_{min} &= 0 \times I_{N} \\ I_{max} &= 1 \times I_{N} \\ I &= 0.67 \times I_{N} \\ I &= 0.33 \times I_{N} \\ I_{min}/I_{max} &= 0 \\ I &= 10\% \end{split}$$

CTS conditions:

$$\begin{split} &I_{set} \text{ High limit } < = 1 \\ &I_{set} \text{ Low limit low } < = 1 \\ &I_{set} \text{ Low limit high } > = 1 \\ &I \text{ ratio } < = 1 \\ &I_{unbalance} \text{ ratio } > = 1 \end{split}$$

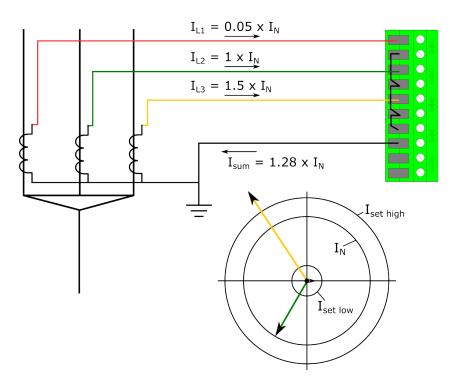

When a fault is detected and all conditions are met, the CTS timer starts counting. If the situation continues until the set time has passed, the function issues an alarm.

Figure. 5.6.1 - 192. Primary circuit fault in phase L1 wiring.

In this example, distinguishing between a primary fault and a secondary fault is impossible. However, the situation meets the function's activation conditions, and if this state (secondary circuit fault) continues until the set time has passed, the function issues an alarm. This means that the function supervises both the primary and the secondary circuit.

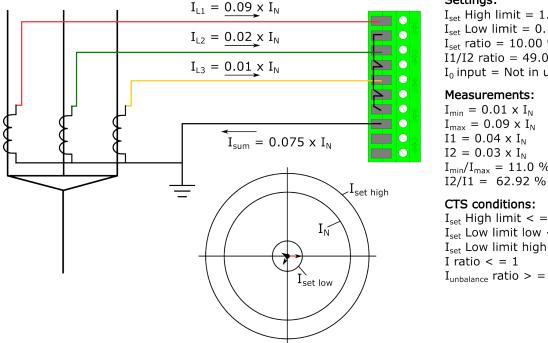
Figure. 5.6.1 - 193. No wiring fault but heavy unbalance.

Settings:

$$\begin{split} I_{set} & \text{High limit} = 1.20 \times I_{\text{N}} \\ I_{set} & \text{Low limit} = 0.10 \times I_{\text{N}} \\ I_{set} & \text{ratio} = 10.00 \ \% \\ I1/I2 & \text{ratio} = 49.00 \ \% \\ I_0 & \text{input} = \text{Not in use} \end{split}$$

Measurements:

 $\begin{array}{l} I_{min} = 0.05 \times I_{N} \\ I_{max} = 1.50 \times I_{N} \\ I1 = 0.85 \times I_{N} \\ I2 = 0.43 \times I_{N} \\ I_{min}/I_{max} = 0.7 \ \% \\ I2/I1 = \ 50.03 \ \% \end{array}$


 $\begin{array}{l} \mbox{CTS conditions:} \\ I_{set} \mbox{ High limit } < = 0 \\ I_{set} \mbox{ Low limit low } < = 1 \\ I_{set} \mbox{ Low limit high } > = 1 \\ I \mbox{ ratio } < = 1 \\ I_{unbalance} \mbox{ ratio } > = 1 \end{array}$

If any of the phases exceed the *I_{set} high limit* setting, the operation of the function is not activated. This behavior is applied to short-circuits and earth faults even when the fault current exceeds the *I_{set} high limit* setting.

AQ-G257 Instruction manual

Version: 2.08

Figure. 5.6.1 - 194. Low current and heavy unbalance.

Settings:

 I_{set} High limit = 1.20 x I_N I_{set} Low limit = 0.10 x I_N I_{set} ratio = 10.00 % I1/I2 ratio = 49.00 % I_0 input = Not in use

 $I_{\text{min}}/I_{\text{max}}$ = 11.0 %

 I_{set} High limit < = 1 I_{set} Low limit low < = 1 I_{set} Low limit high > = 0 $I_{unbalance}$ ratio > = 1

If all of the measured phase magnitudes are below the *Iset low limit* setting, the function is not activated even when the other conditions (inc. the unbalance condition) are met.

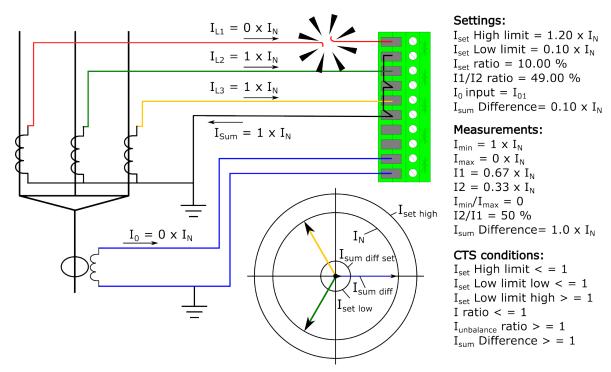
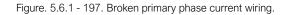
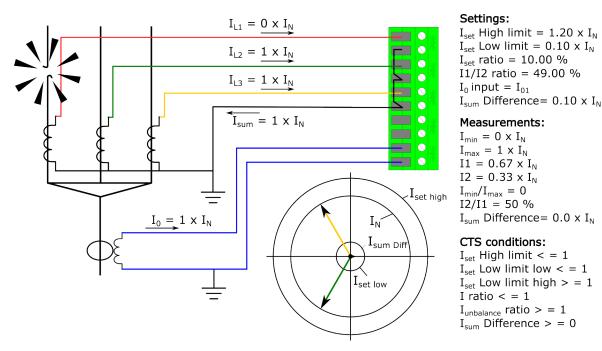
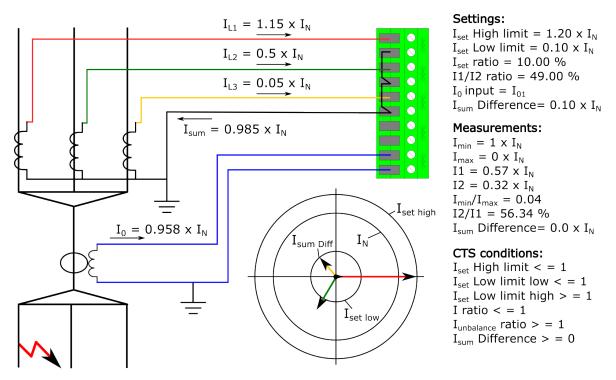

If the Iset high limit and Iset low limit setting parameters are adjusted according to the application's normal behavior, the operation of the function can be set to be very sensitive for broken circuit and conductor faults.

Figure. 5.6.1 - 195. Normal situation, residual current also measured.




When the residual condition is added with the "IO input selection", the sum of the current and the residual current are compared against each other to verify the wiring condition.

When phase current wire is broken all of the conditions are met in the CTS and alarm shall be issued in case if the situation continues until the set alarming time is met.



In this example, all other condition are met except the residual difference. That is now $0 \times I_n$, which indicates a primary side fault.

AQ-G257 Instruction manual

Version: 2.08

Figure. 5.6.1 - 198. Primary side high-impedance earth fault.

In this example there is a high-impedance earth fault. It does not activate the function, if the measurement conditions are met, while the calculated and measured residual current difference does not reach the limit. The *I_{sum} difference* setting should be set according to the application in order to reach maximum security and maximum sensitivity for the network earthing.

Events and registers

The current transformer supervision function (abbreviated "CTS" in event block names) generates events and registers from the status changes in ALARM ACTIVATED and BLOCKED signals. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers two (2) independent stages.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
CTS1	Alarm ON
CTS1	Alarm OFF
CTS1	Block ON
CTS1	Block OFF
CTS2	Alarm ON
CTS2	Alarm OFF
CTS2	Block ON
CTS2	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for ACTIVATED, BLOCKED, etc. The table below presents the structure of the function's register content.

Table. 5.6.1 - 297. Register content.

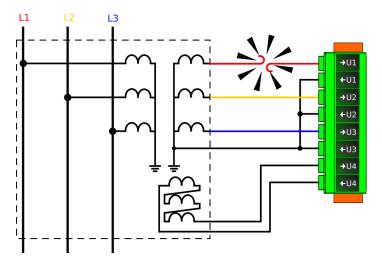
Date and time	Event	Trigger currents	Time to CTSact	Fault type	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	The phase currents (L1, L2 & L3), the residual currents (I01 & I02), and the sequence currents (I1 & I2) on trigger time.	Time remaining before alarm activation.	The status code of the monitored current.	Setting group 18 active.

5.6.2 Voltage transformer supervision (60)

Voltage transformer supervision is used to detect errors in the secondary circuit of the voltage transformer wiring and during fuse failure. This signal is mostly used as an alarming function or to disable functions that require adequate voltage measurement.

The function uses a total of eight (8) separate setting groups which can be selected from one common source. Also, the operating mode of the function can be changed via setting group selection.

The operational logic consists of the following:


- input magnitude processing
- threshold comparator
- block signal check
- time delay characteristics
- output processing.

The inputs of the function are the following:

- setting parameters
- measured and pre-processed voltage magnitudes.

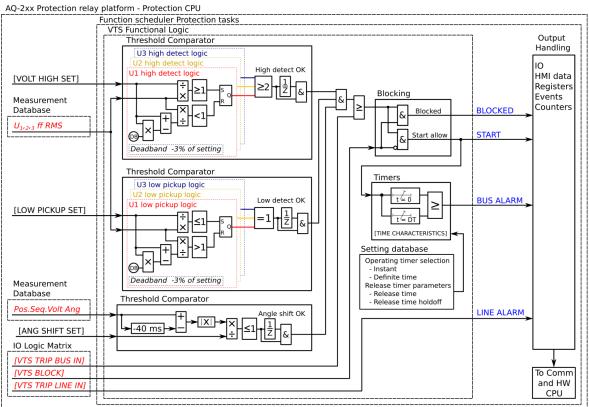

The function's outputs are START, ALARM BUS, ALARM LINE and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the output signals. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, ALARM BUS, ALARM LINE and BLOCKED events.

Figure. 5.6.2 - 199. Secondary circuit fault in phase L1 wiring.

The following figure presents a simplified function block diagram of the voltage transformer supervision function.

Measured input

The function block uses analog voltage measurement values. Function uses the RMS value of the voltage measurement inputs and the calculated (positive, negative and zero) sequence currents.

Signal	Description	Time base
U _{L12} RMS	RMS measurement of voltage U _{L12} /V	5ms
U _{L23} RMS	RMS measurement of voltage UL23/V	5ms
U _{L31} RMS	RMS measurement of voltage UL31/V	5ms
U _{L1} RMS	RMS measurement of voltage UL1/V	5ms
U _{L2} RMS	RMS measurement of voltage UL2/V	5ms
U _{L3} RMS	RMS measurement of voltage UL3/V	5ms
U1P	Positive sequence voltage	5ms
U2N	Negative sequence voltage	5ms
UZ0	Zero sequence voltage	5ms
U _{L12} Ang	Angle of U _{L12} voltage	5ms
U _{L23} Ang	Angle of UL23 voltage	5ms
U _{L31} Ang	Angle of U _{L31} voltage	5ms
U _{L1} Ang	Angle of U _{L1} voltage	5ms
U _{L2} Ang	Angle of UL2 voltage	5ms

Table. 5.6.2 - 298. Measurement inputs of the voltage transformer supervision function.

Signal	Description	Time base
U _{L3} Ang	Angle of UL3 voltage	5ms

The selection of the AI channel in use is made with a setting parameter. In all possible input channel variations the pre-fault condition is presented with a 20 ms averaged history value from -20 ms from START or TRIP event.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.6.2 - 299. General settings of the function.

Name	Range	Default	Description
VTS LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of VTS block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
VTS force status to	0: Normal 1: Start 2: VTLinefail 3: VTBusfail 4: Blocked	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up

The *Voltage low pick-up* and *Voltage high detect* setting parameters control the voltage-dependent pick-up and activation of the voltage transformer supervision function. The function's pick-up activates, if at least one of the three voltages is under the set *Voltage low pick-up* value, or if at least two of the three voltages exceed the set *Voltage high detect* value. The function constantly calculates the ratio between the setting values and the measured magnitude for each of the three phases.

Table. 5.6.2 - 300. Pick-up settings.

Name	Range	Step	Default	Description	
Voltage Iow pickup	0.050.50×U _n	0.01×U _n	0.05×U _n	If one the measured voltages is below low pickup value and two of the	
Voltage high detect	0.011.10×U _n	0.01×U _n	0.80×Un	measured voltages exceed high detect value the function's pick-up activates.	
Angle shift limit	2.0090.00deg	0.10deg	5.00deg If the difference between the present angle and the angle 40 ms before i below the set value, the function's pick-up is blocked.		
Bus fuse fail check	0: No 1: Yes	-	1: Yes	Selects whether or not the state of the bus fuse is supervised. The supervised signal is determined the "VTS MCB Trip bus" setting ($I/O \rightarrow$ Fuse failure inputs).	
Line fuse fail check	0: No 1: Yes	-	1: Yes	Selects whether or not the state of the line fuse is supervised. The supervised signal is determined by the "VTS MCB Trip line" setting ($l/O \rightarrow Fuse \ failure \ inputs$).	

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active. When the activation of the pick-up is based on binary signals, the activation happens immediately after the monitored signal is activated.

The voltage transformer supervision can also report several different states of the measured voltage. These can be seen in the function's *INFO* menu.

Name	Description			
Bus dead	No voltages.			
Bus Live VTS Ok	Il of the voltages are within the set limits.			
Bus Live VTS Ok SEQ Rev	All of the voltages are within the set limits BUT the voltages are in a reversed sequence.			
Bus Live VTS Ok SEQ Undef	Voltages are within the set limits BUT the sequence cannot be defined.			
Bus Live VTS problem	Any of the VTS pick-up conditions are met.			

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Name	Range	Step	Description
VTS LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of VTS block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
VTS condition	0: Normal 1: Start 2: VTLinefail 3: VTBusfail 4: Blocked	-	Displays status of the monitoring function.
Bus voltages	0: Bus dead 1: Bus Live VTS Ok SEQ Ok 2: Bus Live VTS Ok SEQ Rev 3: Bus Live VTS Ok SEQ Undef 4: Bus Live VTS problem	-	Displays the status of bus voltages.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a operation, this displays how much time is left before operation occurs.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup voltage values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for activation

This function supports definite time delay (DT). For detailed information on this delay type please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

Events and registers

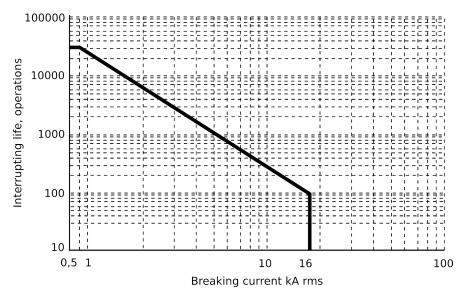
The voltage transformer supervision function (abbreviated "VTS" in event block names) generates events and registers from the status changes in ALARM ACTIVATED and BLOCKED signals. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
VTS1	Bus VT fail Start ON
VTS1	Bus VT fail Start OFF
VTS1	Bus VT fail Trip ON
VTS1	Bus VT fail Trip OFF
VTS1	Bus VT fail Block ON
VTS1	Bus VT fail Block OFF
VTS1	Line VT fail ON
VTS1	Line VT fail OFF
VTS1	Bus Fuse fail ON
VTS1	Bus Fuse fail OFF
VTS1	Line Fuse fail ON
VTS1	Line Fuse fail OFF

Table. 5.6.2 - 302. Event messages.

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for ACTIVATED, BLOCKED, etc. The table below presents the structure of the function's register content.

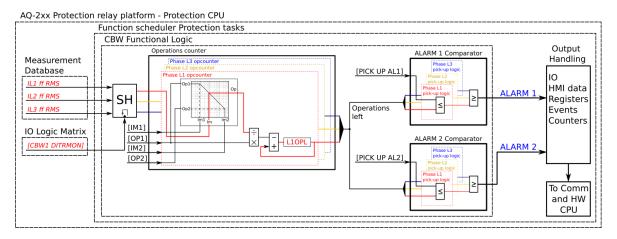

Table. 5.6.2 - 303. Register content.

Date and time	Event	Volt 1, 2, 3, 4 status	System status	Input A, B, C, D angle diff	Trip time remaining	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	0: No voltage 1: Voltage OK 2: Low voltage	0: Bus dead 1: Bus live, VTS OK, Seq. OK 2: Bus live, VTS OK, Seq. reversed 3: Bus live, VTS OK, Seq. undefined 4: Bus live, VTS fault	0.00360.00deg	Time remaining to alarm 01800s	Setting group 18 active

5.6.3 Circuit breaker wear

The circuit breaker wear function is used for monitoring the circuit breaker's lifetime and its maintenance needs caused by interrupting currents and mechanical wear. The function uses the circuit breaker's manufacturer-supplied data for the breaker operating cycles in relation to the interrupted current magnitudes.

The function is triggered from the circuit breaker's "Open" command output and it monitors the threephase current values in both the tripping moment and the normal breaker opening moment. The maximum value of interrupting life operations for each phase is calculated from these currents. The value is cumulatively deducted from the starting operations starting value. The user can set up two separate alarm levels, which are activated when the value of interrupting life operations is below the setting limit. The "Trip contact" setting defines the output that triggers the current monitoring at the breaker's "Open" command.


The inputs for the function are the following:

- setting parameters
- binary output signals
- measured and pre-processed current magnitudes.

The function's outputs are ALARM 1 and ALARM 2 signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the output signals. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the "Open" operations as well as the ALARM 1 and ALARM 2 events. The function can also monitor the operations left for each phase.

The following figure presents a simplified function block diagram of the circuit breaker wear function.

Figure. 5.6.3 - 202. Simplified function block diagram of the circuit breaker wear function.

Measured input

The function block uses analog current measurement values and always uses the RMS magnitude of the current measurement input.

Table. 5.6.3 - 304. Measurement inputs of the circuit breaker wear function.

Signal	Description	Time base
IL1RMS	RMS measurement of phase L1 (A) current	5ms
IL2RMS	RMS measurement of phase L2 (B) current	5ms
IL3RMS	RMS measurement of phase L3 (C) current	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by switching the setting group.

Table. 5.6.3 - 305.	General settings.
---------------------	-------------------

Name	Range	Default	Description	
CBW LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of CBW block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
CBW force status to	0: Normal 1: Alarm1 On 2: Alarm2 On	0: Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> paramete enabled in <i>General</i> menu.	
CBW in side	1:Side 1 2:Side 2	1:Side 1	Defines which current measurement module is used by the function.	

Circuit breaker characteristics settings

The circuit breaker characteristics are set by two operating points, defined by the nominal breaking current, the maximum allowed breaking current and their respective operation settings. This data is provided by the circuit breaker's manufacturer.

Name	Range	Step	Default	Description
Operations 1	0200 000	1	50 000	The number of interrupting life operations at the nominal current (Close - Open).
Operations 2	0200 000	1	100	The number of interrupting life operations at the rated breaking current (Open).
Current 1 (I _{nom})	0100.00kA	0.01kA	1kA	The rated normal current (RMS).
Current 2 (I _{max})	0100.00kA	0.01kA	20kA	The rated short-circuit breaking current (RMS).

Table. 5.6.3 - 306. Settings for circuit breaker characteristics.

Pick-up for alarming

For the alarm stages Alarm 1 and Alarm 2, the user can set the pick-up level for the number of operations left. The pick-up setting is common for all phases and the alarm stage picks up if any of the phases goes below this setting.

Table. 5.6.3 - 307. Pick-up settings.

Name	Range	Step	Default	Description
Alarm 1	0: Disabled 1: Enabled	-	0: Disabled	Enable and disable the Alarm 1 stage.
Alarm 1 Set	0200 000	1	1 000	Defines the pick-up threshold for remaining operations. When the number of remaining operations is below this setting, the ALARM 1 signal is activated.
Alarm 2	0: Disabled 1: Enabled	-	0: Disabled	Enable and disable the Alarm 2 stage.
Alarm 2 Set	0200 000	1	100	Defines the pick-up threshold for remaining operations. When the number of remaining operations is below this setting, the ALARM 2 signal is activated.

Setting example

Let us examine the settings, using a low-duty vacuum circuit breaker as an example. The image below presents the technical specifications provided by the manufacturer, with the data relevant to our settings highlighted in red:

Rated voltage, kV	24
Rated current, A	800
Rated power frequency test voltage, kV	50
Rated frequency, Hz	50/60
Rated impulse test voltage, kV peak	125
Partial discharge level at 1,1 rated voltage kV, pC	<10
Rated short-circuit breaking current, kA	16
Rated short-circuit making current, kA peak	41.5
Short time withstand current, 4s, kA	16
Mechanical life, CO cycles, not less than	30,000
Interrupting life operations, not less than	
at rated current	30,000
at breaking current	100
at other currents	see Fig.41
Closing time, ms, not more than	35
Opening time, ms, not more than	15
Breaking time, ms, not more than	25
Main contact resistance, $\mu0hm,$ not more than	40
Maximum ambient temperature, C°	+55
Minimum ambient temperature, C°	-40
Design class (according to IEC 60932)	1
Electrical endurance class at rated IEEE/IEC duty	E2
Mechanical endurance class at rated IEEE/IEC duty	M2
Capacitive current switching class	C2
"Mechanical vibration and shock withstand capability, IEC 60721, IEC 60068"	Class 4M4
Maximum altitude above sea level, m	3000*
Maximum humidity, non condensing	98 %
Weight, kg - LD_1	35
Weight, kg - LD_6	55

Now, we set the stage as follows:

Parameter	Setting
Current 1	0.80 kA
Operation 1	30 000 operations
Current 2	16.00 kA
Operations 2	100 operations
Enable Alarm 1	1: Enabled
Alarm 1 Set	1000 operations
Enable Alarm 2	1: Enabled
Alarm 2 Set	100 operations

With these settings, Alarm 1 is issued when the cumulative interruption counter for any of the three phases dips below the set 1000 remaining operations ("Alarm 1 Set"). Similarly, when any of the counters dips below 100 remaining operations, Alarm 2 is issued.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table. 5.6.3 - 308. Information displayed by the function.

Name	Range	Description	
CBW LN behaviour	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	Displays the mode of CBW block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
CBW condition	0: Normal 1: Alarm1 On 2: Alarm2 On	Displays the status of the function.	
Breaker operations	-	Cumulative counter of "open" operations.	
Alarm 1 counter	-	Alarm 1 operation counter.	
Alarm 2 counter	-	Alarm 2 operation counter.	
L1 Operations left	-	Operations left for phase L1.	
L2 Operations left	-	Operations left for phase L2.	
L3 Operations left	-	Operations left for phase L3.	

Events and registers

The circuit breaker wear function (abbreviated "CBW" in event block names) generates events and registers from the status changes in Triggered, Alarm 1 and Alarm 2 signals as well as in internal pickup comparators. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Table. 5.6.3 - 309. Event messages.

Event block name	Event names
CBW1	CBWEAR1 Triggered
CBW1	CBWEAR1 Alarm 1 ON
CBW1	CBWEAR1 Alarm 1 OFF
CBW1	CBWEAR1 Alarm 2 ON
CBW1	CBWEAR1 Alarm 2 OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data. The table below presents the structure of the function's register content.

Table. 5.6.3 - 310. Register content.

Date and time	Event	Trigger current	Deducted Op	Operations left
dd.mm.yyyy hh:mm:ss.mss	Event name	Phase currents on trigger time	L1/L2/L3 Deducted operations from the cumulative sum	L1/L2/L3 Operations left

5.6.4 Current total harmonic distortion (THD)

The total harmonic distortion (THD) function is used for monitoring the content of the current harmonic. The THD is a measurement of the harmonic distortion present, and it is defined as the ratio between the sum of all harmonic components' powers and the power of the fundamental frequency (RMS).

Harmonics can be caused by different sources in electric networks such as electric machine drives, thyristor controls, etc. The function's monitoring of the currents can be used to alarm of the harmonic content rising too high; this can occur when there is an electric quality requirement in the protected unit, or when the harmonics generated by the process need to be monitored.

The function constantly measures the phase and residual current magnitudes as well as the harmonic content of the monitored signals up to the 31st harmonic component. When the function is activated, the measurements are also available for the mimic and the measurement views in the HMI carousel. The user can also set the alarming limits for each measured channel if the application so requires.

The monitoring of the measured signals can be selected to be based either on an amplitude ratio or on the above-mentioned power ratio. The difference is in the calculation formula (as shown below):

Figure. 5.6.4 - 203. THD calculation formulas.

$$THD_{P} = \frac{I_{x2}^{2} + I_{x3}^{2} + I_{x4}^{2} \dots I_{x31}^{2}}{I_{x1}^{2}}$$
, where

$$I = \text{measured current,}$$

$$x = \text{measurement input,}$$

$$n = \text{harmonic number}$$

$$THD_{A} = \sqrt{\frac{I_{x2}^{2} + I_{x3}^{2} + I_{x4}^{2} \dots I_{x31}^{2}}{I_{x1}^{2}}}$$
, where

$$I = \text{measured current,}$$

$$x = \text{measurement input,}$$

$$n = \text{harmonic number}$$

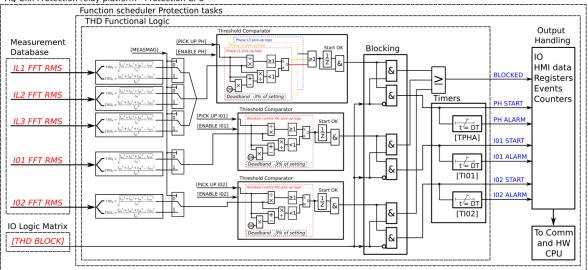
While both of these formulas exist, the power ratio (THD_P) is recognized by the IEEE, and the amplitude ratio (THD_A) is recognized by the IEC.

The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running. This only applies if the alarming is activated.

The outputs of the function are the START and ALARM signals for the phase current ("THDPH") and the residual currents ("THDI01" and "THDI02") as well as BLOCKED signals. The function uses a total of eight (8) separate setting groups which can be selected from one common source.

The operational logic consists of the following:

- input magnitude processing
- threshold comparator
- block signal chec
- time delay characteristics
- output processing.


The inputs of the function are the following:

- setting parameters
- digital inputs and logic signals
- measured and pre-processed current magnitudes

The function's outputs are START, ALARM and BLOCKED signals can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the output signals. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, ALARM and BLOCKED events.

The following figure presents a simplified function block diagram of the total harmonic distortion monitor function.

Figure. 5.6.4 - 204. Simplified function block diagram of the total harmonic distortion monitor function.

AQ-2xx Protection relay platform - Protection CPU

Measured input

The function block uses analog current measurement values. The function always uses FFT measurement of the whole harmonic specter of 32 components from each measured current channel. From these measurements the function calculates either the amplitude ratio or the power ratio. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

Signal	Description	Time base
IL1FFT	FFT measurement of phase L1 (A) current	5ms
IL2FFT	FFT measurement of phase L2 (B) current	5ms
IL3FFT	FFT measurement of phase L3 (C) current	5ms
I01FFT	FFT measurement of residual I01 current	5ms
I02FFT	FFT measurement of residual I02 current	5ms

Table. 5.6.4 - 311. Measurement inputs of the total harmonic distortion monitor function.

The selection of the calculation method is made with a setting parameter (common for all measurement channels).

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.6.4 - 312. General settings.

Name	Range	Default	Description
THD> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of THD block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
THD> in side	0: CT1 1: CT2	0: CT1	Defines which current measurement module the function uses.
Measurement magnitude	1: Amplitude 2: Power	1: Amplitude	Defines which available measured magnitude the function uses.

Pick-up

The *PhaseTHD*, *I01THD* and *I02THD* setting parameters control the the pick-up and activation of the function. They define the maximum allowed measured current THD before action from the function. Before the function activates alarm signals, their corresponding pick-up elements need to be activated with the setting parameters *Enable phase THD alarm*, *Enable I01 THD alarm* and *Enable I02 THD alarm*. The function constantly calculates the ratio between the setting values and the calculated THD for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the setting value. The setting value is common for all measured phases. When the calculated THD exceeds the pick-up value (in single, dual or all phases), it triggers the pick-up operation of the function.

Table. 5.6.4 - 313. Pick-up settings.

Name	Range	Step	Default	Description
Enable phase THD alarm	0: Enabled 1: Disabled	-	0: Enabled	Enables and disables the THD alarm function from phase currents.
Enable I01 THD alarm	0: Enabled 1: Disabled	-	0: Enabled	Enables and disables the THD alarm function from residual current input I01.
Enable 102 THD alarm	0: Enabled 1: Disabled	-	0: Enabled	Enables and disables the THD alarm function from residual current input I02.
Phase THD pick-up	0.10100.00%	0.01%	10.00%	The pick-up setting for the THD alarm element from the phase currents. At least one of the phases' measured THD value has to exceed this setting in order for the alarm signal to activate.
I01 THD pick-up	0.10100.00%	0.01%	10.00%	The pick-up setting for the THD alarm element from the residual current I01. The measured THD value has to exceed this setting in order for the alarm signal to activate.
I02 THD pick-up	0.10100.00%	0.01%	10.00%	The pick-up setting for the THD alarm element from the residual current I02. The measured THD value has to exceed this setting in order for the alarm signal to activate.

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table. 5.6.4 - 314. Information displayed by the function.

Name	Range	Description
THD> LN behaviour	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	Displays the mode of THD block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
THD condition	0: Normal 1: Start 2: Alarm 3: Blocked	Displays status of the monitoring function.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pickup signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup current values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for activation and reset

This function supports definite time delay (DT). The following table presents the setting parameters for the function's time characteristics.

Name	Range	Step	Default	Description
Phase THD alarm delay	0.0001800.000s	0.005s	10.000s	Defines the delay for the alarm timer from the phase currents' measured THD.
l01 THD alarm delay	0.0001800.000s	0.005s	10.000s	Defines the delay for the alarm timer from the residual current I01's measured THD.
l02 THD alarm delay	0.0001800.000s	0.005s	10.000s	Defines the delay for the alarm timer from the residual current I02's measured THD.

Table. 5.6.4 - 315. Settings for operating time characteristics.

Events and registers

The total harmonic distortion monitor function (abbreviated "THD" in event block names) generates events and registers from the status changes in the alarm function when it is activated. The recorded signals are START and ALARM signals for the monitoring elements as well as common BLOCKED signals. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
THD1	THD Start Phase ON
THD1	THD Start Phase OFF
THD1	THD Start I01 ON
THD1	THD Start I01 OFF
THD1	THD Start I02 ON
THD1	THD Start I02 OFF
THD1	THD Alarm Phase ON
THD1	THD Alarm Phase OFF
THD1	THD Alarm I01 ON
THD1	THD Alarm I01 OFF
THD1	THD Alarm 102 ON
THD1	THD Alarm I02 OFF
THD1	Blocked ON
THD1	Blocked OFF

Table. 5.6.4 - 316. Event messages.

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, ALARM and BLOCKED. The table below presents the structure of the function's register content.

Table. 5.6.4 - 317. Register content.

Date and time	Event	L1h, L2h, L3h Fault THD	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	Start/Alarm THD of each phase.	Setting group 18 active.

5.6.5 Voltage total harmonic distortion (THD)

The voltage total harmonic distortion (THD) function is used for monitoring the content of the voltage harmonic. The THD is a measurement of the harmonic distortion present, and it is defined as the ratio between the sum of all harmonic components' powers and the power of the fundamental frequency (RMS).

Harmonics can be caused by different sources in electric networks such as electric machine drives, thyristor controls, etc. The function's monitoring of the voltage can be used to alarm of the harmonic content rising too high; this can occur when there is an electric quality requirement in the protected unit, or when the harmonics generated by the process need to be monitored.

The function constantly measures the phase voltage magnitudes as well as the harmonic content of the monitored signals up to the 31st harmonic component. The user can set the alarming limits if the application so requires.

The monitoring of the measured signals can be selected to be based either on an amplitude ratio or on the above-mentioned power ratio. The difference is in the calculation formula (as shown below):

Figure. 5.6.5 - 205. THD calculation formulas.

$$THD_{P} = \frac{U_{x2}^{2} + U_{x3}^{2} + U_{x4}^{2} \dots U_{x31}^{2}}{U_{x1}^{2}}$$
, where
$$U = \text{measured volta}$$

$$x = \text{measurement in}$$

$$n = \text{harmonic number}$$

$$THD_A = \sqrt{\frac{U_{x2}^2 + U_{x3}^2 + U_{x4}^2 \dots U_{x31}^2}{U_{x1}^2}}$$

age. iput, ber

where U = measured voltage, x= measurement input. n = harmonic number

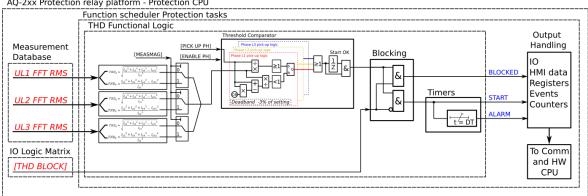
While both of these formulas exist, the power ratio (THDP) is recognized by the IEEE, and the amplitude ratio (THD_A) is recognized by the IEC.

The blocking signal and the setting group selection control the operating characteristics of the function during normal operation, i.e. the user or user-defined logic can change function parameters while the function is running. This only applies if the alarming is activated.

The outputs of the function are the START and ALARM ACT signals for the phase voltages ("THDV") as well as BLOCKED signals. The function uses a total of eight (8) separate setting groups which can be selected from one common source.

The operational logic consists of the following:

- input magnitude processing
- threshold comparator
- block signal chec
- time delay characteristics
- output processing.


The inputs of the function are the following:

- setting parameters
- digital inputs and logic signals
- · measured and pre-processed voltage magnitudes

The function's outputs are START, ALARM and BLOCKED signals can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the output signals. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, ALARM and BLOCKED events.

The following figure presents a simplified function block diagram of the total harmonic distortion monitor function.

Figure. 5.6.5 - 206. Simplified function block diagram of the total harmonic distortion monitor function.

AQ-2xx Protection relay platform - Protection CPU

Measured input

The function block uses analog voltage measurement values. The function always uses FFT measurement of the whole harmonic specter of 32 components from each measured voltage channel. From these measurements the function calculates either the amplitude ratio or the power ratio. A -20 ms averaged value of the selected magnitude is used for pre-fault data registering.

Table. 5.6.5 - 318. Measurement inputs of the total harmonic distortion monitor function.

Signal	Description	Time base
UL1FFT	FFT measurement of phase L1 (A) voltage	5ms
UL2FFT	FFT measurement of phase L2 (B) voltage	5ms
UL3FFT	FFT measurement of phase L3 (C) voltage	5ms

The selection of the calculation method is made with a setting parameter (common for all measurement channels).

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.6.5 - 319. G	eneral settings.
-----------------------	------------------

Name	Range	Default	Description
THD> LN mode	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	1: On	Set mode of THD block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Measurement magnitude	1: Amplitude 2: Power	1: Amplitude	Defines which available measured magnitude the function uses.

Pick-up

The THDV pick-up setting parameter controls the the pick-up and activation of the function. They define the maximum allowed measured voltage THD before action from the function. Before the function activates alarm signals, their corresponding pick-up elements need to be activated with the setting parameter *Enable THD alarm*. The function constantly calculates the ratio between the setting values and the calculated voltage THD. The reset ratio of 97 % is built into the function and is always relative to the setting value. The setting value is common for all measured phases. When the calculated THD exceeds the pick-up value (in single, dual or all phases), it triggers the pick-up operation of the function.

Table. 5.6.5 - 320. Pick-up settings.

Name	Range	Step	Default	Description	
Enable THDV alarm	0: Enabled 1: Disabled	-	0: Enabled	Enables and disables the THD alarm function.	
THDV pick- up	0.10100.00%	0.01%	10.00%	The pick-up setting for the THD alarm element from the phase voltages. At least one of the phases' measured THD value has to exceed this setting in order for the alarm signal to activate.	

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table 565-321	Information displ	ayed by the function.
10010.0.0.0 021.	in itor in alopi	ayou by the fullotion.

Name	Range	Description
THD> LN behaviour	1: On 2: Blocked 3: Test 4: Test/ Blocked 5: Off	Displays the mode of THD block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
THD condition	0: Normal 1: Start 2: Alarm 3: Blocked	Displays status of the monitoring function.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup current values and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for activation and reset

This function supports definite time delay (DT). The following table presents the setting parameters for the function's time characteristics.

Table. 5.6.5 - 322. Settings for operating time characteristics.

Name	Range	Step	Default	Description
Phase THDV alarm delay	0.0001800.000s	0.005s	10.000s	Defines the delay for the alarm timer from the phase currents' measured THD.

Events and registers

The voltage total harmonic distortion monitor function (abbreviated "THDV" in event block names) generates events and registers from the status changes in the alarm function when it is activated. The recorded signals are START and ALARM signals for the monitoring elements as well as common BLOCKED signals. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Table.	5.6.5 - 323.	Event messages.
rabio.	0.0.0 020.	Evont moodagoo.

Event block name	Event names
THD1	THDV Start ON
THD1	THDV Start OFF
THD1	THD Alarm ON
THD1	THD Alarm OFF
THD1	Blocked ON
THD1	Blocked OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, ALARM and BLOCKED. The table below presents the structure of the function's register content.

Table. 5.6.5 - 324. Register content.

Date and time	Event	L1h, L2h, L3h Fault THD	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	Start/Alarm THD of each phase.	Setting group 18 active.

5.6.6 Disturbance recorder (DR)

The disturbance recorder is a high-capacity (64 MB permanent flash memory) and fully digital recorder integrated to the protection relay. The maximum sample rate of the recorder's analog channels is 64 samples per cycle. The recorder also supports 95 digital channels simultaneously with the twenty (20) measured analog channels. Maximum capacity of recordings is 100.

The recorder provides a great tool to analyze the performance of the power system during network disturbance situations. The recorder's output is in general COMTRADE format and it is compatible with most viewers and injection devices. The files are based on the IEEE standard C37.111-1999. Captured recordings can be injected as playback with secondary testing tools that support the COMTRADE file format. Playback of files might help to analyze the fault, or can be simply used for educational purposes.

Analog and digital recording channels

Up to 20 analog recording channels and 95 digital channels are supported. The available analog channels vary according to the device type.

Signal	Description				
IL1	Phase current IL1				
IL2	Phase current IL2				
IL3	Phase current IL3				
101c	Residual current I ₀₁ coarse*				
I01f	Residual current I ₀₁ fine*				
102c	Residual current I ₀₂ coarse*				
102f	Residual current I ₀₂ fine*				
IL1"	Phase current IL1 (CT card 2)				
IL2"	Phase current IL2 (CT card 2)				
IL3"	Phase current IL3 (CT card 2)				
l01"c	Residual current I ₀₁ coarse* (CT card 2)				
101"f	Residual current I ₀₁ fine* (CT card 2)				
102"c	Residual current I ₀₂ coarse* (CT card 2)				
102"f	Residual current I ₀₂ fine* (CT card 2)				
U1(2)VT1	Line-to-neutral U _{L1} or line-to-line voltage U ₁₂ (VT card 1)				
U2(3)VT1	Line-to-neutral U_{L2} or line-to-line voltage U_{23} (VT card 1)				
U3(1)VT1	Line-to-neutral U_{L3} or line-to-line voltage U_{31} (VT card 1)				
U0(ss)VT1	Zero sequence voltage U_0 or synchrocheck voltage U_{SS} (VT card 1)				
F tracked 1	Tracked frequency of reference 1				
F tracked 2	Tracked frequency of reference 2				
F tracked 3	Tracked frequency of reference 3				
lSup	Current measurement module voltage supply supervision (CT card 1)				
ISup"	Current measurement module voltage supply supervision (CT card 2)				
USup	Voltage measurement module voltage supply supervision (VT card 2)				
IL1'''	Phase current I _{L1} (CT card 3)				
IL2'''	Phase current I _{L2} (CT card 3)				
IL3'''	Phase current IL3 (CT card 3)				
l01'''c	Residual current I ₀₁ coarse* (CT card 3)				

Table. 5.6.6 - 325. Analog recording channels.

Signal	Description
101'''f	Residual current I ₀₁ fine* (CT card 3)
102'''c	Residual current I ₀₂ coarse* (CT card 3)
102'''f	Residual current I ₀₂ fine* (CT card 3)
ISup_3	Current measurement module voltage supply supervision (CT card 3)
UL1(2)VT2	Line-to-neutral U_{L1} or line-to-line voltage U_{12} (VT card 2)
UL2(3)VT2	Line-to-neutral U_{L2} or line-to-line voltage U_{23} (VT card 2)
UL3(1)VT2	Line-to-neutral U_{L3} or line-to-line voltage U_{31} (VT card 2)
U0(SS)VT2	Zero sequence voltage U0 or synchrocheck voltage Uss (VT card 2)
USup_2	Voltage measurement module voltage supply supervision (VT card 2)

*NOTE: There are two signals for each residual current channel in the disturbance recorder: coarse and fine. A coarse signal is capable of sampling in the full range of the current channel but suffers a loss of accuracy at very low currents. A fine signal is capable of sampling at very low currents and with high accuracy but cuts off at higher currents. Table below lists performance of both channels with fine and coarse gain.

Table. 5.6.6 - 326. Residual current channel performance with coarse or residual gain.

Channel	Coarse gain range	Fine gain range	Fine gain peak
101	0150 A	010 A	15 A
102	075 A	05 A	8 A

Signal	Description	Signal	Description
Currents			
Pri.Pha.curr.ILx	Primary phase current ILx (IL1, IL2, IL3)	Pha.curr.ILx TRMS Pri	Primary phase current TRMS (IL1, IL2, IL3)
Pha.angle ILx	Phase angle ILx (IL1, IL2, IL3)	Pos./Neg./Zero seq.curr.	Positive/Negative/Zero sequence current
Pha.curr.ILx	Phase current ILx (IL1, IL2, IL3)	Sec.Pos./Neg./Zero seq.curr.	Secondary positive/negative/zero sequence current
Sec.Pha.curr.ILx	Secondary phase current ILx (IL1, IL2, IL3)	Pri.Pos./Neg./Zero seq.curr.	Primary positive/negative/zero sequence current
Pri.Res.curr.I0x	Primary residual current I0x (I01, I02)	Pos./Neg./Zero seq.curr.angle	Positive/Negative/Zero sequence current angle
Res.curr.angle I0x	Residual current angle I0x (I01, I02)	Res.curr.I0x TRMS	Residual current TRMS I0x (I01, I02)
Res.curr.I0x	Residual current I0x (I01, I02)	Res.curr.I0x TRMS Sec	Secondary residual current TRMS I0x (I01, I02)
Sec.Res.curr.I0x	Secondary residual current I0x (I01, I02)	Res.curr.I0x TRMS Pri	Primary residual current TRMS I0x (I01, I02)
Pri.cal.l0	Primary calculated I0	Pha.Lx ampl. THD	Phase Lx amplitude THD (L1, L2, L3)
Sec.calc.l0	Secondary calculated I0	Pha.Lx pow. THD	Phase Lx power THD (L1, L2, L3)
calc.I0	Calculated I0	Res.I0x ampl. THD	Residual I0x amplitude THD (I01, I02)
calc.10 Pha.angle	Calculated I0 phase angle	Res.I0x pow. THD	Residual I0x power THD (I01, I02)

Table. 5.6.6 - 327. Digital recording channels – Measurements.

AQ-G257

Instruction manual Version: 2.08

Signal	Description	Signal	Description
Pha.curr.ILx TRMS	Phase current TRMS ILx (IL1, IL2, IL3)	P-P curr.ILx	Phase-to-phase current ILx (IL1, IL2, IL3)
Pha.curr.ILx TRMS Sec	Secondary phase current TRMS (IL1, IL2, IL3)	P-P curr.I0x	Phase-to-phase current I0x (I01, I02)
Voltages			
Ux Volt p.u.	Ux voltage in per-unit values (U1, U2, U3, U4)	System volt ULxx mag	Magnitude of the system voltage ULxx (UL12, UL23, UL31)
Ux Volt pri	Primary Ux voltage (U1, U2, U3, U4)	System volt ULxx mag(kV)	Magnitude of the system voltage ULxx in kilovolts (UL12, UL23, UL31)
Ux Volt sec	Secondary Ux voltage (U1, U2, U3, U4)	System volt ULxx ang	Angle of the system voltage ULxx (UL12, UL23, UL31)
Ux Volt TRMS p.u.	Ux voltage TRMS in per-unit values (U1, U2, U3, U4)	System volt ULx mag	Magnitude of the system voltage ULx (U1, U2, U3, U4)
Ux Volt TRMS pri	Primary Ux voltage TRMS (U1, U2, U3, U4)	System volt ULx mag(kV)	Magnitude of the system voltage ULx in kilovolts (U1, U2, U3, U4)
Ux Volt TRMS sec	Secondary Ux voltage TRMS (U1, U2, U3, U4)	System volt ULx ang	Angle of the system voltage ULx (U1, U2, U3, U4)
Pos/Neg./Zero seq.Volt.p.u.	Positive/Negative/ Zero sequence voltage in per-unit values	System volt U0 mag	Magnitude of the system voltage U0
Pos./Neg./Zero seq.Volt.pri	Primary positive/negative/ zero sequence voltage	System volt U0 mag(kV)	Magnitude of the system voltage U0 in kilovolts
Pos./Neg./Zero seq.Volt.sec	Secondary positive/ negative/zero sequence voltage	System volt U0 mag(%)	Magnitude of the system voltage U0 in percentages
Ux Angle	Ux angle (U1, U2, U3, U4)	System volt U0 ang	Angle of the system voltage U0
Pos./Neg./Zero Seq volt.Angle	Positive/Negative/Zero sequence voltage angle	Ux Angle difference	Ux angle difference (U1, U2, U3)
Resistive and reactive currents			
ILx Resistive Current p.u.	ILx resistive current in per- unit values (IL1, IL2, IL3)	Pos.seq. Resistive Current Pri.	Primary positive sequence resistive current
ILx Reactive Current p.u.	ILx reactive current in per- unit values (IL1, IL2, IL3)	Pos.seq. Reactive Current Pri.	Primary positive sequence reactive current
Pos.Seq. Resistive Current p.u.	Positive sequence resistive current in per-unit values	I0x Residual Resistive Current Pri.	Primary residual resistive current I0x (I01, I02)
Pos.Seq. Reactive Current p.u.	Positive sequence reactive current in per-unit values	I0x Residual Reactive Current Pri.	Primary residual reactive current I0x (I01, I02)
I0x Residual Resistive Current p.u.	I0x residual resistive current in per-unit values (I01, I02)	ILx Resistive Current Sec.	Secondary resistive current ILx (IL1, IL2, IL3)
I0x Residual Reactive Current p.u.	10x residual ractive current in per-unit values (101, 102)	ILx Reactive Current Sec.	Secondary reactive current ILx (IL1, IL2, IL3)
ILx Resistive Current Pri.	Primary resistive current ILx (IL1, IL2, IL3)	I0x Residual Resistive Current Sec.	Secondary residual resistive current I0x (I01, I02)
ILx Reactive Current Pri.	Primary reactive current ILx (IL1, IL2, IL3)	I0x Residual Reactive Current Sec.	Secondary residual reactive current I0x (I01, I02)
Power, GYB, frequency			

Signal	Description	Signal	Description
Lx PF	Lx power factor (L1, L2, L3)	Curve x Input	Input of Curve x (1, 2, 3, 4)
POW1 3PH Apparent power (S)	Three-phase apparent power	Curve x Output	Output of Curve x (1, 2, 3, 4)
POW1 3PH Apparent power (S MVA)	Three-phase apparent power in megavolt-amperes	Enablefbasedfunctions(VT1)	Enable frequency-based functions
POW1 3PH Active power (P)	Three-phase active power	Track.sys.f.	Tracked system frequency
POW1 3PH Active power (P MW)	Three-phase active power in megawatts	Sampl.f. used	Used sample frequency
POW1 3PH Reactive power (Q)	Three-phase reactive power	Tr f CH x	Tracked frequency (channels A, B, C)
POW1 3PH Reactive power (Q MVar)	Three-phase reactive power in megavars	Alg f Fast	Fast frequency algorithm
POW1 3PH Tan(phi)	Three-phase tangent phi	Alg f avg	Average frequency algorithm
POW1 3PH Cos(phi)	Three-phase cosine phi	Frequency based protections blocked	When true ("1"), all frequency-based protections are blocked.
3PH PF	Three-phase power factor	f atm. Protections (when not measurable returns to nominal)	Frequency at the moment. If the system nominal is set to 50 Hz, this will show "50 Hz".
Neutral conductance G (Pri)	Primary neutral conductance	f atm. Display (when not measurable is 0 Hz)	Frequency at the moment. If the frequency is not measurable, this will show "0 Hz".
Neutral susceptance B (Pri)	Primary neutral susceptance	f meas qlty	Quality of tracked frequency
Neutral admittance Y (Pri)	Primary neutral admittance	f meas from	Indicates which of the three voltage or current channel frequencies is used by the relay.
Neutral admittance Y (Ang)	Neutral admittace angle	SS1.meas.frqs	Synchrocheck – the measured frequency from voltage channel 1
I01 Resistive component (Pri)	Primary resistive component I01	SS2.meas.frqs	Synchrocheck – the measured frequency from voltage channel 2
I01 Capacitive component (Pri)	Primary capacitive component I01	Enable f based functions	Status of this signal is active when frequency-based protection functions are enabled.

Table. 5.6.6 - 328. Digital recording channels – Binary signals.

Signal	Description	Signal	Description
DIx	Digital input 111	Timer x Output	Output of Timer 110
Open/close control buttons	Active if buttons I or 0 in the unit's front panel are pressed.	Internal Relay Fault active	If the unit has an internal fault, this signal is active.
Status PushButton x On	Status of Push Button 112 is ON	(Protection, control and monitoring event signals)	(see the individual function description for the specific outputs)

AQ-G257 Instruction manual

Version: 2.08

Signal	Description	Signal	Description
Status PushButton x Off	Status of Push Button 112 is OFF	Always True/False	"Always false" is always "0". Always true is always "1".
Forced SG in use	Stage forcing in use	OUTx	Output contact statuses
SGx Active	Setting group 18 active	GOOSE INx	GOOSE input 164
Double Ethernet LinkA down	Double ethernet communication card link A connection is down.	GOOSE INx quality	Quality of GOOSE input 164
Double Ethernet LinkB down	Double ethernet communication card link B connection is down.	Logical Input x	Logical input 132
MBIO ModA Ch x Invalid	Channel 18 of MBIO Mod A is invalid	Logical Output x	Logical output 164
MBIO ModB Ch x Invalid	Channel 18 of MBIO Mod B is invalid	NTP sync alarm	If NTP time synchronization is lost, this signal will be active.
MBIO ModB Ch x Invalid	Channel 18 of MBIO Mod C is invalid	Ph.Rotating Logic control 0=A-B-C, 1=A-C-B	Phase rotating order at the moment. If true ("1") the phase order is reversed.

NOTE!

Digital channels are measured every 5 ms.

Recording settings and triggering

Disturbance recorder can be triggered manually or automatically by using the dedicated triggers. Every signal listed in "Digital recording channels" can be selected to trigger the recorder.

The device has a maximum limit of 100 for the number of recordings. Even when the recordings are very small, their number cannot exceed 100. The number of analog and digital channels together with the sample rate and the time setting affect the recording size. See calculation examples below in the section titled "Estimating the maximum length of total recording time".

Table. 5.6.6 - 329. R	Recorder control settings.
-----------------------	----------------------------

Name	Range	Step	Default	Description
Recorder enabled	0: Enabled 1: Disabled	-	0: Enabled	Enables and disables the disturbance recorder function.
Recorder status	0: Recorder ready 1: Recording triggered 2: Recording and storing 3: Storing recording 4: Recorder full 5: Wrong config	-	-	Indicates the status of recorder.
Clear record+	02 ³² -1	1	-	Clears selected recording. If "1" is inserted, first recording will be cleared from memory. If "10" is inserted, tenth (10th) recording will be cleared from memory.
Manual trigger	0: - 1: Trig	-	0: -	Triggers disturbance recording manually. This parameter will return back to "-" automatically.
Clear all records	0: - 1: Clear	-	0: -	Clears all disturbance recordings.

Name	Range	Step	Default	Description
Clear newest record	0: - 1: Clear	-	0: -	Clears the newest stored disturbance recording.
Clear oldest record	0: - 1: Clear	-	0: -	Clears the oldest stored disturbance recording.
Max. number of recordings	0100	1	-	Displays the maximum number of recordings that can be stored in the device's memory with settings currently in use. The maximum number of recordings can go up to 100.
Max. length of a recording	0.0001800.000s	0.001s	-	Displays the maximum length of a single recording.
Max. location of the pre- trigger	0.0001800.000s	0.001s	-	Displays the highest pre-triggering time that can be set with the settings currently in use.
Recordings in memory	0100	1	-	Displays how many recordings are stored in the memory.

Table. 5.6.6 - 330. Recorder trigger setting.

Name	Description
Recorder trigger	Selects the trigger input(s). Clicking the "Edit" button brings up a pop-up window, and checking the boxes enable the selected triggers.

Table. 5.6.6 - 331. Recorder settings.

Name	Range	Step	Default	Description
Recording length	0.1001800.000s	0.01s	1s	Sets the length of a recording.
Recording mode	0: FIFO 1: Keep olds	-	0: FIFO	Selects what happens when the memory is full. "FIFO" (= first in, first out) replaces the oldest stored recording with the latest one. "Keep olds" does not accept new recordings.
Analog channel samples	0: 64s/c 1: 32s/c 2: 16s/c 3: 8s/c	-	0: 64s/c	Selects the sample rate of the disturbance recorder in samples per cycle. The samples are saved from the measured wave according to this setting.
Digital channel samples	5ms (fixed)	-	5 ms(fixed)	The fixed sample rate of the recorded digital channels.
Pretriggering time	0.230.0s	0.1s	0.2s	Sets the recording length before the trigger.
Analog recording CH1CH20	08 freely selectable channels	-	-	Selects the analog channel for recording. Please see the list of all available analog channels in the section titled "Analog and digital recording channels".

Name	Range	Step	Default	Description
Automatically get recordings	0: Disabled 1: Enabled	-	0: Disabled	Enables and disables the automatic transfer of recordings. The recordings are taken from the relay's protection CPU and transferred to the relay's FTP directory in the communication CPU; the FTP client then automatically loads the recordings from the relay and transfers them further to the SCADA system. Please note that when this setting is enabled, all new disturbance recordings will be pushed to the FTP server of the relay. Up to six (6) recordings can be stored in the FTP at once. Once those six recordings have been retrieved and removed, more recordings will then be pushed to the FTP. When a recording has been sent to the FTP server of the relay, it is no longer accessible through setting tools <i>Disturbance recorder</i> \rightarrow <i>Get DR files</i> command.
Recorder digital channels	095 freely selectable channels	-	-	Selects the digital channel for recording. Please see the list of all available digital channels in the section titled "Analog and digital recording channels".

NOTE!

The disturbance recorder is not ready unless the "Max. length of a recording" parameter is showing some value other than zero. At least one trigger input has to be selected in the "Recorder Trigger" setting to fulfill this term.

Estimating the maximum length of total recording time

Once the disturbance recorder's settings have been made and loaded to the relay, the device automatically calculates and displays the total length of recordings. However, if the user wishes to confirm this calculation, they can do so with the following formula. Please note that the formula assumes there are no other files in the FTP that share the 64 MB space.

$$\frac{\text{Total sample reserve}}{(f_n * (Ch_{an} + 1) * SR) + (200 \text{ } Hz * Ch_{dig})}$$

Where:

- total sample reserve = the number of samples available in the FTP when no other files are saved; calculated by dividing the total number of available bytes by 4 bytes (=the size of one sample); e.g. 64 306 588 bytes/4 bytes = 16 076 647 samples.
- f_n = the nominal frequency (Hz).
- *Chan* = the number of analog channels recorded; "+ 1" stands for the time stamp for each recorded sample.
- *SR* = the selected sample rate (s/c).
- 200 Hz = the rate at which digital channels are always recorded, i.e. 5 ms.
- *Ch_{dig}* = the number of digital channels recorded.

For example, let us say the nominal frequency is 50 Hz, the selected sample rate is 64 s/c, nine (9) analog channels and two (2) digital channels record. The calculation is as follows:

 $\frac{16\ 076\ 647\ samples}{(50\ Hz\ *\ (9\ +\ 1)\ *\ 64)\ +\ (200\ Hz\ *\ 2)}\approx 496\ s$

Therefore, the maximum recording length in our example is approximately 496 seconds.

Application example

This chapter presents an application example of how to set the disturbance recorder and analyze its output. The recorder is configured by using the setting tool software or relay HMI, and the results are analyzed with the AQviewer software (is automatically downloaded and installed with AQtivate). Registered users can download the latest tools from the Arcteq website (arcteq.fi./downloads/).

In this example, we want the recordings to be made according to the following specifications:

- the recording length is 6.0 s
- the sample rate is 64 s/c (therefore, with a 50 Hz system frequency a sample is taken every 312.5 $\mu s)$
- the analog channels 1...8 are used
- digital channels are tracked every 5 ms
- the first activation of the overcurrent stage trip (I> TRIP) triggers the recorder
- the pre-triggering time is 5 (ie. how long is recorded before the I> TRIP signal) and the posttriggering time is 1 s

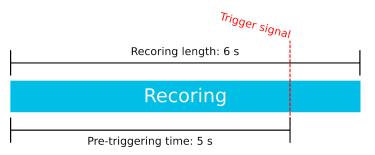

The image below shows how these settings are placed in the setting tool.

Figure. 5.6.6 - 207. Disturbance recorder settings.

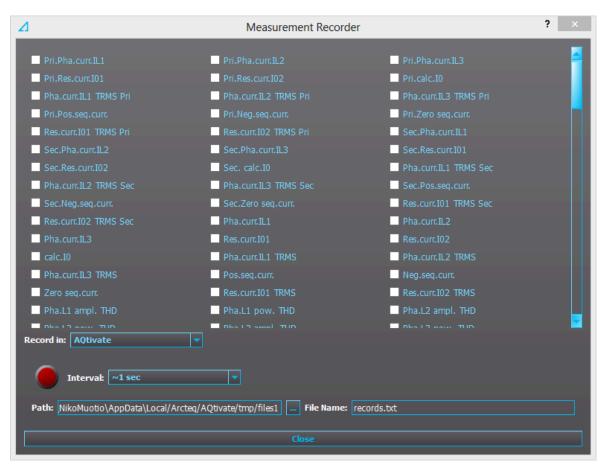
Recorder Control	
-	
	Enabled
	Recorder ready 🔫
	04294967295 [1]
	<u> </u>
	-
	61 04294967295 [1]
	414.44 s 0.0001800.000 [0.001]
	6 s 0.0001800.000 [0.001]
	18 04294967295 [1]
Recorder Trigger S	et
Deserved and Trianness	
Recorder Trigger	
Recorder Trigger I> TRIP (General)	
I> TRIP (General)	

	0.1001800.000 [0.001]	
	FIFO	-
	64s/c	_
	5ms	-
	0.115.0 [0.1]	
	IL1	-
	IL2	-
	IL3	-
	101C	-
	UL1(2)VT1	-
	UL2(3)VT1	-
Analog Recording CH7	UL3(1)VT1	-
Analog Recording CH8	U0(SS)VT1	-
Analog Recording CH9	none	-
	102C	-
	102F	-
	none	-
	none	-
Analog Recording CH14	none	-
	none	_
	none	-
	none	
	none	
	none	-
Analog Recording CH20	none	
Auto. get recordings	Disabled	-
Rec.Digital Channels Track.sys.f		
I> START (General)		

Figure. 5.6.6 - 208. Effects of recording length and pre-triggering time signals. This example is based on the settings shown above.

When there is at least one recording in the device's memory, that recording can be analyzed by using the AQviewer software (see the image below). However, the recording must first be made accessible to AQViewer. The user can read it from the device's memory (*Disturbance recorder* \rightarrow *Get DR*-*files*). Alternatively, the user can load the recordings individually (*Disturbance recorder* \rightarrow *DR List*) from a folder in the PC's hard disk drive; the exact location of the folder is described in *Tools* \rightarrow *Settings* \rightarrow *DR path*.

The user can also launch the AQviewer software from the *Disturbance recorder* menu. AQviewer software instructions can be found in AQtivate 200 Instruction manual (<u>arcteq.fi./downloads/</u>).


Events

The disturbance recorder function (abbreviated "DR" in event block names) generates events and registers from the status changes of the function: the recorder generates an event each time it is triggered (manually or by dedicated signals). Events cannot be masked off. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

Event block name	Event names
DR1	Recorder triggered ON
DR1	Recorder triggered OFF
DR1	Recorder memory cleared
DR1	Oldest record cleared
DR1	Recorder memory full ON
DR1	Recorder memory full OFF
DR1	Recording ON
DR1	Recording OFF
DR1	Storing recording ON
DR1	Storing recording OFF
DR1	Newest record cleared

Table. 5.6.6 - 332. Event messages.

5.6.7 Measurement recorder

Measurements can be recorded to a file with the measurement recorder. The chosen measurements are recorded at selected intervals. In the "Measurement recorder" window, the measurements the user wants to be recorded can be selected by checking their respective check boxes. In order for the measurement recorder to activate, a connection to a relay must be established via the setting tool software and its Live Edit mode must be enabled (see the AQtivate 200 manual for more information). Navigate to the measurement recorder through $Tools \rightarrow Miscellaneous tools \rightarrow Measurement recorder$. The recording interval can be changed from the "Interval" drop-down menu. From the "Record in" drop-down menu the user can also choose whether the measurements are recorded in the setting tool or in the relay.

If the recording is done in the setting tool, both the setting tool software and its Live Edit mode have to be activated. The user can change the recording file location by editing the "Path" field. File names can also be changed with the "File name" field. Hitting the "Record" button (the big red circle) starts the recorder. Please note that closing the "Measurement recorder" window does not stop the recording; that can only be done by hitting the "Stop" button (the big blue circle).

If the recording is done in the relay, only the recording interval needs to be set before recording can be started. The setting tool estimates the maximum recording time, which depends on the recording interval. When the measurement recorder is running, the measurements can be viewed in graph form with the AQtivate PRO software (see the image below).



Table. 5.6.7 - 333. Available analog signals.

Current measurements	P-P Curr.I"L3	L1 Imp.React.Ind.E.Mvarh
Pri.Pha.Curr.IL1	P-P Curr.I"01	L1 Imp.React.Ind.E.kvarh
Pri.Pha.Curr.IL2	P-P Curr.I"02	L1 Exp/Imp React.Ind.E.bal.Mvarh
Pri.Pha.Curr.IL3	Pha.angle I"L1	L1 Exp/Imp React.Ind.E.bal.kvarh
Pri.Res.Curr.I01	Pha.angle I"L2	L2 Exp.Active Energy MWh
Pri.Res.Curr.I02	Pha.angle I"L3	L2 Exp.Active Energy kWh
Pri.Calc.I0	Res.Curr.angle I"01	L2 Imp.Active Energy MWh
Pha.Curr.IL1 TRMS Pri	Res.Curr.angle I"02	L2 Imp.Active Energy kWh
Pha.Curr.IL2 TRMS Pri	Calc.I"0.angle	L2 Exp/Imp Act. E balance MWh
Pha.Curr.IL3 TRMS Pri	I" Pos.Seq.Curr.angle	L2 Exp/Imp Act. E balance kWh
Pri.Pos.Seq.Curr.	I" Neg.Seq.Curr.angle	L2 Exp.React.Cap.E.Mvarh
Pri.Neg.Seq.Curr.	I" Zero.Seq.Curr.angle	L2 Exp.React.Cap.E.kvarh
Pri.Zero.Seq.Curr.	Voltage measurements	L2 Imp.React.Cap.E.Mvarh
Res.Curr.I01 TRMS Pri	U1Volt Pri	L2 Imp.React.Cap.E.kvarh
Res.Curr.I02 TRMS Pri	U2Volt Pri	L2 Exp/Imp React.Cap.E.bal.Mvarh
Sec.Pha.Curr.IL1	U3Volt Pri	L2 Exp/Imp React.Cap.E.bal.kvarh
Sec.Pha.Curr.IL2	U4Volt Pri	L2 Exp.React.Ind.E.Mvarh
Sec.Pha.Curr.IL3	U1Volt Pri TRMS	L2 Exp.React.Ind.E.kvarh
Sec.Res.Curr.I01	U2Volt Pri TRMS	L2 Imp.React.Ind.E.Mvarh
Sec.Res.Curr.I02	U3Volt Pri TRMS	L2 Imp.React.Ind.E.kvarh
Sec.Calc.I0	U4Volt Pri TRMS	L2 Exp/Imp React.Ind.E.bal.Mvarh
Pha.Curr.IL1 TRMS Sec	Pos.Seq.Volt.Pri	L2 Exp/Imp React.Ind.E.bal.kvarh

Pha.Curr.IL2 TRMS Sec	Neg.Seq.Volt.Pri	L3 Exp.Active Energy MWh
Pha.Curr.IL3 TRMS Sec	Zero.Seq.Volt.Pri	L3 Exp.Active Energy kWh
Sec.Pos.Seq.Curr.	U1Volt Sec	L3 Imp.Active Energy MWh
Sec.Neg.Seq.Curr.	U2Volt Sec	L3 Imp.Active Energy kWh
	U3Volt Sec	
Sec.Zero.Seq.Curr.		L3 Exp/Imp Act. E balance MWh
Res.Curr.I01 TRMS Sec	U4Volt Sec	L3 Exp/Imp Act. E balance kWh
Res.Curr.I02 TRMS Sec	U1Volt Sec TRMS	L3 Exp.React.Cap.E.Mvarh
Pha.Curr.IL1	U2Volt Sec TRMS	L3 Exp.React.Cap.E.kvarh
Pha.Curr.IL2	U3Volt Sec TRMS	L3 Imp.React.Cap.E.Mvarh
Pha.Curr.IL3	U4Volt Sec TRMS	L3 Imp.React.Cap.E.kvarh
Res.Curr.I01	Pos.Seq.Volt.Sec	L3 Exp/Imp React.Cap.E.bal.Mvarh
Res.Curr.I02	Neg.Seq.Volt.Sec	L3 Exp/Imp React.Cap.E.bal.kvarh
Calc.I0	Zero.Seq.Volt.Sec	L3 Exp.React.Ind.E.Mvarh
Pha.Curr.IL1 TRMS	U1Volt p.u.	L3 Exp.React.Ind.E.kvarh
Pha.Curr.IL2 TRMS	U2Volt p.u.	L3 Imp.React.Ind.E.Mvarh
Pha.Curr.IL3 TRMS	U3Volt p.u.	L3 Imp.React.Ind.E.kvarh
Pos.Seq.Curr.	U4Volt p.u.	L3 Exp/Imp React.Ind.E.bal.Mvarh
Neg.Seq.Curr.	U1Volt TRMS p.u.	L3 Exp/Imp React.Ind.E.bal.kvarh
Zero.Seq.Curr.	U2Volt TRMS p.u.	Exp.Active Energy MWh
Res.Curr.I01 TRMS	U3Volt p.u.	Exp.Active Energy kWh
Res.Curr.I02 TRMS	U4Volt p.u.	Imp.Active Energy MWh
Pha.L1 ampl. THD	Pos.Seq.Volt. p.u.	Imp.Active Energy kWh
Pha.L2 ampl. THD	Neg.Seq.Volt. p.u.	Exp/Imp Act. E balance MWh
Pha.L3 ampl. THD	Zero.Seq.Volt. p.u.	Exp/Imp Act. E balance kWh
Pha.L1 pow. THD	U1Volt Angle	Exp.React.Cap.E.Mvarh
Pha.L2 pow. THD	U2Volt Angle	Exp.React.Cap.E.kvarh
Pha.L3 pow. THD	U3Volt Angle	Imp.React.Cap.E.Mvarh
Res.I01 ampl. THD	U4Volt Angle	Imp.React.Cap.E.kvarh
Res.I01 pow. THD	Pos.Seq.Volt. Angle	Exp/Imp React.Cap.E.bal.Mvarh
Res.I02 ampl. THD	Neg.Seq.Volt. Angle	Exp/Imp React.Cap.E.bal.kvarh
Res.I02 pow. THD	Zero.Seq.Volt. Angle	Exp.React.Ind.E.Mvarh
P-P Curr.IL1	System Volt UL12 mag	Exp.React.Ind.E.kvarh
P-P Curr.IL2	System Volt UL12 mag (kV)	Imp.React.Ind.E.Mvarh
P-P Curr.IL3	System Volt UL23 mag	Imp.React.Ind.E.kvarh
P-P Curr.I01	System Volt UL23 mag (kV)	Exp/Imp React.Ind.E.bal.Mvarh
P-P Curr.I02	System Volt UL31 mag	Exp/Imp React.Ind.E.bal.kvarh
Pha.angle IL1	System Volt UL31 mag (kV)	Other measurements
Pha.angle IL2	System Volt UL1 mag	TM> Trip expect mode
Pha.angle IL3	System Volt UL1 mag (kV)	TM> Time to 100% T
-		

Res.Curr.angle I01	System Volt UL2 mag	TM> Reference T curr.
Res.Curr.angle I02	System Volt UL2 mag (kV)	TM> Active meas curr.
Calc.I0.angle	System Volt UL3 mag	TM> T est.with act. curr.
Pos.Seq.Curr.angle	System Volt UL3 mag (kV)	TM> T at the moment
Neg.Seq.Curr.angle	System Volt U0 mag	TM> Max.Temp.Rise All.
Zero.Seq.Curr.angle	System Volt U0 mag (kV)	TM> Temp.Rise atm.
Pri.Pha.Curr.I"L1	System Volt U1 mag	TM> Hot Spot estimate
Pri.Pha.Curr.I"L2	System Volt U1 mag (kV)	TM> Hot Spot Max. All
Pri.Pha.Curr.I"L3	System Volt U2 mag	TM> Used k for amb.temp
Pri.Res.Curr.I"01	System Volt U2 mag (kV)	TM> Trip delay remaining
Pri.Res.Curr.I"02	System Volt U3 mag	TM> Alarm 1 time to rel.
Pri.Calc.I"0	System Volt U3 mag (kV)	TM> Alarm 2 time to rel.
Pha.Curr.I"L1 TRMS Pri	System Volt U4 mag	TM> Inhibit time to rel.
Pha.Curr.I"L2 TRMS Pri	System Volt U4 mag (kV)	TM> Trip time to rel.
Pha.Curr.I"L3 TRMS Pri	System Volt UL12 ang	S1 Measurement
I" Pri.Pos.Seq.Curr.	System Volt UL23 ang	S2 Measurement
I" Pri.Neg.Seq.Curr.	System Volt UL31 ang	S3 Measurement
I" Pri.Zero.Seq.Curr.	System Volt UL1 ang	S4 Measurement
Res.Curr.I"01 TRMS Pri	System Volt UL2 ang	S5 Measurement
Res.Curr.I"02 TRMS Pri	System Volt UL3 ang	S6 Measurement
Sec.Pha.Curr.I"L1	System Volt U0 ang	S7 Measurement
Sec.Pha.Curr.I"L2	System Volt U1 ang	S8 Measurement
Sec.Pha.Curr.I"L3	System Volt U2 ang	S9 Measurement
Sec.Res.Curr.I"01	System Volt U3 ang	S10 Measurement
Sec.Res.Curr.I"02	System Volt U4 ang	S11 Measurement
Sec.Calc.I"0	Power measurements	S12 Measurement
Pha.Curr.I"L1 TRMS Sec	L1 Apparent Power (S)	Sys.meas.frqs
Pha.Curr.I"L2 TRMS Sec	L1 Active Power (P)	f atm.
Pha.Curr.I"L3 TRMS Sec	L1 Reactive Power (Q)	f meas from
l" Sec.Pos.Seq.Curr.	L1 Tan(phi)	SS1.meas.frqs
l" Sec.Neg.Seq.Curr.	L1 Cos(phi)	SS1f meas from
l" Sec.Zero.Seq.Curr.	L2 Apparent Power (S)	SS2 meas.frqs
Res.Curr.I"01 TRMS Sec	L2 Active Power (P)	SS2f meas from
Res.Curr.I"02 TRMS Sec	L2 Reactive Power (Q)	L1 Bias current
Pha.Curr.I"L1	L2 Tan(phi)	L1 Diff current
Pha.Curr.I"L2	L2 Cos(phi)	L1 Char current
Pha.Curr.I"L3	L3 Apparent Power (S)	L2 Bias current
Res.Curr.I"01	L3 Active Power (P)	L2 Diff current
Res.Curr.I"02	L3 Reactive Power (Q)	L2 Char current

Calc.I"0	L3 Tan(phi)	L3 Bias current
Pha.Curr.I"L1 TRMS	L3 Cos(phi)	L3 Diff current
Pha.Curr.I"L2 TRMS	3PH Apparent Power (S)	L3 Char current
Pha.Curr.I"L3 TRMS	3PH Active Power (P)	HV I0d> Bias current
I" Pos.Seq.Curr.	3PH Reactive Power (Q)	HV I0d> Diff current
I" Neg.Seq.Curr.	3PH Tan(phi)	HV I0d> Char current
I" Zero.Seq.Curr.	3PH Cos(phi)	LV I0d> Bias current
Res.Curr.I"01 TRMS	Energy measurements	LV I0d> Diff current
Res.Curr.I"02 TRMS	L1 Exp.Active Energy MWh	LV I0d> Char current
Pha.IL"1 ampl. THD	L1 Exp.Active Energy kWh	Curve1 Input
Pha.IL"2 ampl. THD	L1 Imp.Active Energy MWh	Curve1 Output
Pha.IL"3 ampl. THD	L1 Imp.Active Energy kWh	Curve2 Input
Pha.IL"1 pow. THD	L1 Exp/Imp Act. E balance MWh	Curve2 Output
Pha.IL"2 pow. THD	L1 Exp/Imp Act. E balance kWh	Curve3 Input
Pha.IL"3 pow. THD	L1 Exp.React.Cap.E.Mvarh	Curve3 Output
Res.I"01 ampl. THD	L1 Exp.React.Cap.E.kvarh	Curve4 Input
Res.I"01 pow. THD	L1 Imp.React.Cap.E.Mvarh	Curve4 Output
Res.I"02 ampl. THD	L1 Imp.React.Cap.E.kvarh	Control mode
Res.I"02 pow. THD	L1 Exp/Imp React.Cap.E.bal.Mvarh	Motor status
P-P Curr.I"L1	L1 Exp/Imp React.Cap.E.bal.kvarh	Active setting group
P-P Curr.I"L2	L1 Exp.React.Ind.E.Mvarh	
	L1 Exp.React.Ind.E.kvarh	

5.6.8 Measurement value recorder

The measurement value recorder function records the value of the selected magnitudes at the time of a pre-defined trigger signal. A typical application is the recording of fault currents or voltages at the time of the breaker trips; it can also be used to record the values from any trigger signal set by the user. The user can select whether the function records per-unit values or primary values. Additionally, the user can set the function to record overcurrent fault types or voltage fault types. The function operates instantly from the trigger signal.

The measurement value recorder function has an integrated fault display which shows the current fault values when the tripped by one of the following functions:

- I> (non-directional overcurrent)
- I2> (current unbalance)
- Idir> (directional overcurrent)
- I0> (non-directional earth fault)
- I0dir> (directional earth fault)
- f<(underfrequency)
- f> (overfrequency)
- U< (undervoltage)
- U> (overvoltage)
- U1/U2 >/< (sequence voltage)
- U0> (residual voltage)
- P> (over power)

- P< (under power)
- Prev> (reverse power)
- T> (thermal overload)

Measured input

The function block uses analog current and voltage measurement values. Based on these values, the relay calculates the primary and secondary values of currents, voltages, powers, and impedances as well as other values.

The user can set up to eight (8) magnitudes to be recorded when the function is triggered. An overcurrent fault type, a voltage fault type, and a tripped stage can be recorded and reported straight to SCADA.

NOTE!

The available measurement values depend on the relay type. If only current analog measurements are available, the recorder can solely use signals which only use current. The same applies, if only voltage analog measurements are available.

Currents	Description	
IL1 (ff), IL2 (ff), IL3 (ff), I01 (ff), I02 (ff)	The fundamental frequency current measurement values (RMS) of phase currents and of residual currents.	
IL1TRMS, IL2TRMS, IL3TRMS, I01TRMS, I02TRMS	The TRMS current measurement values of phase currents and of residual currents.	
IL1,2,3 & I01/I02 2 nd h., 3 rd h., 4 th h., 5 th h., 7 th h., 9 th h., 11 th h., 13 th h., 15 th h., 17 th h., 19 th h.	The magnitudes of phase current components: Fundamental, 2 nd harmonic, 3 rd harmonic, 4 th harmonic, 5 th harmonic 7 th , harmonic 9 th , harmonic 11 th , harmonic 13 th harmonic 15 th , harmonic 17 th , harmonic 19 th harmonic current.	
I1, I2, I0Z	The positive sequence current, the negative sequence current and the zero sequence current.	
I0CalcMag	The residual current calculated from phase currents.	
IL1Ang, IL2Ang, IL3Ang, I01Ang, I02Ang, I0CalcAng, I1Ang, I2Ang	The angles of each measured current.	
Voltages	Description	
UL1Mag, UL2Mag, UL3Mag, UL12Mag, UL23Mag, UL31Mag U0Mag, U0CalcMag	The magnitudes of phase voltages, of phase-to-phase voltages, and of residual voltages.	
U1 Pos.seq V mag, U2 Neg.seq V mag	The positive sequence voltage and the negative sequence voltage.	
	The positive sequence voltage and the negative sequence voltage. The angles of phase voltages, of phase-to-phase voltages, and of residual voltages.	
mag UL1Ang, UL2Ang, UL3Ang,		
mag UL1Ang, UL2Ang, UL3Ang, UL12Ang, UL23Ang, UL31Ang		
mag UL1Ang, UL2Ang, UL3Ang, UL12Ang, UL23Ang, UL31Ang U0Ang, U0CalcAng U1 Pos.seq V Ang, U2 Neg.seq V	The angles of phase voltages, of phase-to-phase voltages, and of residual voltages.	
mag UL1Ang, UL2Ang, UL3Ang, UL12Ang, UL23Ang, UL31Ang U0Ang, U0CalcAng U1 Pos.seq V Ang, U2 Neg.seq V Ang	The angles of phase voltages, of phase-to-phase voltages, and of residual voltages. The positive sequence angle and the negative sequence angle.	
mag UL1Ang, UL2Ang, UL3Ang, UL12Ang, UL23Ang, UL31Ang U0Ang, U0CalcAng U1 Pos.seq V Ang, U2 Neg.seq V Ang Powers	The angles of phase voltages, of phase-to-phase voltages, and of residual voltages. The positive sequence angle and the negative sequence angle. Description	

Currents	Description	
cosfi3PH, cosfiL1, cosfiL2, cosfiL3	The cos (ϕ) of three-phase powers and phase powers.	
Impedances and admittances	Description	
RL12, RL23, RL31 XL12, XL23, XL31, RL1, RL2, RL3 XL1, XL2, XL3 Z12, Z23, Z31 ZL1, ZL2, ZL3	The phase-to-phase and phase-to-neutral resistances, reactances and impedances.	
Z12Ang, Z23Ang, Z31Ang, ZL1Ang, ZL2Ang, ZL3Ang	The phase-to-phase and phase-to-neutral impedance angles.	
Rseq, Xseq, Zseq RseqAng, XseqAng, ZseqAng	The positive sequence resistance, reactance and impedance values and angles.	
GL1, GL2, GL3, G0 BL1, BL2, BL3, B0 YL1, YL2, YL3, Y0	The conductances, susceptances and admittances.	
YL1angle, YL2angle, YL3angle Y0angle	The admittance angles.	
Others	Description	
System f.	The tracking frequency in use at that moment.	
Ref f1	The reference frequency 1.	
Ref f2	The reference frequency 2.	
M thermal T	The motor thermal temperature.	
F thermal T	The feeder thermal temperature.	
T thermal T	The transformer thermal temperature.	
RTD meas 116	The RTD measurement channels 116.	
Ext RTD meas 18	The external RTD measurement channels 18 (ADAM module).	

Reported values

When triggered, the function holds the recorded values of up to eight channels, as set. In addition to this tripped stage, the overcurrent fault type and the voltage fault types are reported to SCADA.

AQ-G257 Instruction manual

Version: 2.08

Table. 5.6.8 - 334. Reported values.

Name	Range	Step	Description
Tripped stage	0: - 1: $ >$ Trip 2: $ >>$ Trip 3: $ >>>$ Trip 4: $ >>>>$ Trip 5: $ Dir>>$ Trip 6: $ Dir>>>$ Trip 7: $ Dir>>>$ Trip 8: $ Dir>>>>$ Trip 9: $U>$ Trip 10: $U>>$ Trip 11: $U>>>$ Trip 12: $U>>>>$ Trip 13: $U<$ Trip 14: $U<<$ Trip 14: $U<<$ Trip 15: $U<<<$ Trip 16: $U<<<$ Trip 17: $ O>$ TRIP 18: $ O>>$ Trip 20: $ O>>>>$ Trip 20: $ O>>>>$ Trip 21: $ ODir>>>$ Trip 22: $ ODir>>>$ Trip 23: $ ODir>>>$ Trip 24: $ ODir>>>$ Trip 25: $f>$ Trip 26: $f>>$ Trip 26: $f>>$ Trip 27: $f>>>$ Trip 28: $f>>>>$ Trip 29: $f<$ Trip 30: $f<<$ Trip 31: $f<<<$ Trip 32: $f<<<<$ Trip 33: $P>$ Trip 34: $P<$ Trip 35: $Prev>$ Trip 36: $T>$ Trip 36: $T>$ Trip 37: $ 2>$ Trip 38: $ 2>>>$ Trip 39: $ 2>>>$ Trip 40: $ 2>>>>$ Trip 41: $U1/2 >>>>$ Trip 41: $U1/2 >>>>$ Trip 42: $U1/2 >>>>$ Trip 43: $U1/2 >>>>$ Trip 44: $U1/2 >>>>$ Trip 45: $UO>>>$ Trip 45: $UO>>>$ Trip 46: $UO>>>>$ Trip 47: $UO>>>$ Trip 48: $UO>>>>$ Trip 48: $UO>>>>$ Trip 48: $UO>>>>$ Trip		The tripped stage.
Overcurrent fault type	0: - 1: A-G 2: B-G 3: A-B 4: C-G 5: A-C 6: B-C 7: A-B-C	-	The overcurrent fault type.

Name	Range	Step	Description
Voltage fault type	0: - 1: A(AB) 2: B(BC) 3: A-B(AB-BC) 4: C(CA) 5: A-C(AB-CA) 6: B-C(BC-CA) 7: A-B-C 8: - 9: Overfrequency 10: Underfrequency 11: Overpower 12: Underpower 13: Reversepower 14: Thermal overload 15: Unbalance 16: Harmonic overcurrent 17: Residual overvoltage	-	The voltage fault type.
Magnitude 18	0.0001800.000 A/V/p.u.	0.001 A/V/p.u.	The recorded value in one of the eight channels.

Events

The measurement value recorder function (abbreviated "VREC" in event block names) generates events from the function triggers. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

Table. 5.6.8 - 335. Event messages.

Event block name	Event name
VREC1	Recorder triggered ON
VREC1	Recorder triggered OFF

5.6.9 Running hour counter

The running hour counter (abbreviated "RHC" in event block names) is capable of counting the running time of a motor, a generator, or a similar application.

The counter value can be added to the mimic view and read to SCADA.

Table. 5.6.9 - 336. Parameter descriptions

Name	Range	Step	Description
Activate counter input	Any binary input	-	Counter runs whenever input set here is active.
Running hours	hh:mm:ss	-	Indicates running hours counted so far. This value can be edited by the user. The user input must be set in seconds, which is then converted by the device to hours, minutes and seconds (hh:mm:ss).
Start count	04294967295 Starts	1 Start	Start counter.
Clear hours	0: - 1: Clear	-	Clears "Running hours" and "Start count".

Table. 5.6.9 - 337. Event messages.

Event block name	Event name
RHC1	Running hour counter ON
RHC1	Running hour counter OFF
RHC1	Running hour counter cleared ON
RHC1	Running hour counter cleared OFF

5.7 Programmable stage (PGx>/<; 99)

The programmable stage is a stage that the user can program to create more advanced applications, either as an individual stage or together with programmable logic. The relay has ten programmable stages, and each can be set to follow one to three analog measurements. The programmable stages have three available pick up terms options: overX, underX and rate-of-change of the selected signal. Each stage includes a definite time delay to trip after a pick-up has been triggered.

The programmable stage cycle time is 5 ms. The pick-up delay depends on which analog signal is used as well as its refresh rate (typically under a cycle in a 50 Hz system).

The number of programmable stages to be used is set in the *INFO* tab. When this function has been set as "Activated", the number of programmable stages can be set anywhere between one (1) and ten (10) depending on how many the application needs. In the image below, the number of programmable stages have been set to two which makes PS1 and PS2 to appear. Inactive stages are hidden until they are activated.

Please note that setting the number of available stages does not activate those stages, as they also need to be enabled individually with the PSx > < Enabled parameter. When enabled an active stage shows its current state (condition), the expected operating time and the time remaining to trip under the activation parameters. If a stage is not active the PSx > < condition parameter will merely display "Disabled".

The function's outputs are START, TRIP and BLOCKED signals. The programmable stage function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode. Definite time (DT) delay can be selected in the In time-delayed mode.

The inputs for the function are the following:

- operating mode selections
- setting parameters
- digital inputs and logic signals
- measured and pre-processed magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.7 - 338. General settings of the function.

Name	Range	Description
PSx >/< LN mode	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	Set mode of PGS block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
PSx >/< LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	Displays the mode of PGS block. This parameter is visible only when <i>Allow setting of individual LN</i> <i>mode</i> is enabled in <i>General</i> menu.
PSx >/< Available stages	110	Defines the available amount of stages.
PSx >/< Enabled	0: Disabled 1: Enabled	Enables the stage.
PSx >/< Force status to	0: Normal 1: Start 2: Trip 3: Blocked	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
PSx >/< Measurement setting	0: One magnitude comp 1: Two magnitude comp 2: Three magnitude comp	Defines how many measurement magnitudes are used by the stage.
	0: Mag1 x Mag2	Multiplies Signal 1 by Signal 2. The comparison uses the product of this calculation.
	1: Mag1 / Mag2	Divides Signal 1 by Signal 2. The comparison uses the product of this calculation.
	2: Max (Mag1, Mag2)	The bigger value of the chosen signals is used in the comparison.
PSx >/< Magnitude handling ("Two magnitude comp" selected)	3: Min (Mag1, Mag2)	The smaller value of the chosen signals is used in the comparison.
	4: Mag1 OR Mag2	Either of the chosen signals has to fulfill the pick-up condition. Both signals have their own pick-up setting.
	5: Mag1 AND Mag2	Both of the chosen signals have to fulfill the pick-up condition. Both signals have their own pick-up setting.
	6: Mag1 – Mag2	Subtracts Signal 2 from Signal 1. The comparison uses the product of this calculation.
	0: Mag1 x Mag2 x Mag3	Multiplies Signals 1, 2 and 3. The comparison uses the product of this calculation.
	1: Max (Mag1, Mag2, Mag3);	The biggest value of the chosen signals is used in the comparison.
	2: Min (Mag1, Mag2, Mag3)	The smallest value of the chosen signals is used in the comparison.
PSx >/< Magnitude handling ("Three magnitude comp" selected)	3: Mag1 OR Mag2 OR Mag3	Any of the signals fulfills the pick-up condition. Each signal has their own pick-up setting.
	4: Mag1 AND Mag2 AND Mag3	All of the signals need to fulfill the pick-up condition. Each signal has their own pick-up setting.
	5: (Mag1 OR Mag2) AND Mag3	Signals 1 OR 2 AND 3 need to fulfill the pick-up condition. Each signal has their own pick-up setting.

AQ-G257 Instruction manual

Version: 2.08

Name	Range	Description
PSx Magnitude selection	0: Currents 1: Voltages 2: Powers 3: Impedances and admittances 4: Others	Defines the measurement type used by the stage
PSx MagnitudeX	See table below.	Defines the measurement used by the stage. Available parameters depend on selected measurement type.
PSx MagnitudeX multiplier	-5 000 0005 000 000	Multiplies the selected measurement. 1 by default (no multiplication). See section "Magnitude multiplier" for more information.

Analog values

The numerous analog signals have been divided into categories to help the user find the desired value.

Name	Description
ILx ff (p.u.)	Fundamental frequency RMS value (in p.u.)
ILx 2 nd h.	ILx 2 nd harmonic value (in p.u.)
ILx 3 rd h.	ILx 3 nd harmonic value (in p.u.)
ILx 4 th h.	ILx 4 nd harmonic value (in p.u.)
ILx 5 th h.	ILx 5 nd harmonic value (in p.u.)
ILx 7 th h.	ILx 7 nd harmonic value (in p.u.)
ILx 9 th h.	ILx 9 nd harmonic value (in p.u.)
ILx 11 th h.	ILx 11 nd harmonic value (in p.u.)
ILx 13 th h.	ILx 13 nd harmonic value (in p.u.)
ILx 15 th h.	ILx 15 nd harmonic value (in p.u.)
ILx 17 th h.	ILx 17 nd harmonic value (in p.u.)
ILx 19 th h.	ILx 19 nd harmonic value (in p.u.)
ILx TRMS	ILx TRMS value (in p.u.)
ILx Ang	ILx Angle (degrees)

Table. 5.7 - 339. Phase and residual current measurements (IL1, IL2, IL3, Io1 and Io2)

Table. 5.7 - 340. Other current measurements

Name	Description
I0Z Mag	Zero sequence current value (in p.u.)
IOCALC Mag	Calculated I0 value (in p.u.)
I1 Mag	Positive sequence current value (in p.u.)
I2 Mag	Negative sequence current value (in p.u.)
IOCALC Ang	Angle of calculated residual current (degrees)
I1 Ang	Angle of positive sequence current (degrees)
I2 Ang	Angle of negative sequence current (degrees)
I01ResP	I01 primary current of a current-resistive component

Name	Description
I01CapP	I01 primary current of a current-capacitive component
I01ResS	I01 secondary current of a current-resistive component
I01CapS	I01 secondary current of a current-capacitive component
I02ResP	I02 primary current of a current-resistive component
I02CapP	I02 primary current of a current-capacitive component
I02ResS	102 secondary current of a current-resistive component
I02CapS	102 secondary current of a current-capacitive component

Table. 5.7 - 341. Voltage measurements
--

Name	Description
UL12Mag	UL12 Primary voltage V
UL23Mag	UL23 Primary voltage V
UL31Mag	UL31 Primary voltage V
UL1Mag	UL1 Primary voltage V
UL2Mag	UL2 Primary voltage V
UL3Mag	UL3 Primary voltage V
UL12Ang	UL12 angle (degrees)
UL23Ang	UL23 angle (degrees)
UL31Ang	UL31 angle (degrees)
UL1Ang	UL1 angle (degrees)
UL2Ang	UL2 angle (degrees)
UL3Ang	UL3 angle (degrees)
U0Ang	UL0 angle (degrees)
U0CalcMag	Calculated residual voltage
U1 pos.seq.V Mag	Positive sequence voltage
U2 neg.seq.V Mag	Negative sequence voltage
U0CalcAng	Calculated residual voltage angle (degrees)
U1 pos.seq.V Ang	Positive sequence voltage angle (degrees)
U2 neg.seq.V Ang	Negative sequence voltage angle (degrees)

Name	Description			
S3PH	Three-phase apparent power S (kVA)			
РЗРН	Three-phase active power P (kW)			
Q3PH	hree-phase reactive power Q (kvar)			
tanfi3PH	Three-phase active power direction			
cosfi3PH	Three-phase reactive power direction			
SLx	Phase apparent power L1 / L2 / L3 S (kVA)			
PLx	Phase active power L1 / L2 / L3 P (kW)			

AQ-G257 Instruction manual

Version: 2.08

Name	Description		
QLx	hase reactive power L1 / L2 / L3 Q (kVar)		
tanfiLx	Phase active power direction L1 / L2 / L3		
cosfiLx	Phase reactive power direction L1 / L2 / L3		

Table. 5.7 - 343. Phase-to-phase and phase-to-neutral impedances, resistances and reactances

Name	Description			
RLxPri	Resistance R L12, L23, L31, L1, L2, L3 primary (Ω)			
XLxPri	Reactance X L12, L23, L31, L1, L2, L3 primary (Ω)			
ZLxPri	Impedance Z L12, L23, L31, L1, L2, L3 primary (Ω)			
RLxSec	Resistance R L12, L23, L31, L1, L2, L3 secondary (Ω)			
XLxSec	Reactance X L12, L23, L31, L1, L2, L3 secondary (Ω)			
ZLxSec	Impedance Z L12, L23, L31, L1, L2, L3 secondary (Ω)			
ZLxAngle	Impedance Z L12, L23, L31, L1, L2, L3 angle			

Table. 5.7 - 344. Other impedances, resistances and reactances

Name	Description			
RSeqPri	Positive Resistance R primary (Ω)			
XSeqPri	Positive Reactance X primary (Ω)			
RSeqSec	psitive Resistance R secondary (Ω)			
XSeqSec	Positive Reactance X secondary (Ω)			
ZSeqPri	Positive Impedance Z primary (Ω)			
ZSeqSec	Positive Impedance Z secondary (Ω)			
ZSeqAngle	Positive Impedance Z angle			

Table. 5.7 - 345. Conductances, susceptances and admittances (L1, L2, L3)

Name	Description			
GLxPri	Conductance G L1, L2, L3 primary (mS)			
BLxPri	Susceptance B L1, L2, L3 primary (mS)			
YLxPriMag	dmittance Y L1, L2, L3 primary (mS)			
GLxSec	Conductance G L1, L2, L3 secondary (mS)			
BLxSec	Susceptance B L1, L2, L3 secondary (mS)			
YLxSecMag	Admittance Y L1, L2, L3 secondary (mS)			
YLxAngle	Admittance Y L1, L2, L3 angle (degrees)			

Table. 5.7 - 346. Other conductances, susceptances and admittances

Name	Description		
G0Pri	Conductance G0 primary (mS)		
B0Pri	Susceptance B0 primary (mS)		
G0Sec	Conductance G0 secondary (mS)		

Name	Description			
B0Sec	Susceptance B0 secondary (mS)			
Y0Pri	Admittance Y0 primary (mS)			
Y0Sec	Admittance Y0 secondary (mS)			
Y0Angle	Admittance Y0 angle			

Table. 5.7 - 347. Other measurements

Name	Description			
System f.	System frequency			
Ref f1	Reference frequency 1			
Ref f2	Reference frequency 2			
M Thermal T	Motor thermal temperature			
F Thermal T	Feeder thermal temperature			
T Thermal T	Transformer thermal temperature			
RTD meas 116	RTD measurement channels 116			
Ext RTD meas 18	External RTD measurement channels 18 (ADAM)			
mA input 7,8,15,16	mA input channels 7, 8, 15, 16			
ASC 14	Analog scaled curves 14			

Magnitude multiplier

Programmable stages can be set to follow one, two or three analog measurements with the PSx > < Measurement setting parameter. The user must choose a measurement signal value to be compared to the set value, and possibly also set a scaling for the signal. The image below is an example of scaling: a primary neutral voltage has been scaled to a percentage value for easier handling when setting up the comparator.

The scaling factor was calculated by taking the inverse value of a 20 kV system:

$$k = \frac{1}{20\ 000\ \text{V}/\sqrt{3}} = 0.008\ 66$$

When this multiplier is in use, the full earth fault neutral voltage is 11 547 V primary which is then multiplied with the above-calculated scaling factor, inversing the final result to 100%. This way a pre-processed signal is easier to set, although it is also possible to just use the scaling factor of 1.0 and set the desired pick-up limit as the primary voltage. Similarly, any chosen measurement value can be scaled to the desired form.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table. 5.7 - 348. Infor	mation displayed by the function.
-------------------------	-----------------------------------

Name	Range	Description	
PSx >/< LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	Displays the mode of PGS block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
Condition	0: Normal 1: Start 2: Trip 3: Blocked	Displays status of the function.	
Expected operating time	-1800.0001800.000s	Displays the expected operating time when a fault occurs.	
Time remaining to trip	0.0001800.000s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.	
PSx Scaled magnitude X	-5 000 0005 000 000	Displays measurement value after multiplying it the value set to <i>PSx Magnitude multiplier</i> .	
PSx >/< MeasMag1/ MagSet1 at the moment	-5 000 0005 000 000	The ratio between measured magnitude and the pick-up setting.	
PSx >/< MeasMag2/ MagSet2 at the moment	-5 000 0005 000 000	The ratio between measured magnitude and the pick-up setting.	
PSx >/< MeasMag3/ MagSet3 at the moment	-5 000 0005 000 000	The ratio between measured magnitude and the pick-up setting.	
PSx >/< CalcMeasMag/ MagSet at the moment	-5 000 0005 000 000	The ratio between calculated magnitude and the pick-up setting.	

Pick-up

The *Pick-up setting Mag* setting parameter controls the pick-up of the PGx>/< function. This defines the maximum or minimum allowed measured magnitude before action from the function. The function constantly calculates the ratio between the set and the measured magnitudes. The user can set the reset hysteresis in the function (by default 3 %). It is always relative to the *Pick-up setting Mag* value.

Table. 5.7 - 349.	Pick-up settings.
-------------------	-------------------

Name	Range	Step	Default	Description
PS# Pick-up term Mag#	0: Over > 1: Over (abs) > 2: Under < 3: Under (abs) < 4: Delta set (%) +/- > 5: Delta abs (%) > 6: Delta +/- measval 7: Delta abs measval	-	0: Over	Comparator mode for the magnitude. See "Comparator modes" section below for more information.
PS# Pick-up setting Mag#/calc >/<	-5 000 000.00005 000 000.0000	0.0001	0.01	Pick-up magnitude
PS# Setting hysteresis Mag#	0.000050.0000%	0.0001%	3%	Setting hysteresis
Definite operating time delay	0.0001800.000s	0.005s	0.04s	Delay setting
Release time delays	0.0001800.000s	0.005s	0.06s	Pick-up release delay

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Comparator modes

When setting the comparators, the user must first choose a comparator mode.

Table. 5.7 - 350. Comparator modes

Mode	Description
0: Over >	Greater than. If the measured signal is greater than the set pick-up level, the comparison condition is fulfilled.
1: Over (abs) >	Greater than (absolute). If the absolute value of the measured signal is greater than the set pick-up level, the comparison condition is fulfilled.
2: Under <	Less than. If the measured signal is less than the set pick-up level, the comparison condition is fulfilled. The user can also set a blocking limit: the comparison is not active when the measured value is less than the set blocking limit.
3: Under (abs) <	Less than (absolute). If the absolute value of the measured signal is less than the set pick-up level, the comparison condition is fulfilled. The user can also set a blocking limit: the comparison is not active when the measured value is less than the set blocking limit.
4: Delta set (%) +/- >	Relative change over time. If the measured signal changes more than the set relative pick-up value in 20 ms, the comparison condition is fulfilled. The condition is dependent on direction.
5: Delta abs (%) >	Relative change over time (absolute). If the measured signal changes more than the set relative pick-up value in 20 ms in either direction, the comparison condition is fulfilled. The condition is not dependent on direction.
6: Delta +/- measval	Change over time. If the measured signal changes more than the set pick-up value in 20 ms, the comparison condition is fulfilled. The condition is dependent on direction.
7: Delta abs measval	Change over time (absolute). If the measured signal changes more than the set pick-up value in 20 ms in either direction, the comparison condition is fulfilled. The condition is not dependent on direction.

The pick-up level is set individually for each comparison. When setting up the pick-up level, the user needs to take into account the modes in use as well as the desired action. The pick-up limit can be set either as positive or as negative. Each pick-up level has a separate hysteresis setting which is 3 % by default.

The user can set the operating and releasing time delays for each stage.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup values of the selected signal and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated (*General* \rightarrow *Device*).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

The programmable stage function (abbreviated "PGS" in event block names) generates events and registers from the status changes in START, TRIP, and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Event block name	Event names
PGS1	PS1 >/< Start ON
PGS1	PS1 >/< Start OFF
PGS1	PS1 >/< Trip ON
PGS1	PS1 >/< Trip OFF
PGS1	PS1 >/< Block ON
PGS1	PS1 >/< Block OFF
PGS1	PS2 >/< Start ON
PGS1	PS2 >/< Start OFF
PGS1	PS2 >/< Trip ON
PGS1	PS2 >/< Trip OFF
PGS1	PS2 >/< Block ON
PGS1	PS2 >/< Block OFF
PGS1	PS3 >/< Start ON
PGS1	PS3 >/< Start OFF
PGS1	PS3 >/< Trip ON
PGS1	PS3 >/< Trip OFF
PGS1	PS3 >/< Block ON
PGS1	PS3 >/< Block OFF
PGS1	PS4 >/< Start ON
PGS1	PS4 >/< Start OFF
PGS1	PS4 >/< Trip ON
PGS1	PS4 >/< Trip OFF
PGS1	PS4 >/< Block ON
PGS1	PS4 >/< Block OFF
PGS1	PS5 >/< Start ON
PGS1	PS5 >/< Start OFF
PGS1	PS5 >/< Trip ON
PGS1	PS5 >/< Trip OFF
PGS1	PS5 >/< Block ON

Table. 5.7 - 351. Event messages.

Event block name	Event names
PGS1	PS5 >/< Block OFF
PGS1	reserved
PGS1	reserved
PGS1	PS6 >/< Start ON
PGS1	PS6 >/< Start OFF
PGS1	PS6 >/< Trip ON
PGS1	PS6 >/< Trip OFF
PGS1	PS6 >/< Block ON
PGS1	PS6 >/< Block OFF
PGS1	PS7 >/< Start ON
PGS1	PS7 >/< Start OFF
PGS1	PS7 >/< Trip ON
PGS1	PS7 >/< Trip OFF
PGS1	PS7 >/< Block ON
PGS1	PS7 >/< Block OFF
PGS1	PS8 >/< Start ON
PGS1	PS8 >/< Start OFF
PGS1	PS8 >/< Trip ON
PGS1	PS8 >/< Trip OFF
PGS1	PS8 >/< Block ON
PGS1	PS8 >/< Block OFF
PGS1	PS9 >/< Start ON
PGS1	PS9 >/< Start OFF
PGS1	PS9 >/< Trip ON
PGS1	PS9 >/< Trip OFF
PGS1	PS9 >/< Block ON
PGS1	PS9 >/< Block OFF
PGS1	PS10 >/< Start ON
PGS1	PS10 >/< Start OFF
PGS1	PS10 >/< Trip ON
PGS1	PS10 >/< Trip OFF
PGS1	PS10 >/< Block ON
PGS1	PS10 >/< Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.7 - 352. Register content.

Date and time	Event	>/< Mag#	Mag#/Set#	Trip time remaining	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	The numerical value of the magnitude	Ratio between the measured magnitude and the pick-up setting	0 ms1800s	Setting group 18 active

6 Communication

6.1 Connections menu

"Connections" menu is found under "Communication" menu. It contains all basic settings of ethernet port and RS-485 serial port included with every AQ-200 device as well as settings of communication option cards.

Table. 6.1 - 353. Settings of back panel ethernet port.

Name	Range	Description
IP address	0.0.0.0255.255.255.255	Set IP address of the ethernet port in the back of the AQ-200 series device.
Netmask	0.0.0.0255.255.255.255	Set netmask of the ethernet port in the back of the AQ-200 series device.
Gateway	0.0.0.0255.255.255.255	Set gateway of the ethernet port in the back of the AQ-200 series device.
MAC- Address	00-00-00-00-00-00FF-FF-FF-FF- FF-FF	Indication of MAC address of the AQ-200 series device.

Virtual Ethernet enables the device to be connected to multiple different networks simultaneously via one physical Ethernet connection. Virtual Ethernet has its own separate IP address and network configurations. All Ethernet-based protocol servers listen for client connections on the IP addresses of both the physical Ethernet and the Virtual Ethernet.

Table. 6.1 - 354. Virtual Ethernet settings.

Name	Description
Enable virtual adapter (No / Yes)	Enable virtual adapter. Off by default.
IP address	Set IP address of the virtual adapter.
Netmask	Set netmask of the virtual adapter.
Gateway	Set gateway of the virtual adapter.

AQ-200 series devices are always equipped with an RS-485 serial port. In the software it is identified as "Serial COM1" port.

Table. 6.1 - 355. Serial COM1 settings.

Name	Range	Description
Bitrate	0: 9600bps 1: 19200bps 2: 38400bps	Bitrate used by RS-485 port.
Databits	78	Databits used by RS-485 port.
Parity	0: None 1: Even 2: Odd	Paritybits used by RS-485 port.
Stopbits	12	Stopbits used by RS-485 port.

Name	Range	Description
Protocol	0: None 1: ModbutRTU 2: ModbusIO 3: IEC103 4: SPA 5: DNP3 6: IEC101	Communication protocol used by RS-485 port.

AQ-200 series supports communication option card type that has serial fiber ports (Serial COM2) an RS-232 port (Serial COM3).

Table. 6.1 - 356. Serial COM2 settings.

Name	Range	Description
Bitrate	0: 9600bps 1: 19200bps 2: 38400bps	Bitrate used by serial fiber channels.
Databits	78	Databits used by serial fiber channels.
Parity	0: None 1: Even 2: Odd	Paritybits used by serial fiber channels.
Stopbits	12	Stopbits used by serial fiber channels.
Protocol	0: None 1: ModbutRTU 2: ModbusIO 3: IEC103 4: SPA 5: DNP3 6: IEC101	Communication protocol used by serial fiber channels.
Echo	0: Off 1: On	Enable or disable echo.
Idle Light	0: Off 1: On	Idle light behaviour.

Table. 6.1 - 357. Serial COM3 settings.

Name	Range	Description
Bitrate	0: 9600bps 1: 19200bps 2: 38400bps	Bitrate used by RS-232 port.
Databits	78	Databits used by RS-232 port.
Parity	0: None 1: Even 2: Odd	Paritybits used by RS-232 port.
Stopbits	12	Stopbits used by RS-232 port.
Protocol	0: None 1: ModbutRTU 2: ModbusIO 3: IEC103 4: SPA 5: DNP3 6: IEC101	Communication protocol used by RS-232 port.

6.2 Time synchronization

Time synchronization source can be selected with "Time synchronization" parameter at *Communication* \rightarrow *Synchronization* \rightarrow *General*.

Table. 6.2 - 358. General time synchronization source settings.

Name	Range	Description
	0: Internal	
	1: External NTP	
Time synchronization source	2: External serial	Selection of time synchronization source.
	3: IRIG-B	
	4: PTP	

6.2.1 Internal

If no external time synchronization source is available the mode should be set to "internal". This means that the AQ-200 device clock runs completely on its own. Time can be set to the device with AQtivate setting tool with *Commands* \rightarrow *Sync Time* command or in the clock view from the HMI. When using *Sync time* command AQtivate sets the time to device the connected computer is currently using. Please note that the clock doesn't run when the device is powered off.

6.2.2 NTP

When enabled, the NTP (Network Time Protocol) service can use external time sources to synchronize the device's system time. The NTP client service uses an Ethernet connection to connect to the NTP time server. NTP can be enabled by setting the primary time server and the secondary time server parameters to the address of the system's NTP time source(s).

Table. 6.2.2 - 359. Server settings.

Name	Range	Description
Primary time server address	0.0.0.0255.255.255.255	Defines the address of the primary NTP server. Setting this parameter at "0.0.0.0" means that the server is not in use.
Secondary time server address	0.0.0.0255.255.255.255	Defines the address of the secondary (or backup) NTP server. Setting this parameter at "0.0.0.0" means that the server is not in use.

Table. 6.2.2 - 360. Status.

Name	Range	Description
NTP quality for events	0: No sync 1: Synchronized	Displays the status of the NTP time synchronization at the moment. NOTE: This indication is not valid if another time synchronization method is used (external serial).
NTP-processed message count	04294967295	Displays the number of messages processed by the NTP protocol.

Additionally, the time zone of the relay can be set by connecting to the relay and the selecting the time zone at *Commands* \rightarrow *Set time zone* in AQtivate setting tool.

6.2.3 PTP

PTP, Precision Time Protocol, is a higher accuracy synchronization protocol for Ethernet networks. Accuracy of microsecond level can be achieved.

In a PTP network the devices can have different roles. There is a Grandmaster clock that is the clock source, normally connected to GPS. Most devices take the role of an Ordinary clock which receive synchronization from the Grandmaster clock. In the PTP network there can also be Boundary and Transparent clock roles, these are most often PTP enabled switches that can redistribute time or compensate for their delays.

BMCA, Best Master Clock Algorithm, is an algorithm that PTP devices use to determine the best clock source. This is utilized in network segments where there are 2 Grandmaster clocks or in situations where there are no Grandmaster available. In these situations the devices make a selection which device will act as the clock source. In these cases without GPS synchronized clock source, the accuracy between the devices is still high.

Settings

Select PTP as the time synchronization source from Communication \rightarrow Synchronization \rightarrow General menu.

The following settings are available in *Communication* \rightarrow *Synchronization* \rightarrow *PTP* menu.

Name	Range	Description
Role	0: Auto (Default) 1: Master 2: Slave	In Auto mode, the device can take both the role of a clock source and clock consumer. In Master mode the device is forced to concider itself to be a clock source. In Slave mode the device is forced to be a clock consumer.
Mechanism	0: P2P (Default) 1: E2E	Delay measurement mechanism used. Peer-to-peer can utilize the PTP enabled switches as transparent ro boundary clocks while End-to-end must be used if non-PTP enabled switches are found in the network.
Domain number	0255	PTP devices can be set to belong to a grouping called domain. Devices in same domain is primearly being synchronized together.

Table. 6.2.3 - 361. PTP time synchronization settings.

Status indications

The following status indications are available in *Communication* \rightarrow *Synchronization* \rightarrow *PTP* menu.

Table. 6.2.3 - 362. PTP status indications

Name	Description				
State	State of the PTP application (Master, Slave, Listening).				
Best master	Identification of best master in network. Id consist of MAC address plus id number.				
Last receive	Time when last synchronization frame was received.				
Message sent	Diagnostic message counter.				
Message receive	Diagnostic message counter.				
PTP timesource	Diagnostic number describing the current time source.				

6.3 Communication protocols

6.3.1 IEC 61850

The user can enable the IEC 61850 protocol in device models that support this protocol at *Communication* \rightarrow *Protocols* \rightarrow *IEC61850*. AQ-21x frame units support Edition 1 of IEC 61850. AQ-25x frame units support both Edition 1 and 2 of IEC 61850. The following services are supported by IEC 61850 in Arcteq devices:

- Up to six data sets (predefined data sets can be edited with the IEC 61850 tool in AQtivate)
- Report Control Blocks (both buffered and unbuffered reporting)
- Control ('Direct operate with normal security', 'Select before operate with normal security, 'Direct with enhanced security' and 'Select before operate with enhanced sequrity' control sequences)
- Disturbance recording file transfer
- GOOSE
- Time synchronization

The device's current IEC 61850 setup can be viewed and edited with the IEC61850 tool (*Tools* \rightarrow *Communication* \rightarrow *IEC* 61850).

Settings.

The general setting parameters for the IEC 61850 protocol are visible both in AQtivate and in the local HMI. The settings are described in the table below.

Name	Range	Step	Default	Description
Enable IEC 61850	0: Disabled 1: Enabled	-	0: Disabled	Enables and disables the IEC 61850 communication protocol.
Reconfigure IEC 61850	0: - 1: Reconfigure	-	0: -	Reconfigures IEC 61850 settings.
IP port	065 535	1	102	Defines the IP port used by the IEC 61850 protocol. The standard (and default) port is 102.
IEC61850 edition	0: Ed1 0: Ed2	-	-	Displays the IEC61850 edition used by the device. Edition can be chosen by loading a new CID file at <i>Tools</i> \rightarrow <i>Communication</i> \rightarrow <i>IEC</i> 61850 with <i>Open</i> button.
Control Authority switch	0: Remote Control 1: Station Level Control	-	0: Remote Control	The device can be set to allow object control via IEC 61850 only from clients that are of category Station level control. This would mean that other Remote control clients would not be allowed to control. In Remote control mode all IEC 61850 clients of both remote and station level category are allowed to control objects.
Ethernet port	0: All 1: COM A 2: Double ethernet card	-	0: All	Determines which ports use IEC61850. Visible if double ethernet option card is found in the device.
Configure GOOSE Subscriber from CID file allowed	0: Disabled 1: Allowed	-	0: Disabled	In edition 2 of IEC 61850 GOOSE subscriber configuration is a part of the CID file. Determines if it is possible to import published GOOSE settings of another device with a CID file and set them to GOOSE input at <i>Tools</i> \rightarrow <i>Communication</i> \rightarrow <i>IEC</i> 61850 \rightarrow <i>GOOSE subscriptions</i> .
General deadband	0.110.0 %	0.1 %	2 %	Determines the general data reporting deadband settings.
Active energy deadband	0.11000.0 kWh	0.1 kWh	2 kWh	Determines the data reporting deadband settings for this measurement.
Reactive energy deadband	0.11000.0 kVar	0.1 kVar	2 kVar	Determines the data reporting deadband settings for this measurement.
Active power deadband	0.11000.0 kW	0.1 kW	2 kW	Determines the data reporting deadband settings for this measurement.
Reactive power deadband	0.11000.0 kVar	0.1 kVar	2 kVar	Determines the data reporting deadband settings for this measurement.

Table. 6.3.1 - 363. General settings.

AQ-G257 Instruction manual

Version: 2.08

Name	Range	Step	Default	Description
Apparent power deadband	0.11000.0 kVA	0.1 kVA	2 kVA	Determines the data reporting deadband settings for this measurement.
Power factor deadband	0.010.99	0.01	0.05	Determines the data reporting deadband settings for this measurement.
Frequency deadband	0.011.00 Hz	0.01 Hz	0.1 Hz	Determines the data reporting deadband settings for this measurement.
Current deadband	0.0150.00 A	0.01 A	5 A	Determines the data reporting deadband settings for this measurement.
Residual current deadband	0.0150.00 A	0.01 A	0.2 A	Determines the data reporting deadband settings for this measurement.
Voltage deadband	0.015000.00 V	0.01 V	200 V	Determines the data reporting deadband settings for this measurement.
Residual voltage deadband	0.015000.00 V	0.01 V	200 V	Determines the data reporting deadband settings for this measurement.
Angle measurement deadband	0.15.0 deg	0.1 deg	1 deg	Determines the data reporting deadband settings for this measurement.
Integration time	010 000 ms	1 ms	0 ms	Determines the integration time of the protocol. If this parameter is set to "0 ms", no integration time is in use.
GOOSE Ethernet port	0: All 1: COM A 2: Double ethernet card	-	0: All	Determines which ports can use GOOSE communication. Visible if double ethernet option card is found in the device.

For more information on the IEC 61850 communication protocol support, please refer to the conformance statement documents (<u>www.arcteq.fi/downloads/</u> \rightarrow AQ-200 series \rightarrow Resources).

6.3.2 Modbus/TCP and Modbus/RTU

The device supports both Modbus/TCP and Modbus/RTU communication. Modbus/TCP uses the Ethernet connection to communicate with Modbus/TCP clients. Modbus/RTU is a serial protocol that can be selected for the available serial ports.

The following Modbus function types are supported:

- Read multiple holding registers (function code 3)
- Write single holding register (function code 6)
- Write multiple holding registers (function code 16)
- Read/Write multiple registers (function code 23)

The following data can be accessed using both Modbus/TCP and Modbus/RTU:

- Device measurements
- Device I/O
- Commands
- Events
- Time

Once the configuration file has been loaded, the user can access the Modbus map of the relay via the AQtivate software (*Tools* \rightarrow *Communication* \rightarrow *Modbus Map*). Please note that holding registers start from 1. Some masters might begin numbering holding register from 0 instead of 1; this will cause an offset of 1 between the relay and the master. Modbus map can be edited with Modbus Configurator (*Tools* \rightarrow *Communication* \rightarrow *Modbus Configurator*).

Table. 6.3.2 - 364. Modbus/TCP settings.

Parameter	Range	Description				
Enable Modbus/ TCP	0: Disabled 1: Enabled	Enables and disables the Modbus/TCP on the Ethernet port.				
IP port	065 535	Defines the IP port used by Modbus/TCP. The standard port (and the default setting) is 502.				
Ethernet port	0: All 1: COM A 2: Double Ethernet card	Defines which ethernet ports are available for Modbus connection. Visible if any double ethernet option card is installed in the device.				
	0: Get oldest available	0: Get oldest event possible (Default)				
Event read mode	1: Continue previous connection 2: New events only	1: Continue with the event idx from previous connection				
		2: Get only new events from connection time and forward.				

Table. 6.3.2 - 365. Modbus/RTU settings.

Parameter	Range	Description
Slave address	1247	Defines the Modbus/RTU slave address for the unit.

Reading events

Modbus protocol does not support time-stamped events by standard definition. This means that every vendor must come up with their own definition how to transfer events from the device to the client. In AQ-200 series devices events can be read from HR17...HR22 holding registers. HR17 contains the event-code, HR18...20 contains the time-stamp in UTC, HR21 contains a sequential index and HR22 is reserved for future expansion. See the Modbus Map for more information. The event-codes and their meaning can be found from Event list (*Tools* \rightarrow *Events ang Logs* \rightarrow *Event list* in setting tool). The event-code in HR17 is 0 if no new events can be found in the device event-buffer. Every time HR17 is read from client the event in event-buffer is consumed and on following read operation the next un-read event information can be found from event registers. HR11...HR16 registers contains a back-up of last read event. This is because some users want to double-check that no events were lost

6.3.3 GOOSE

Arcteq relays support both GOOSE publisher and GOOSE subscriber. GOOSE subscriber is enabled with the "GOOSE subscriber enable" parameter at *Communication* \rightarrow *Protocols* \rightarrow *IEC 61850/GOOSE.* The GOOSE inputs are configured using either the local HMI or the AQtivate software.

There are up to 64 GOOSE inputs available for use. Each of the GOOSE inputs also has a corresponding input quality signal which can also be used in internal logic. The quality is good, when the input quality is low (that is, when the quality is marked as "0"). The value of the input quality can increase as a result of a GOOSE time-out or a configuration error, for example. The status and quality of the various logical input signals can be viewed at the *GOOSE IN status* and *GOOSE IN quality* tabs at *Control* \rightarrow *Device I/O* \rightarrow *Logical signals*.

General GOOSE setting

The table below presents general settings for GOOSE publisher.

Table. 6.3.3 - 366. General GOOSE publisher settings.

Name	Range	Description
GOOSE control block 1 simulation bit	0: Disabled (Default)	The publisher will publish frames with simulation bit active if enabled. For
GOOSE control block 2 simulation bit	1: Enabled	GOOSE simulation testing purposes.

The table below presents general settings for GOOSE subscriber

Table. 6.3.3 - 367. General GOOSE subscriber settings.

Name	Range	Description	
GOOSE subscriber enable	0: Disabled (Default) 1: Enabled	Enables or disables GOOSE subscribing for the device.	
Not used GOOSE input Quality	1: Bad quality (1) 2: Good quality (0)	Defines what state should GOOSE input quality signal to be in the logic if the input has been set as "disabled".	
Subscriber checks GoCBRef	0: No (Default)	When subscriber sees GOOSE frame it checks APPID and Conf. Rev but can also check if GoCBRef or SqNum match.	
Subscriber checks SqNum	1: Yes		
Subscriber process simulation messages	0: No (Default) 1: Yes	Subscriber can be set to process frames which are published with simulation bit high if enabled	

GOOSE input settings

The table below presents the different settings available for all 64 GOOSE inputs.

Tabla	633	368	COOSE	input cottings
Table.	0.3.3 -	300.	GOOSE	input settings.

Name	Range	Description
In use	0: No (Default) 1: Yes	Enables and disables the GOOSE input in question.
Application ID ("AppID")	0×00×3FFF	Defines the application ID that will be matched with the publisher's GOOSE control block.
Configuration revision ("ConfRev")	12 ³² -1	Defines the configuration revision that will be matched with the publisher's GOOSE control block.
Data index ("Dataldx")	099	Defines the data index of the value in the matched published frame. It is the status of the GOOSE input.
Nextldx is quality	0: No (Default) 1: Yes	Selects whether or not the next received input is the quality bit of the GOOSE input.
Data type	0: Boolean (Default) 1: Integer 2: Unsigned 3: Floating point	Selects the data type of the GOOSE input.

Name	Range	Description
Control block reference	-	GOOSE subscriber can be set to check the GCB reference of the published GOOSE frame. This setting is automatically filled when Ed2 GOOSE configuration is done by importing cid file of the publisher.

GOOSE input descriptions

GOOSE inputs can be given a description. The user defined description are displayed in most of the menus (logic editor, matrix, block settings etc.).

Table. 6.3.3 - 369. GOOSE input user description.

Name	Range	Default	Description
User editable description GI x	131 characters		Description of the GOOSE input. This description is used in several menu types for easier identification.

GOOSE events

GOOSE signals generate events status changes. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp and with process data values. The time stamp resolution is 1 ms.

Table. 6.3.3 - 370. GOOSE event

Event block name	Event name				
GOOSE1GOOSE2	GOOSE IN 164 ON/OFF				
GOOSE3GOOSE4	GOOSE IN 164 quality Bad/Good				
GOOSE5GOOSE6	GOOSE Subscription status 164 Active/Not active				
GOOSE7GOOSE8	GOOSE Processing simulated messages 164 True/False				
GOOSE9GOOSE10	GOOSE Subscription needs commissioning 164 True/False				

Setting the publisher

The configuration of the GOOSE publisher is done using the IEC 61850 tool in AQtivate (*Tools* \rightarrow *Communication* \rightarrow *IEC 61850*). Refer to *AQtivate-200 Instruction manual* for more information on how to set up GOOSE publisher.

6.3.4 IEC 103

IEC 103 is the shortened form of the international standard IEC 60870-5-103. The AQ-200 series units are able to run as a secondary (slave) station. The IEC 103 protocol can be selected for the serial ports that are available in the device. A primary (master) station can then communicate with the AQ-200 device and receive information by polling from the slave device. The transfer of disturbance recordings is not supported.

NOTE: Once the configuration file has been loaded, the IEC 103 map of the relay can be found in the AQtivate software (*Tools* \rightarrow *IEC* 103 map).

The following table presents the setting parameters for the IEC 103 protocol.

Name	Range	Step	Default	Description
Slave address	1254	1	1	Defines the IEC 103 slave address for the unit.

Name	Range	Step	Default	Description
Measurement interval	060 000 ms	1 ms	2000 ms	Defines the interval for the measurements update.

6.3.5 IEC 101/104

The standards IEC 60870-5-101 and IEC 60870-5-104 are closely related. Both are derived from the IEC 60870-5 standard. On the physical layer the IEC 101 protocol uses serial communication whereas the IEC 104 protocol uses Ethernet communication. The IEC 101/104 implementation works as a slave in the unbalanced mode.

For detailed information please refer to the IEC 101/104 interoperability document (<u>www.arcteq.fi/</u> <u>downloads/</u> \rightarrow AQ-200 series \rightarrow Resources \rightarrow "AQ-200 IEC101 & IEC104 interoperability").

IEC 101 settings

Table. 6.3.5 - 371. IEC 101 settings.

Name	Range	Step	Default	Description
Common address of ASDU	065 534	1	1	Defines the common address of the application service data unit (ASDU) for the IEC 101 communication protocol.
Common address of ASDU size	12	1	2	Defines the size of the common address of ASDU.
Link layer address	065 534	1	1	Defines the address for the link layer.
Link layer address size	12	1	2	Defines the address size of the link layer.
Information object address size	23	1	3	Defines the address size of the information object.
Cause of transmission size	12	1	2	Defines the cause of transmission size.

IEC 104 settings

Table. 6.3.5 - 372. IEC 104 settings.

Name	Range	Step	Default	Description
IEC 104 enable	0: Disabled 1: Enabled	-	0: Disabled	Enables and disables the IEC 104 communication protocol.
IP port	065 535	1	2404	Defines the IP port used by the protocol.
Ethernet port	0: All 1: COM A 2: Double Ethernet card	-	0: All	Defines which ethernet ports are available for Modbus connection. Visible if any double ethernet option card is installed in the device.
Common address of ASDU	065 534	1	1	Defines the common address of the application service data unit (ASDU) for the IEC 104 communication protocol.

Measurement scaling coefficients

The measurement scaling coefficients are available for the following measurements, in addition to the general measurement scaling coefficient:

Table. 6.3.5 - 373. Measurements with scaling coefficient settings.

Name	Range
Active energy	
Reactive energy	
Active power	0: No scaling
Reactive power	1: 1/10 2: 1/100
Apparent power	3: 1/1000 4: 1/10 000
Power factor	5: 1/100 000 6: 1/1 000 000
Frequency	7: 10
Current	8: 100 9: 1000
Residual current	10: 10 000 11: 100 000
Voltage	12: 1 000 000
Residual voltage	
Angle	

Deadband settings.

Table. 6.3.5 - 374. Analog change deadband settings.

Name	Range	Step	Default	Description
General deadband	0.110.0%	0.1%	2%	Determines the general data reporting deadband settings.
Active energy deadband	0.11000.0kWh	0.1kWh	2kWh	
Reactive energy deadband	0.11000.0kVar	0.1kVar	2kVar	
Active power deadband	0.11000.0kW	0.1kW	2kW	
Reactive power deadband	0.11000.0kVar	0.1kVar	2kVar	
Apparent power deadband	0.11000.0kVA	0.1kVA	2kVA	
Power factor deadband	0.010.99	0.01	0.05	Determines the data reporting deadband settings for this
Frequency deadband	0.011.00Hz	0.01Hz	0.1Hz	measurement.
Current deadband	0.0150.00A	0.01A	5A	
Residual current deadband	0.0150.00A	0.01A	0.2A	
Voltage deadband	0.015000.00V	0.01V	200V	
Residual voltage deadband	0.015000.00V	0.01V	200V	
Angle measurement deadband	0.15.0deg	0.1deg	1deg	
Integration time	010 000ms	1ms	-	Determines the integration time of the protocol. If this parameter is set to "0 ms", no integration time is in use.

6.3.6 SPA

The device can act as a SPA slave. SPA can be selected as the communication protocol for the RS-485 port (Serial COM1). When the device has a serial option card, the SPA protocol can also be selected as the communication protocol for the serial fiber (Serial COM2) ports or RS-232 (Serial COM3) port. Please refer to the chapter "Construction and installation" in the device manual to see the connections for these modules.

The data transfer rate of SPA is 9600 bps, but it can also be set to 19 200 bps or 38 400 bps. As a slave the device sends data on demand or by sequenced polling. The available data can be measurements, circuit breaker states, function starts, function trips, etc. The full SPA signal map can be found in AQtivate (*Tools* \rightarrow *SPA map*).

The SPA event addresses can be found at *Tools* \rightarrow *Events and logs* \rightarrow *Event list.*

Table. 6.3.6 - 375. SPA setting parameters.

Name	Range	Description
SPA address	1899	SPA slave address.
UTC time sync	0: Disabled 1: Enabled	Determines if UTC time is used when synchronizing time. When disabled it is assumed time synchronization uses local time. If enabled it is assumed that UTC time is used. When UTC time is used the timezone must be set at <i>Commands</i> \rightarrow <i>Set time zone</i> .

NOTE!

To access SPA map and event list, an .aqs configuration file should be downloaded from the relay.

6.3.7 DNP3

DNP3 is a protocol standard which is controlled by the DNP Users Group (www.dnp.org). The implementation of a DNP3 slave is compliant with the DNP3 subset (level) 2, but it also contains some functionalities of the higher levels. For detailed information please refer to the DNP3 Device Profile document (www.arcteg.fi/downloads/ \rightarrow AQ-200 series \rightarrow Resources).

Settings

The following table describes the DNP3 setting parameters.

Table. 6.3.7 - 376. Settings.

Name	Range	Step	Default	Description
Enable DNP3 TCP	0: Disabled 1: Enabled	-	0: Disabled	Enables and disables the DNP3 TCP communication protocol when the Ethernet port is used for DNP3. If a serial port is used, the DNP3 protocol can be enabled from <i>Communication</i> \rightarrow <i>DNP3</i> .
IP port	065 535	1	20 000	Defines the IP port used by the protocol.
Ethernet port	0: All 1: COM A 2: Double Ethernet card	-	0: All	Defines which ethernet ports are available for Modbus connection. Visible if any double ethernet option card is installed in the device.

Name	Range	Step	Default	Description	
Slave address	165 519	1	1	Defines the DNP3 slave address of the unit.	
Master address	165 534	1	2	Defines the address for the allowed master.	
Link layer time-out	060 000ms	1ms	0ms	Defines the length of the time-out for the link layer.	
Link layer retries	120	1	1	Defines the number of retries for the link layer.	
Diagnostic - Error counter	02 ³² -1	1	-	Counts the total number of errors in received and sent messages.	
Diagnostic - Transmitted messages	02 ³² -1	1	-	Counts the total number of transmitted messages.	
Diagnostic - Received messages	02 ³² -1	1	-	Counts the total number of received messages.	

Default variations

Table. 6.3.7 - 377. Default variations.

Name	Range	Default	Description	
Group 1 variation (BI)	0: Var 1 1: Var 2	0: Var 1	Selects the variation of the binary signal.	
Group 2 variation (BI change)	0: Var 1 1: Var 2	1: Var 2	Selects the variation of the binary signal change.	
Group 3 variation (DBI)	0: Var 1 1: Var 2	0: Var 1	Selects the variation of the double point signal.	
Group 4 variation (DBI change)	0: Var 1 1: Var 2	1: Var 2	Selects the variation of the double point signal.	
Group 20 variation (CNTR)	0: Var 1 1: Var 2 2: Var 5 3: Var 6	0: Var 1	Selects the variation of the control signal.	
Group 22 variation (CNTR change)	0: Var 1 1: Var 2 2: Var 5 3: Var 6	2: Var 5	Selects the variation of the control signal change.	
Group 30 variation (AI)	0: Var 1 1: Var 2 2: Var 3 3: Var 4 4: Var 5	4: Var 5	Selects the variation of the analog signal.	
Group 32 variation (Al change)	0: Var 1 1: Var 2 2: Var 3 3: Var 4 4: Var 5 5: Var 7	4: Var 5	Selects the variation of the analog signal change.	

Setting the analog change deadbands

Name	Range	Step	Default	Description
General deadband	0.110.0%	0.1%	2%	Determines the general data reporting deadband settings.
Active energy deadband	0.11000.0kWh	0.1kWh	2kWh	
Reactive energy deadband	0.11000.0kVar	0.1kVar	2kVar	
Active power deadband	0.11000.0kW	0.1kW	2kW	
Reactive power deadband	0.11000.0kVar	0.1kVar	2kVar	
Apparent power deadband	0.11000.0kVA	0.1kVA	2kVA	
Power factor deadband	0.010.99	0.01	0.05	Determines the data reporting deadband settings for this
Frequency deadband	0.011.00Hz	0.01Hz	0.1Hz	measurement.
Current deadband	0.0150.00A	0.01A	5A	
Residual current deadband	0.0150.00A	0.01A	0.2A	
Voltage deadband	0.015000.00V	0.01V	200V	
Residual voltage deadband	0.015000.00V	0.01V	200V	
Angle measurement deadband	0.15.0deg	0.1deg	1deg	
Integration time	010 000ms	1ms	0ms	Determines the integration time of the protocol. If this parameter is set to "0 ms", no integration time is in use.

Table. 6.3.7 - 378. Analog change deadband settings.

6.3.8 Modbus I/O

The Modbus I/O protocol can be selected to communicate on the available serial ports. The Modbus I/ O is actually a Modbus/RTU master implementation that is dedicated to communicating with serial Modbus/RTU slaves such as RTD input modules. Up to three (3) Modbus/RTU slaves can be connected to the same bus polled by the Modbus I/O implementation. These are named I/O Module A, I/O Module B and I/O Module C. Each of the modules can be configured using parameters in the following two tables.

Table. 6.3.8 - 379. Module settings.

Name	Range	Description		
I/O module X address	0247	Defines the Modbus unit address for the selected I/O Module (A, B, or C). If this settin is set to "0", the selected module is not in use.		
Module x type	0: ADAM-4018+ 1: ADAM-4015	Selects the module type.		
Channels in use	Channel 0Channel 7 (or None)	Selects the number of channels to be used by the module.		

Table. 6.3.8 - 380. Channel settings.

Name	Range	Step	Default	Description
Thermocouple type	0: +/- 20mA 1: 420mA 2: Type J 3: Type K 4: Type T 5: Type E 6: Type R 7: Type S	-	1: 420mA	Selects the thermocouple or the mA input connected to the I/O module. Types J, K, T and E are nickel-alloy thermocouples, while Types R and S are platinum/rhodium-alloy thermocouples.
Input value	-101.02 000.0	0.1	-	Displays the input value of the selected channel.
Input status	0: Invalid 1: OK	-	-	Displays the input status of the selected channel.

6.4 Analog fault registers

At Communication \rightarrow General I/O \rightarrow Analog fault registers the user can set up to twelve (12) channels to record the measured value when a protection function starts or trips. These values can be read in two ways: locally from this same menu, or through a communication protocol if one is in use.

The following table presents the setting parameters available for the 12 channels.

Table. 6.4 - 381. Fault register settings.

Name	Range	Step	Default	Description	
Select record source	Not in use I>, I>>, I>>>, I>>>> (IL1, IL2, IL3) Id>, Id>>, Id>>>, Id>>>> (IL1, IL2, IL2, IL3) I0>, I0>>, I0>>>, I0>>>> (I0) I0d>, I0d>>, I0d>>>, I0d>>>> (I0)	-	Not in use	Selects the protection function and its stage to be used as the source for the fault register recording. The user can choose between non-directional overcurrent, directional overcurrent, non-directional earth fault, directional earth fault, and fault locator functions.	
	FLX (Fault locator)				
Select record trigger	TRIP signal START signal START and TRIP signals	-	0: TRIP signal	Selects what triggers the fault register recording: the selected function's TRIP signal, its START signal, or either one.	
Recorded fault value	- 1000 000.001 000 000.00	0.01	-	Displays the recorded measurement value at the time of the selected fault register trigger.	

6.5 Real-time measurements to communication

With the *Real-time signals to communication* menu the user can report measurements to SCADA in a faster interval. The real measurement update delay depends on the used communication protocol and equipment used. Up to eight (8) magnitudes can be selected. The recorded value can be either a perunit value or a primary value (set by the user).

Measurable values

Function block uses analog current and voltage measurement values. The relay uses these values as the basis when it calculates the primary and secondary values of currents, voltages, powers, impedances and other values.

Table. 6.5 - 382. Available measured values.

Signals	Description			
Currents				
IL1 (ff), IL2 (ff), IL3 (ff), I01 (ff), I02 (ff)	Fundamental frequency (RMS) current measurement values of phase currents and residual currents.			
IL1 (TRMS), IL2 (TRMS), IL3 (TRMS), I01 (TRMS), I02 (TRMS)	TRMS current measurement values of phase currents and residual currents.			
IL1, IL2, IL3, I01, I02 & 2 nd h., 3 rd h., 4 th h., 5 th h., 7 th h., 9 th h., 11 th h., 13 th h., 15 th h., 17 th h., 19 th h.	Magnitudes of the phase current components: 2 nd harmonic, 3 rd harmonic, 4 th harmonic, 5 th harmonic 7 th , harmonic 9 th , harmonic 11 th , harmonic 13 th , harmonic 15 th , harmonic 19 th harmonic current.			
I1, I2, I0Z	Positive sequence current, negative sequence current and zero sequence current.			
I0CalcMag	Residual current calculated from phase currents.			
IL1Ang, IL2Ang, IL3Ang, I01Ang, I02Ang, I0CalcAng I1Ang, I2Ang	Angles of each measured current.			
Voltages				
UL1Mag, UL2Mag, UL3Mag, UL12Mag, UL23Mag, UL31Mag, U0Mag, U0CalcMag	Magnitudes of phase voltages, phase-to-phase voltages and residual voltages.			
U1 Pos.seq V mag, U2 Neg.seq V mag	Positive and negative sequence voltages.			
UL1Ang, UL2Ang, UL3Ang, UL12Ang, UL23Ang, UL31Ang, U0Ang, U0CalcAng	Angles of phase voltages, phase-to-phase voltages and residual voltages.			
U1 Pos.seq V Ang, U2 Neg.seq V Ang	Positive and negative sequence angles.			
Powers				
S3PH P3PH Q3PH	Three-phase apparent, active and reactive power.			
SL1, SL2, SL3, PL1, PL2, PL3, QL1, QL2, QL3	Phase apparent, active and reactive powers.			
tanfi3PH tanfiL1 tanfiL2 tanfiL3	Tan (ϕ) of three-phase powers and phase powers.			
cosfi3PH cosfiL1 cosfiL2 cosfiL3	Cos (ϕ) of three-phase powers and phase powers.			
Impedances and admittances				
RL12, RL23, RL31 XL12, XL23, XL31 RL1, RL2, RL3 XL1, XL2, XL3 Z12, Z23, Z31 ZL1, ZL2, ZL3	Phase-to-phase and phase-to-neutral resistances, reactances and impedances.			

Signals	Description	
Z12Ang, Z23Ang, Z31Ang, ZL1Ang, ZL2Ang, ZL3Ang	Phase-to-phase and phase-to-neutral impedance angles.	
Rseq, Xseq, Zseq RseqAng, XseqAng, ZseqAng	Positive sequence resistance, reactance and impedance values and angles.	
GL1, GL2, GL3, G0 BL1, BL2, BL3, B0 YL1, YL2, YL3, Y0	Conductances, susceptances and admittances.	
YL1angle, YL2angle, YL3angle, Y0angle	Admittance angles.	
Others		
System f.	Used tracking frequency at the moment.	
Ref f1	Reference frequency 1.	
Ref f2	Reference frequency 2.	
M thermal T	Motor thermal temperature.	
F thermal T	Feeder thermal temperature.	
T thermal T	Transformer thermal temperature.	
RTD meas 116	RTD measurement channels 116.	
Ext RTD meas 18	External RTD measurement channels 18 (ADAM module).	

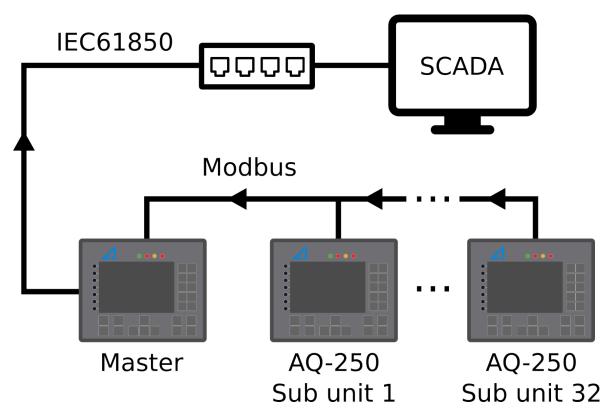

Settings

Table. 6.5 - 383. Settings.

Name	Range	Step	Default	Description
Measurement value recorder mode	0: Disabled 1: Activated	-	0: Disabled	Activates and disables the real-time signals to communication.
Scale current values to primary	0: No 1: Yes	-	0: No	Selects whether or not values are scaled to primary.
Slot X magnitude selection	0: Currents 1: Voltages 2: Powers 3: Impedance (ZRX) and admittance (YGB) 4: Others	-	0: Currents	Selects the measured magnitude catecory of the chosen slot.
Slot X magnitude	Described in table above ("Available measured values")	-	-	Selects the magnituge in the previously selected category.
Magnitude X	-10 000 000.00010 000 000.000	0.001	-	Displays the measured value of the selected magnitude of the selected slot. The unit depends on the selected magnitude (either amperes, volts, or per-unit values).

6.6 Modbus Gateway

Figure. 6.6 - 210. Example setup of Modbus Gateway application.

Any AQ-250 device can be setup as a Modbus Gateway (i.e. master). Modbus Gateway device can import messages (measurements, status signals etc.) from external Arcteq and third-party devices. RS-485 serial communication port. Up to 32 sub units can be connected to an AQ-200 master unit. These messages can then be used for controlling logic in the master device, display the status in user created mimic. Binary signals can be reported forward to SCADA with IEC61850, IEC101, IEC103, IEC104, Modbus, DNP3 or SPA.

Modbus Gateway and its basic settings can be found from *Communication* \rightarrow *Modbus Gateway*. General settings-menu displays the health of connection to each sub unit.

Name	Range	Description
Modbus Gateway mode	0: Disabled (Default) 1: Enabled	Enables or disables Modbus Gateway.
Modbus Gateway reconfigure	0: - 1: Reconfigure	Setting this parameter to "Reconfigure" takes new settings into use. Parameter returns back to "-" automatically.
Quality of Modbus Sub unit 132	0: OK 1: Old data 2: Data questionable 3: Modbus error 4: Send fail 5: Receive fail	Quality of each connected sub unit.

Imported signals

Modbus Gateway supports importing of measurements, bits, double bits, counters and integer signals. Up to 128 signals can be imported of each signal type with the exception of double bits (32).

Table. 6.6 - 385. Imported signals

Name	Range
Imported measurement 1-128	-3.4E+383.4E+38
Imported bit signal 1-128	01
Imported double bit data 1-32	03
Imported counter data 1-128	04294967295
Imported integer signal 1-128	-21474836482147483647

To assign the signals use Modbus Gateway editor (*Tools* \rightarrow *Communication* \rightarrow *Modbus Gateway*). Detailed description of this tool can be found in AQtivate 200 Instruction manual (arcteq.fi./downloads/).

All imported signals can be given a description. The description will be displayed in most of menus with the signal (logic editor, matrix, block settings etc.).

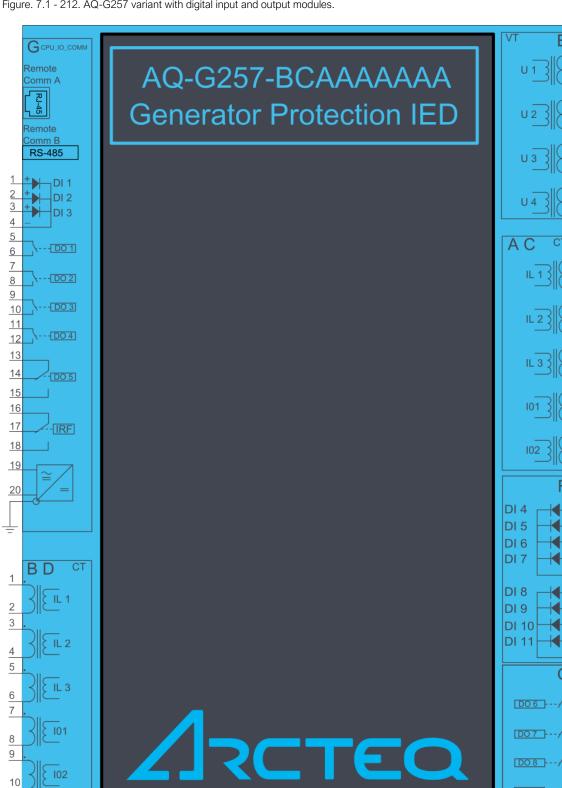
Name	Range	Default	Description
Describe measurement x		Acq. Meas x	
Describe bit signal x		Acq. Bit x	
Describe doube bit signal x	131 characters	Acq. Binary x	User settable description for the signal. This description is used in several menu types for easier identification.
Describe counter signal x		Acq. Counter x	
Describe integer signal x		Acq. Integer x	

Table. 6.6 - 386. Imported signal user description.

Events

The Modbus Gateway generates events the status changes in imported bits and double bits. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

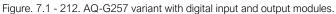
Table	66-387	. Event messages
Table.	0.0 - 507	. Lvent messages


Event block name	Event names					
MGWB1	Bit 1Bit 32 (ON, OFF)					
MGWB2	Bit 33Bit 64 (ON, OFF)					
MGWB3	Bit 65Bit 96 (ON, OFF)					
MGWB4	Bit 97Bit 128 (ON, OFF)					
MGWD1	Double Bit 1 Double bit 16 (ON/ON, OFF/OFF, ON/OFF, OFF/ON)					
MGWD2	Double Bit 17 Double bit 32 (ON/ON, OFF/OFF, ON/OFF, OFF/ON)					

7 Connections and application examples

7.1 Connections of AQ-G257

Figure. 7.1 - 211. AQ-G257 variant without add-on modules.


K

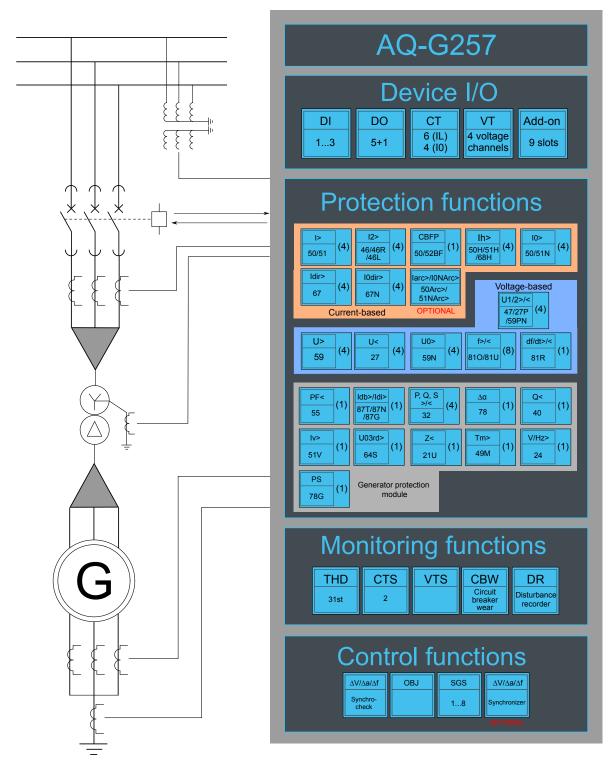
Μ

N

L

J

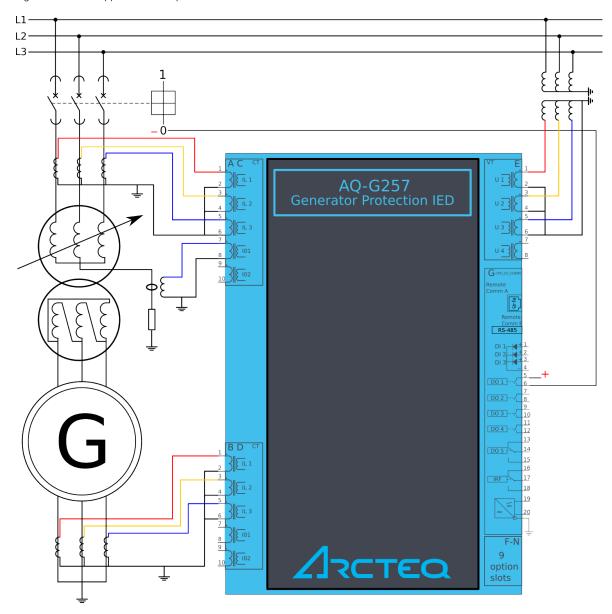
DO 9

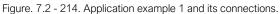

DO 10---/

Η

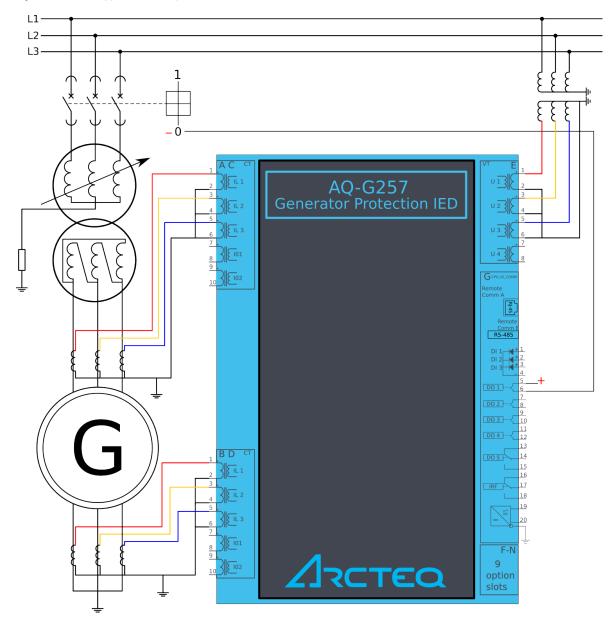
G

F


Figure. 7.1 - 213. AQ-G257 application example with function block diagram.



7.2 Application examples and their connections


This chapter presents two application examples for the generator protection IED.


The first application example has differential protection, with the generator and a transformer between the two current transformers. Since three line-to-neutral voltages are connected, this application uses the voltage measurement mode "3LN" (see the image below). Additionally, both of the current transformers have the three phase currents connected; the first CT also has the residual current (I01) connected.

The second application example is very similar to the first: it has differential protection, but with only the generator between the two current transformers. Since three line-to-neutral voltages are connected, this application uses the voltage measurement mode "3LN" (see the image below). Additionally, both of the current transformers have the three phase currents connected; however, neither of the CTs has the residual current connected.

7.3 Trip circuit supervision (95)

Trip circuit supervision is used to monitor the wiring from auxiliary power supply, through the IED's digital output, and all the way to the open coil of the breaker. It is recommended to supervise the health of the trip circuit when breaker is closed.

Trip circuit supervision with one digital input and one non-latched trip output

The figure below presents an application scheme for trip circuit supervision with one digital input and a non-latched trip output. With this connection the current keeps flowing to the open coil of the breaker via the breaker's closing auxiliary contacts (52b) even after the circuit breaker is opened. This requires a resistor which reduces the current: this way the coil is not energized and the relay output does not need to cut off the coil's inductive current.

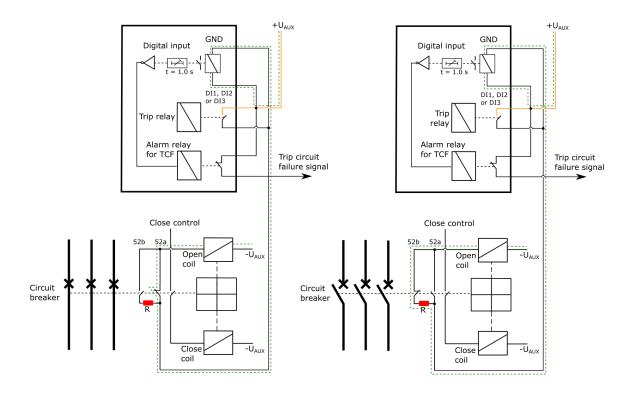


Figure. 7.3 - 216. Trip circuit supervision with one DI and one non-latched trip output.

Note that the digital input that monitors the circuit is normally closed, and the same applies to the alarm relay if one is used. For monitoring and especially trip circuit supervision purposes it is recommended to use a normally closed contact to confirm the wiring's condition. An active digital input generates a less than 2 mA current to the circuit, which is usually small enough not to make the breaker's open coil operate.

When the trip relay is controlled and the circuit breaker is opening, the digital input is shorted by the trip contact as long as the breaker opens. Normally, this takes about 100 ms if the relay is non-latched. A one second activation delay should, therefore, be added to the digital input. An activation delay that is slightly longer than the circuit breaker's operations time should be enough. When circuit breaker failure protection (CBFP) is used, adding its operation time to the digital input activation time is useful. The whole digital input activation time is, therefore, $t_{DI} = t_{CB} + t_{IEDrelease} + t_{CBFP}$.

The image below presents the necessary settings when using a digital input for trip circuit supervision. The input's polarity must be NC (normally closed) and a one second delay is needed to avoid nuisance alarm while the circuit breaker is controlled open.

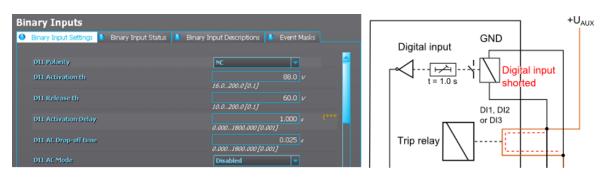
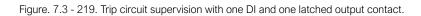
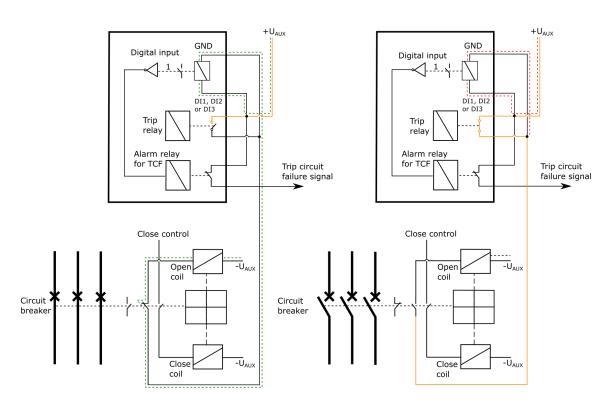


Figure. 7.3 - 217. Settings for a digital input used for trip circuit supervision.

Non-latched outputs are seen as hollow circles in the output matrix, whereas latched contacts are painted. See the image below of an output matrix where a non-latched trip contact is used to open the circuit breaker.

Figure. 7.3 - 218. Non-latched trip contact.


Inputs	Ο υτ 1	. џ. О ЈТ2	U OUT3	U OUT4	U OUTS
I> START (General)					
I> START(A)					
I> START(B)					
I> START(C)					
I> TRIP (General)	(
I> TRIP(A)					
I> TRIP(B)					
I> TRIP(C)					
I> BLOCKED					

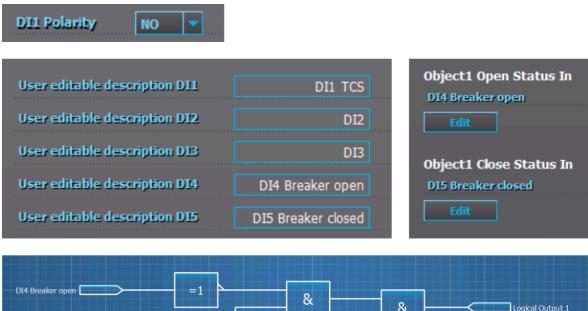

When the auto-reclosing function is used in feeder applications, the trip output contacts must be nonlatched. Trip circuit supervision is generally easier and more reliable to build with non-latched outputs.

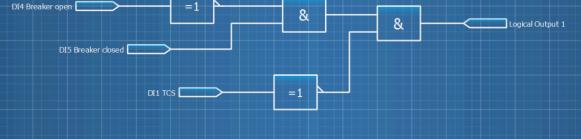
The open coil remains energized only as long as the circuit breaker is opened and the IED output releases. This takes approximately 100 ms depending on the size and type of the breaker. When the breaker opens, the auxiliary contacts open the inductive circuit; however, the trip contact does not open at the same time. The IED's output relay contact opens in under 50 ms or after a set release delay that takes place after the breaker is opened. This means that the open coil is energized for a while after the breaker has already opened. The coil could even be energized a moment longer if the circuit breaker failure protection has to be used and the incomer performs the trip.

Trip circuit supervision with one digital input and one connected, non-latched trip output

There is one main difference between non-latched and latched control in trip circuit supervision: when using the latched control, the trip circuit (in an open state) cannot be monitored as the digital input is shorted by the IED's trip output.

The trip circuit with a latched output contact can be monitored, but only when the circuit breaker's status is "Closed". Whenever the breaker is open, the supervision is blocked by an internal logic scheme. Its disadvantage is that the user does not know whether or not the trip circuit is intact when the breaker is closed again.


The following logic scheme (or similar) blocks the supervision alarm when the circuit breaker is open. The alarm is issued whenever the breaker is closed and whenever the inverted digital input signal ("TCS") activates. A normally closed digital input activates only when there is something wrong with the trip circuit and the auxiliary power goes off. Logical output can be used in the output matrix or in SCADA as the user wants.


The image below presents a block scheme when a non-latched trip output is not used.

AQ-G257 Instruction manual

Version: 2.08

8 Construction and installation

8.1 Construction

AQ-X257 is a member of the modular and scalable AQ-200 series, and it includes nine (9) configurable and modular add-on card slots. As a standard configuration the device includes the CPU module (which consists of the CPU, a number of inputs and outputs, and the power supply) as well as two separate current measurement modules and one separate voltage measurement module.

The images below present the modules of both the non-optioned model (AQ-X257-XXXXXX-AAAAAAAAA) and the fully optioned model (AQ-X257-XXXXXX-BBBCCCCCJ).

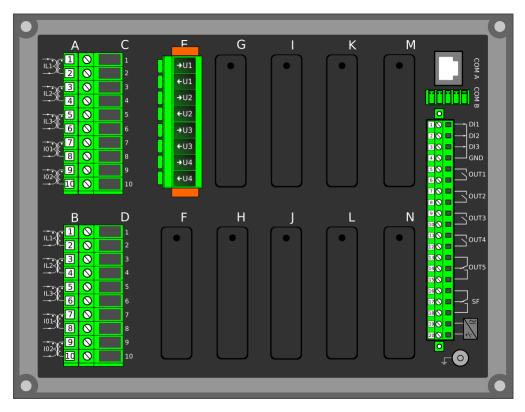


Figure. 8.1 - 221. Modular construction of AQ-X257-XXXXXXX-AAAAAAAAA

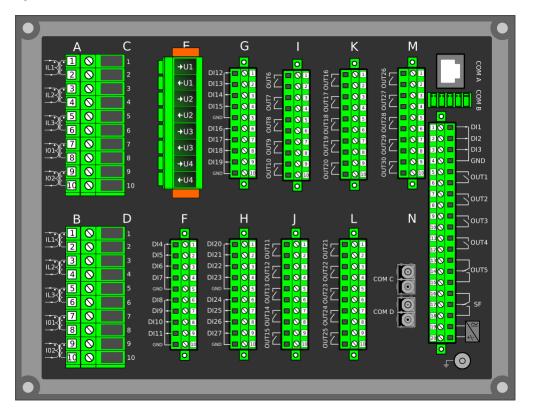


Figure. 8.1 - 222. Modular construction of AQ-X257-XXXXXX-BBBCCCCCJ

The modular structure of AQ-X257 allows for scalable solutions for different application requirements. In non-standard configurations Slots from F to N accept all available add-on modules, such as digital I/ O modules, integrated arc protection and other special modules. The only difference between the slots affecting device scalability is that Slots M and N both also support communication options.

Start-up scan searches for modules according to their type designation code. If the module content is not what the device expects, the IED issues a hardware configuration error message. In field upgrades, therefore, add-on modules must be ordered from Arcteq Relays Ltd. or its representative who can then provide the module with its corresponding unlocking code to allow the device to operate correctly once the hardware configuration has been upgraded.

When an I/O module is inserted into the device, the module location affects the naming of the I/O. The I/O scanning order in the start-up sequence is as follows: the CPU module I/O, Slot F, Slot G, Slot H and so on. This means that the digital input channels DI1, DI2 and DI3 as well as the digital output channels OUT1, OUT2, OUT3, OUT4 and OUT5 are always located in the CPU module. If additional I/O cards are installed, their location and card type affect the I/O naming.

The figure below presents the start-up hardware scan order of the device as well as the I/O naming principles.

2. Scan	4. Scan	6. Scan	Slot G 8. Scan	Slot I 10. Scan	Slot K 12. Scan	Slot M 14. Scan	CPU
		V		Ļ	ļ	ļ	1. Scan
3. Scan	5. Scan	Slot F 7. Scan	Slot H 9. Scan	Slot J 11. Scan	Slot L 13. Scan	Slot N 15. Scan	
							¥

1. Scan

The start-up system; detects and self-tests the CPU module, voltages, communication and the I/O; finds and assigns "DI1", "DI2", "DI3", "OUT1", "OUT2", "OUT3", "OUT4" and "OUT5".

2. Scan

Scans Slot A, which should always remain empty in AQ-X257 devices. If it is not empty, the device issues an alarm.

3. Scan

Scans Slot B, which should always remain empty in AQ-X257 devices. If it is not empty, the device issues an alarm.

4. Scan

Scans Slot C and finds the five channels of the CT module (fixed for AQ-X257). If the CTM is not found, the device issues an alarm.

5. Scan

Scans Slot D and finds the five channels of the CT module (fixed for AQ-X257). If the CTM is not found, the device issues an alarm.

6. Scan

Scans Slot E and finds the four channels of the VT module (fixed for AQ-257). If the VTM is not found, the device issues an alarm.

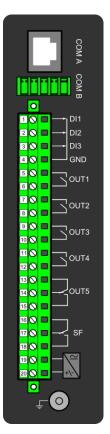
7. Scan

Scans Slot F, and moves to the next slot if Slot F is empty. If the scan finds an 8DI module (that is, a module with eight digital inputs), it reserves the designations "DI4", "DI5", "DI6", "DI7", "DI8", "DI9", "DI10" and "DI11" to this slot. If the scan finds a DO5 module (that is, a module with five digital outputs), it reserves the designations "OUT6", "OUT7", "OUT8", "OUT9" and "OUT10" to this slot. The I/O is then added if the type designation code (e.g. AQ-P215-PH0AAAA-BBC) matches with the existing modules in the device. If the code and the modules do not match, the device issues and alarm. An alarm is also issued if the device expects to find a module here but does not find one.

8. Scan

Scans Slot G, and moves to the next slot if Slot G is empty. If the scan finds an 8DI module, it reserves the designations "DI4", "DI5", "DI6", "DI7", "DI8", "DI9", "DI10" and "DI11" to this slot. If Slot F also has an 8DI module (and therefore has already reserved these designations), the device reserves the designations "DI12", "DI13", "DI14", "DI15", "DI16", "DI17", "DI18" and "DI19" to this slot. If the scan finds a 5DO module, it reserves the designations "OUT6", "OUT7", "OUT8", "OUT9" and "OUT10" to this slot. Again, if Slot F also has a 5DO and has therefore already reserved these designations, the device reserves the designations "OUT11", "OUT12", "OUT13", "OUT14" and "OUT15" to this slot. If the scan finds the arc protection module, it reserves the sensor channels ("S1", "S2", "S3", "S4"), the high-speed outputs ("HSO1", "HSO2"), and the digital input channel ("ArcBI") to this slot.

9. -15. Scan


A similar operation to Scan 8 (checks which designations have been reserved by modules in previous slots and numbers the new ones accordingly).

Thus far this chapter has only explained the installation of I/O add-on cards to the option module slots. This is because all other module types are treated in a same way. For example, when an additional communication port is installed into the upper port of the communication module, its designation is Communication port 3 or higher, as Communication ports 1 and 2 already exist in the CPU module (which is scanned, and thus designated, first). After a communication port is detected, it is added into the device's communication space and its corresponding settings are enabled.

With AQ-X257-XXXXXXX-BBBCCCCCJ (the first image pair, on the right) has a total of 27 digital input channels available: three (DI1...DI3) in the CPU module, and the rest in Slots F...H in groups of eight. It also has a total of 30 digital output channels available: five (DO1...DO5) in the CPU module, and the rest in Slots I...M in groups of five. Slot N has a double (LC) fiber Ethernet communication option card installed. These same principles apply to all non-standard configurations in the AQ-X257 IED family.

8.2 CPU module

Figure. 8.2 - 224. CPU module.

Connector	Description							
COM A	Communication port A, or the RJ-45 port. Used for the setting tool connection and for IEC 61850, Modbus/ TCP, IEC 104, DNP3 and station bus communications.							
СОМ В	Communication port B, or the RS-485 port. Used for the SCADA communications for the following protocols: Modbus/RTU, Modbus I/O, SPA, DNP3, IEC 101 and IEC 103. The pins have the following designations: Pin 1 = DATA +, Pin 2 = DATA –, Pin 3 = GND, Pins 4 & 5 = Terminator resistor enabled by shorting.							
X1-1	Digital input 1, nominal threshold voltage 24 V, 110 V or 220 V.							
X1-2	Digital input 2, nominal threshold voltage 24 V, 110 V or 220 V.							
X1-3	Digital input 3, nominal threshold voltage 24 V, 110 V or 220 V.							
X1-4	Common GND for digital inputs 1, 2 and 3.							
X1-5:6	Output relay 1, with a normally open (NO) contact.							
X1-7:8	Output relay 2, with a normally open (NO) contact.							
X1-9:10	Output relay 3, with a normally open (NO) contact.							
X1-11:12	Output relay 4, with a normally open (NO) contact.							
X1-13:14:15	Output relay 5, with a changeover contact.							
X1-16:17:18	System fault's output relay, with a changeover contact. Pins 16 and 17 are closed when the unit has a system fault or is powered OFF. Pins 16 and 18 are closed when the unit is powered ON and there is no system fault.							
X1-19:20	Power supply IN. Either 85265 VAC/DC (model A; order code "H") or 1875 DC (model B; order code "L"). Positive side (+) to Pin 20.							
GND	The relay's earthing connector.							

By default, the CPU module (combining the CPU, the I/O and the power supply) includes two standard communication ports and the relay's basic digital I/O.

The current consumption of the digital inputs is 2 mA when activated, while the range of the operating voltage is 24 V/110 V/220 V depending on the ordered hardware. All digital inputs are scanneed in 5 ms program cycles. Their pick-up and release thresholds depend on the selection of the order code. Their delays and NO/NC selection, however, can be set with software. The digital output controls are also set by the user with software. By default, the digital outputs are controlled in 5 ms program cycles. All output contacts are mechanical. The rated voltage of the NO/NC outputs is 250 VAC/DC.

The auxiliary voltage is defined in the ordering code: the available power supply models available are A (85...265 VAC/DC) and B (18...75 DC). The power suppy's minimum allowed bridging time for all voltage levels is above 150 ms. The power supply's maximum power consumption is 15 W. The power supply allows a DC ripple of below 15 % and the start-up time of the power supply is below 5 ms. For further details, please refer to the "Auxiliary voltage" chapter in the "Technical data" section of this document.

Digital input settings

The settings described in the table below can be found at *Control* \rightarrow *Device* $I/O \rightarrow$ *Digital input settings* in the relay settings.

Name	Name Range		Default	Description
DIx Polarity	0: NO (Normally open) 1: NC (Normally closed)	-	0: NO	Selects whether the status of the digital input is 1 or 0 when the input is energized.
Dlx Activation delay 0.0001800.000 s		0.001 s	0.000 s	Defines the delay for the status change from 0 to 1.

Table. 8.2 - 388. Digital input settings.

Nam	е	Range	Step	Default	Description
Dlx Drop- time	-off	0.0001800.000 s	0.001 s	0.000 s	Defines the delay for the status change from 1 to 0.
Dlx AC m	node	0: Disabled 1: Enabled	-	0: Disabled	Selects whether or not a 30-ms deactivation delay is added to account for alternating current.

Digital input and output descriptions

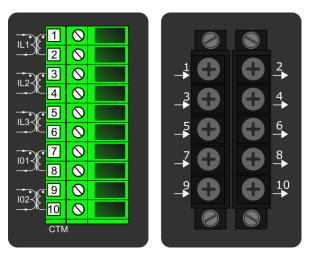
CPU card digital inputs and outputs can be given a description. The user defined description are displayed in most of the menus (logic editor, matrix, block settings etc.).

Table. 8.2 - 389. Digital input and output user description.

Name	Range	Default	Description
User editable description DIx	131	DIx	Description of the digital input. This description is used in several menu types for easier identification.
User editable description OUTx	characters	OUTx	Description of the digital output. This description is used in several menu types for easier identification.

Scanning cycle

All digital inputs are scanned in a 5 ms cycle, meaning that the state of an input is updated every 0...5 milliseconds. When an input is used internally in the device (either in group change or logic), it takes additional 0...5 milliseconds to operate. Theoretically, therefore, it takes 0...10 milliseconds to change the group when a digital input is used for group control or a similar function. In practice, however, the delay is between 2...8 milliseconds about 95 % of the time. When a digital input is connected directly to a digital output (T1...Tx), it takes an additional 5 ms round. Therefore, when a digital input controls a digital output internally, it takes 0...15 milliseconds in theory and 2...13 milliseconds in practice.



NOTE!

The mechanical delay of the relay is not included in these approximations!

8.3 Current measurement module

Figure. 8.3 - 225. Module connections with standard and ring lug terminals.

Connector	Description
CTM 1-2	Phase current measurement for phase L1 (A).

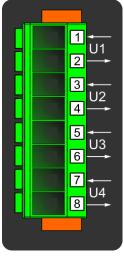
Connector	Description			
CTM 3-4	Phase current measurement for phase L2 (B).			
CTM 5-6	Phase current measurement for phase L3 (C).			
CTM 7-8	Coarse residual current measurement 101.			
CTM 9-10	Fine residual current measurement 102.			

A basic current measurement module with five channels includes three-phase current measurement inputs as well as coarse and fine residual current inputs. The CT module is available with either standard or ring lug connectors.

The current measurement module is connected to the secondary side of conventional current transformers (CTs). The nominal current for the phase current inputs is 5 A. The input nominal current can be scaled for secondary currents of 1...10 A. The secondary currents are calibrated to nominal currents of 1 A and 5 A, which provide ± 0.5 % inaccuracy when the range is $0.005...4 \times I_n$.

The measurement ranges are as follows:

- Phase currents 25 mA...250 A (RMS)
- Coarse residual current 5 mA...150 A (RMS)
- Fine residual current 1 mA...75 A (RMS)


The characteristics of phase current inputs are as follows:

- The angle measurement inaccuracy is less than ± 0.2 degrees with nominal current.
- The frequency measurement range of the phase current inputs is 6...1800 Hz with standard hardware.
- The quantization of the measurement signal is applied with 18-bit AD converters, and the sample rate of the signal is 64 samples/cycle when the system frequency ranges from 6 Hz to 75 Hz.

For further details please refer to the "Current measurement" chapter in the "Technical data" section of this document.

8.4 Voltage measurement module

Figure. 8.4 - 226. Voltage measurement module.

Connector	Description
VTM 1-2	Configurable voltage measurement input U1.

Connector	Description			
VTM 3-4	Configurable voltage measurement input U2.			
VTM 5-6	Configurable voltage measurement input U3.			
VTM 7-8	Configurable voltage measurement input U4.			

A basic voltage measurement module with four channels includes four voltage measurement inputs that can be configured freely.

The voltage measurement module is connected to the secondary side of conventional voltage transformers (VTs) or directly to low-voltage systems secured by fuses. The nominal voltage can be set between 100...400 V. Voltages are calibrated in a range of 0...240 V, which provides \pm 0.2 % inaccuracy in the same range.

The voltage input characteristics are as follows:

- The measurement range is 0.5...480.0 V per channel.
- The angle measurement inaccuracy is less than ± 0.5 degrees within the nominal range.
- The frequency measurement range of the voltage inputs is 6...1800 Hz with standard hardware.
- The quantization of the measurement signal is applied with 18-bit AD converters, and the sample rate of the signal is 64 samples/cycle when the system frequency ranges from 6 Hz to 75 Hz.

For further details please refer to the "Voltage measurement" chapter in the "Technical data" section of this document.

8.5 Digital input module (optional)

Figure. 8.5 - 227. Digital input module (DI8) with eight add-on digital inputs.

		0	
DI1	4	\oslash	1
DI2	4	\oslash	2
DI3	4	\odot	3
DI4	-	\odot	4
GND		\oslash	5
DI5	-	\oslash	6
DI6	*	\odot	7
DI7	*	\odot	8
DI8	-	\oslash	9
GND		\oslash	10
		0	Γ_

Connector	Description (x = the number of digital inputs in other modules that preceed this one in the configuration)
X 1	Dlx + 1
Х2	Dlx + 2
Х З	Dlx + 3

Connector	Description (x = the number of digital inputs in other modules that preceed this one in the configuration)
X 4	Dlx + 4
X 5	Common earthing for the first four digital inputs.
X 6	Dlx + 5
X 7	Dlx + 6
X 8	Dlx + 7
Х 9	Dlx + 8
X 10	Common earthing for the other four digital inputs.

The DI8 module is an add-on module with eight (8) galvanically isolated digital inputs. This module can be ordered directly to be installed into the device in the factory, or it can be upgraded in the field after the device's original installation when required. The properties of the inputs in this module are the same as those of the inputs in the main processor module. The current consumption of the digital inputs is 2 mA when activated, while the range of the operating voltage is from 0...265 VAC/DC. The activation and release thresholds are set in the software and the resolution is 1 V. All digital inputs are scannced in 5 ms program cycles, and their pick-up and release delays as well as their NO/NC selection can be set with software.

For the naming convention of the digital inputs provided by this module please refer to the chapter titled "Construction and installation".

For technical details please refer to the chapter titled "Digital input module" in the "Technical data" section of this document.

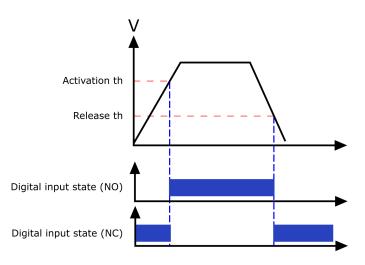
Setting up the activation and release delays

The settings described in the table below can be found at *Control* \rightarrow *Device* $I/O \rightarrow$ *Digital input settings* in the relay settings.

Name	Range	Step	Default	Description	
Dlx Polarity	0: NO (Normally open) 1: NC (Normally closed)	-	0: NO Selects whether the status of the digital input is 1 or 0 when the input is energized.		
Dlx Activation threshold	16.0200.0 V	0.1 V	B8 V When "NO" is the selected polarity, the measured voltage exceeding setting activates the input. When "NC" is the selected polarity, the measured voltage exceeding this setting deactivates the input.		
Dlx Release threshold	10.0200.0 V	0.1 V	60VDefines the release threshold for the digital input.60VWhen "NO" is the selected polarity, the measured voltage below this setting deactivates the input. When "NC" is the selected polarity, the measured voltage below this setting activates the input.		
Dlx Activation delay	0.0001800.000 s	0.001 s	0.000 s	Defines the delay when the status changes from 0 to 1.	
DIx Drop- off time	0.0001800.000 s	0.001 s	0.000 s	00 s Defines the delay when the status changes from 1 to 0.	
DIx AC Mode	0: Disabled 1: Enabled	-	0: Disabled	Selects whether or not a 30-ms deactivation delay is added to take the alternating current into account. The "DIx Release threshold" parameter is hidden and forced to 10 % of the set "DIx Activation threshold" parameter.	

Table. 8.5 - 390. Digital input settings of DI8 module.

AQ-G257 Instruction manual


Version: 2.08

Name	Range	Step	Default	Description
Dlx Counter	02 ³² –1	1	0	Displays the number of times the digital input has changed its status from 0 to 1.
Dlx Clear counter	0: - 1: Clear	-	0: -	Resets the DIx counter value to zero.

The user can set the activation threshold individually for each digital input. When the activation and release thresholds have been set properly, they will result in the digital input states to be activated and released reliably. The selection of the normal state between normally open (NO) and normally closed (NC) defines whether or not the digital input is considered activated when the digital input channel is energized.

The diagram below depicts the digital input states when the input channels are energized and deenergized.

Figure. 8.5 - 228. Digital input state when energizing and de-energizing the digital input channels.

Digital input descriptions

Option card inputs can be given a description. The user defined description are displayed in most of the menus (logic editor, matrix, block settings etc.).

Table. 8.5 -	391. Digita	l input user	description.

Name	Range	Default	Description
User editable description DIx	131 characters		Description of the digital input. This description is used in several menu types for easier identification.

Digital input voltage measurements

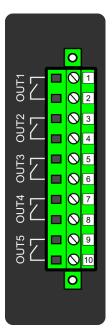

Digital input option card channels measure voltage on each channel. The measured voltage can be seen at *Control* \rightarrow *Device IO* \rightarrow *Digital inputs* \rightarrow *Digital input voltages*.

Table. 8.5 - 392. Digital input channel voltage measurement.

Name	Range	Step	Description
DIx Voltage now	0.000275.000 V	0.001 V	Voltage measurement of a digital input channel.

8.6 Digital output module (optional)

Figure. 8.6 - 229. Digital output module (DO5) with five add-on digital outputs.

Connector	Description
X 1–2	OUTx + 1 (1 st and 2 nd pole NO)
X 3-4	OUTx + 2 (1 st and 2 nd pole NO)
X 5–6	OUTx + 3 (1 st and 2 nd pole NO)
X 7–8	OUTx + 4 (1 st and 2 nd pole NO)
X 9–10	OUTx + 5 (1 st and 2 nd pole NO)

The DO5 module is an add-on module with five (5) digital outputs. This module can be ordered directly to be installed into the device in the factory, or it can be upgraded in the field after the device's original installation when required. The properties of the outputs in this module are the same as those of the outputs in the main processor module. The user can set the digital output controls with software. All digital outputs are scanned in 5 ms program cycles, and their contacts are mechanical in type. The rated voltage of the NO/NC outputs is 250 VAC/DC.

For the naming convention of the digital inputs provided by this module please refer to the chapter titled "Construction and installation".

For technical details please refer to the chapter titled "Digital output module" in the "Technical data" section of this document.

Digital output descriptions

Option card outputs can be given a description. The user defined description are displayed in most of the menus (logic editor, matrix, block settings etc.).

Table. 8.6 - 393. Digital output user description.

Name	Range	Default	Description
User editable description OUTx	131 characters	OUTx	Description of the digital output. This description is used in several menu types for easier identification.

8.7 Point sensor arc protection module (optional)

Figure. 8.7 - 230. Arc protection module.

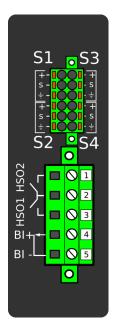


Table. 8.7 - 394. Module connections.

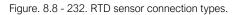
Connector	Description			
S1				
S2	Light sensor channels 14 with positive ("+"), sensor ("S") and earth connectors.			
S3				
S4				
X 1	HSO2 (+, NO)			
X 2	Common battery positive terminal (+) for the HSOs.			
Х 3	HSO1 (+, NO)			
X 4	Binary input 1 (+ pole)			
X 5	Binary input 1 (– pole)			

The arc protection module is an add-on module with four (4) light sensor channels, two (2) high-speed outputs and one (1) binary input. This module can be ordered directly to be installed into the device in the factory, or it can be upgraded in the field after the device's original installation when required. If even one of the sensor channels is connected incorrectly, the channel does not work. Each channel can have up to three (3) light sensors serially connected to it. The user can choose how many of the channels are in use.

The high-speed outputs (HSO1 and HSO2) operate only with a DC power supply. The battery's positive terminal (+) must be wired according to the drawing. The NO side of the outputs 1 or 2 must be wired through trip coil to the battery's negative terminal (–). The high-speed outputs can withstand voltages up to 250 VDC. The operation time of the high-speed outputs is less than 1 ms. For further information please refer to the chapter titled "Arc protection module" in the "Technical data" section of this manual.

The rated voltage of the binary input is 24 VDC. The threshold picks up at \geq 16 VDC. The binary input can be used for external light information or for similar applications. It can also be used as a part of various ARC schemes. Please note that the binary input's delay is 5...10ms.

NOTE!


BI1, HSO1 and HSO2 are not visible in the *Binary inputs* and *Binary outputs* menus (*Control* \rightarrow *Device I/O*), they can only be programmed in the arc matrix menu (Protection \rightarrow *Arc protection* \rightarrow *I/O* \rightarrow *Direct output control* and *HSO control*).

8.8 RTD input module (optional)

Figure. 8.8 - 231. RTD input module connectors.

Channel	Connector			0	Connector	
1	RTD1-1	1			2	RTD1-2
	RTD1-3	3		\bigcirc	4	RTD1-4
2	RTD2-1	5		\bigcirc	6	RTD2-2
2	RTD2-3	7		\bigcirc	8	RTD2-4
3	RTD3-1	9		Q	10	RTD3-2
5	RTD3-3	11		\bigcirc	12	RTD3-4
4	RTD4-1	13		\bigcirc	14	RTD4-2
4	RTD4-3	15		\bigcirc	16	RTD4-4
5	RTD5-1	17		\bigcirc	18	RTD5-2
5	RTD5-3	19		Q	20	RTD5-4
6	RTD6-1	21		Q	22	RTD6-2
0	RTD6-3	23		\bigcirc	24	RTD6-4
7	RTD7-1	25		\bigcirc	26	RTD7-2
	RTD7-3	27		\bigcirc	28	RTD7-4
8	RTD8-1	29		\bigcirc	30	RTD8-2
	RTD8-3	31		\bigcirc	32	RTD8-4
				0		

The RTD input module is an add-on module with eight (8) RTD input channels. Each input supports 2-wire, 3-wire and 4-wire RTD sensors. The sensor type can be selected with software for two groups, four channels each. The card supports Pt100 and Pt1000 sensors

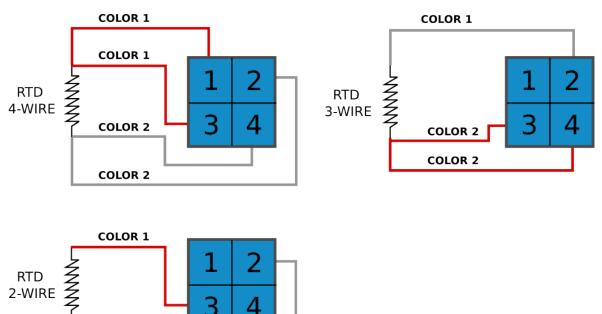
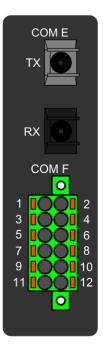
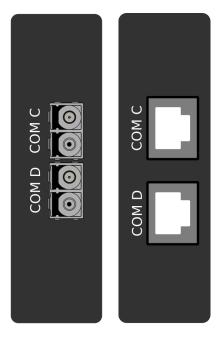



Figure. 8.9 - 233. Serial RS-232 module connectors.

COLOR 2


Connector	Name	Description
COM E	Serial fiber (GG/ PP/GP/PG)	 Serial-based communications Wavelength 660 nm Compatible with 50/125 µm, 62.5/125 µm, 100/140 µm, and 200 µm Plastic-Clad Silica (PCS) fiber Compatible with ST connectors

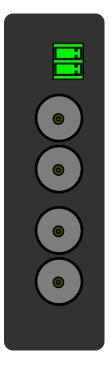
Connector	Name	Description
COM F – Pin 1	+24 V input	Optional external auxiliary voltage for serial fiber
COM F – Pin 2	GND	Optional external auxiliary voltage for serial fiber
COM F – Pin 3	-	-
COM F – Pin 4	-	-
COM F – Pin 5	RS-232 RTS	Serial based communications
COM F – Pin 6	RS-232 GND	Serial based communications
COM F – Pin 7	RS-232 TX	Serial based communications
COM F – Pin 8	RS-232 RX	Serial based communications
COM F – Pin 9	-	-
COM F – Pin 10	+3.3 V output (spare)	Spare power source for external equipment (45 mA)
COM F – Pin 11	-	-
COM F – Pin 12	-	-

The option card includes two serial communication interfaces: COM E is a serial fiber interface with glass/plastic option, COM F is an RS-232 interface.

8.10 LC or RJ45 100 Mbps Ethernet communication module (optional)

Figure. 8.10 - 234. LC and RJ45 100 Mbps Ethernet module connectors.

AQ-G257 Instruction manual

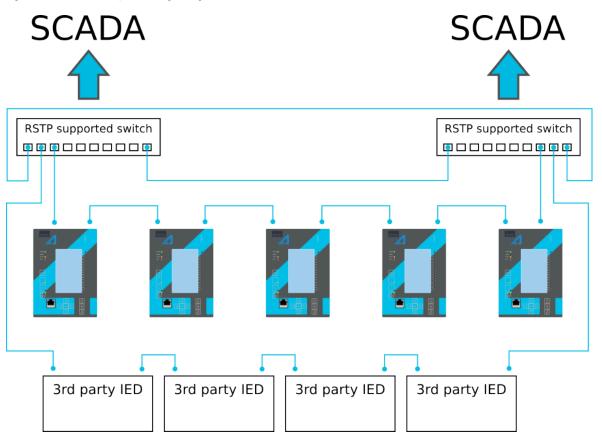

Version: 2.08

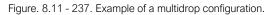
Connector	Description (LC ports)	Description (RJ45)
COM C:	 Communication port C, 100 MbpsLC fiber connector. 62.5/125 µm or 50/125 µm multimode (glass). Wavelength 1300 nm. 	 RJ-45 connectors 10BASE-T and 100BASE-TX
COM D:	 Communication port D, 100 Mbps LC fiber connector. 62.5/125 μm or 50/125 μm multimode (glass). Wavelength 1300 nm. 	 RJ-45 connectors 10BASE-T and 100BASE-TX

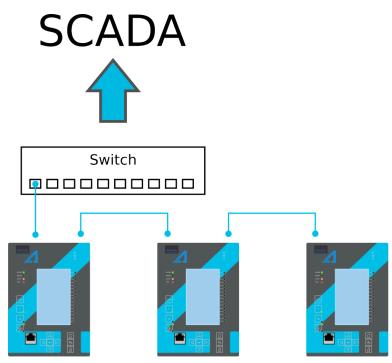
Both cards support both HSR and PRP protocols.

8.11 Double ST 100 Mbps Ethernet communication module (optional)

Figure. 8.11 - 235. Double ST 100 Mbps Ethernet communication module connectors.

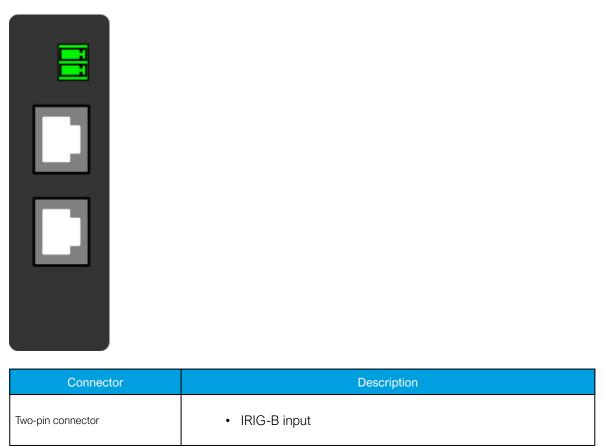

Connector	Description
Two-pin connector	IRIG-B input
ST connectors	 Duplex ST connectors 62.5/125 µm or 50/125 µm multimode fiber Transmitter wavelength: 12601360 nm (nominal: 1310 nm) Receiver wavelength: 11001600 nm 100BASE-FX Up to 2 km


This option cards supports redundant ring configuration and multidrop configurations. Please note that each ring can only contain AQ-200 series devices, and any third party devices must be connected to a separate ring.


For other redundancy options, please refer to the option card "LC 100 Mbps Ethernet communication module".

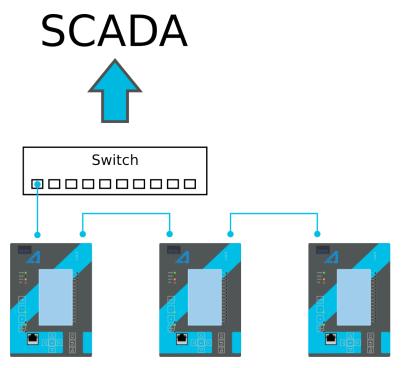
The images below present two example configurations: the first displays a ring configuration (note how the third party devices are connected in a separate ring), while the second displays a multidrop configuration.

Figure. 8.11 - 236. Example of a ring configuration.



8.12 Double RJ45 10/100 Mbps Ethernet communication module (optional)

Figure. 8.12 - 238. Double RJ-45 10/100 Mbps Ethernet communication module.



Connector	Description
RJ-45 connectors	 Two Ethernet ports RJ-45 connectors 10BASE-T and 100BASE-TX

This option card supports multidrop configurations.

For other redundancy options, please refer to the option card "LC 100 Mbps Ethernet communication module".

Figure. 8.12 - 239. Example of a multidrop configuration.

8.13 Milliampere (mA) I/O module (optional)

Figure. 8.13 - 240. Milliampere (mA) I/O module connections.

	[0	
+		\oslash	1
mAout1		\oslash	2
+		\oslash	3
mAout2		\oslash	4
+		\oslash	5
mAout3		\oslash	6
+ mAout4		\oslash	7
mAout4 —		\oslash	8
+ mAin1		\oslash	9
		\oslash	10
		0	

Connector	Description
Pin 1	mA OUT 1 + connector (024 mA)
Pin 2	mA OUT 1 – connector (024 mA)
Pin 3	mA OUT 2 + connector (024 mA)
Pin 4	mA OUT 2 – connector (024 mA)
Pin 5	mA OUT 3 + connector (024 mA)
Pin 6	mA OUT 3 – connector (024 mA)
Pin 7	mA OUT 4 + connector (024 mA)
Pin 8	mA OUT 4 – connector (024 mA)
Pin 9	mA IN 1 + connector (033 mA)
Pin 10	mA IN 1 – connector (033 mA)

The milliampere (mA) I/O module is an add-on module with four (4) mA outputs and one (1) mA input. Both the outputs and the input are in two galvanically isolated groups, with one pin for the positive (+) connector and one pin for the negative (–) connector.

This module can be ordered directly to be installed into the device in the factory, or it can be upgraded in the field after the device's original installation when required.

The user sets the mA I/O with the mA outputs control function. This can be done at *Control* \rightarrow *Device* $I/O \rightarrow mA$ outputs in the relay configuration settings.

8.14 Dimensions and installation

The device can be installed either to a standard 19" rack or to a switchgear panel with cutouts. The desired installation type is defined in the order code. When installing to a rack, the device takes a half $(\frac{1}{2})$ of the rack's width, meaning that a total of two devices can be installed to the same rack next to one another.

The figures below describe the device dimensions (first figure), the device installation (second), and the panel cutout dimensions and device spacing (third).

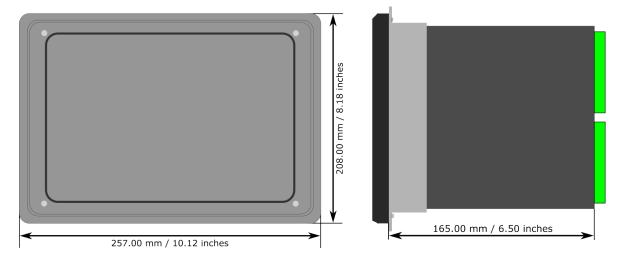
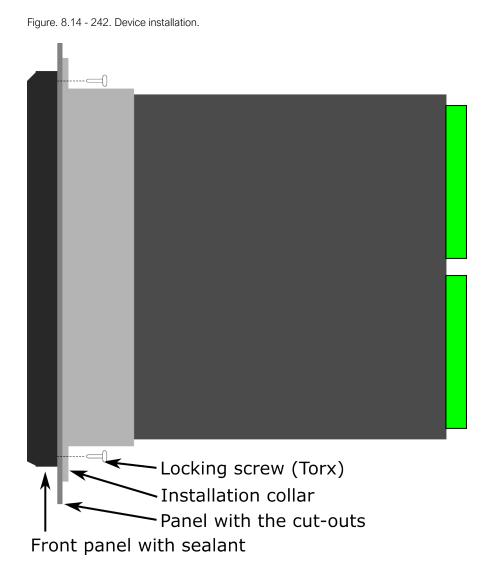
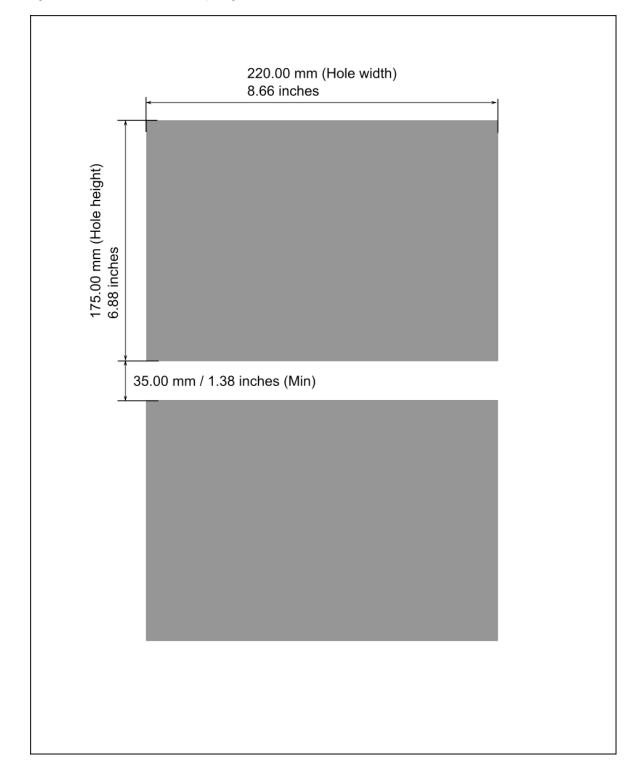
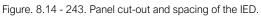





Figure. 8.14 - 241. Device dimensions.

9 Technical data

9.1 Hardware

9.1.1 Measurements

9.1.1.1 Current measurement

Table. 9.1.1.1 - 395. Technical data for the current measurement module.

Connections			
N	Three phase current inputs: IL1 (A), IL2 (B), IL3 (C)		
Measurement channels/CT inputs	Two residual current inputs: Coarse residual current input I01, Fine residual current input I02		
Phase current inputs (A, B, C)			
Sample rate	64 samples per cycle in frequency range 675Hz		
Rated current I _N	5 A (configurable 0.210 A)		
	20 A (continuous)		
The second of the start of	100 A (for 10 s)		
Thermal withstand	500 A (for 1 s)		
	1250 A (for 0.01 s)		
Frequency measurement range	From 6…75Hz fundamental, up to the 31 st harmonic current		
Current measurement range	25 mA250 A (RMS)		
	$0.0054.000 \times I_N < \pm 0.5$ % or $< \pm 15$ mA		
Current measurement inaccuracy	$420 \times I_N < \pm 0.5 \%$		
,	$2050 \times I_N < \pm 1.0 \%$		
Angle massurement inconverse	< ±0.2° (I> 0.1 A)		
Angle measurement inaccuracy	< ±1.0° (l≤ 0.1 A)		
Burden (50/60 Hz)	<0.1 VA		
Transient overreach	<8 %		
Coarse residual current input (I01)			
Rated current I _N	1 A (configurable 0.1…10 A)		
	25 A (continuous)		
Thermal withstand	100 A (for 10 s)		
	500 A (for 1 s)		
	1250 A (for 0.01 s)		
Frequency measurement range	From 675 Hz fundamental, up to the 31 st harmonic current		
Current measurement range	5 mA150 A (RMS)		
Current measurement	$0.00210.000 \times I_N \le \pm 0.5$ % or $\le \pm 3$ mA		
inaccuracy	$10150 \times I_N < \pm 0.5 \%$		

< ±0.2° (I> 0.05 A)
< ±1.0° (l≤ 0.05 A)
<0.1 VA
<5 %
0.2 A (configurable 0.00110 A)
25 A (continuous)
100 A (for 10 s)
500 A (for 1 s)
1250 A (for 0.01 s)
From 675 Hz fundamental, up to the 31 st harmonic current
1 mA75 A (RMS)
$0.00225.000 \times I_N < \pm 0.5$ % or $< \pm 0.6$ mA
$25375 \times I_N < \pm 1.0 \%$
< ±0.2° (I> 0.01 A)
< ±1.0° (l≤ 0.01 A)
<0.1 VA
<5 %
Phoenix Contact FRONT 4-H-6,35
4 mm ²

NOTE!

Current measurement accuracy has been verified with 50/60 Hz.

The amplitude difference is 0.2 % and the angle difference is 0.5 degrees higher at 16.67 Hz and other frequencies.

9.1.1.2 Voltage measurement

Table. 9.1.1.2 - 396. Technical data for the voltage measurement module.

Connection		
Measurement channels/VT inputs	4 independent VT inputs (U1, U2, U3 and U4)	
Measurement		
Sample rate	64 samples per cycle in frequency range 675Hz	
Voltage measuring range	0.50480.00 V (RMS)	
	12 V ±1.5 %	
Voltage measurement inaccuracy	210 V ±0.5 %	
	10480 V ±0.35 %	

	±0.2 degrees (15300 V)
Angle measurement inaccuracy	±1.5 degrees (115 V)
Voltage measurement bandwidth (freq.)	775 Hz fundamental, up to the 31 st harmonic voltage
Terminal block connection	
Terminal block	Phoenix Contact PC 5/8-STCL1-7.62
Solid or stranded wire	
Maximum wire diameter	6 mm ²
Input impedance	24.524.6 MΩ
Burden (50/60 Hz)	<0.02 VA
Thermal withstand	630 V _{RMS} (continuous)

NOTE!

Voltage measurement accuracy has been verified with 50/60 Hz.

The amplitude difference is 0.2 % and the angle difference is 0.5 degrees higher at 16.67 Hz and other frequencies.

9.1.1.3 Power and energy measurement

Table. 9.1.1.3 - 397. Power and energy measurement accuracy

Power measurement P, Q, S	Frequency range 675 Hz
	0.3 % <1.2 \times I _N or 3 VA secondary
Inaccuracy	1.0 % >1.2 × I _N or 3 VA secondary
Energy measurement	Frequency range 675 Hz
	0.5% down to 1A RMS (50/60Hz) as standard
Energy and power metering inaccuracy	0.2% down to 1A RMS (50/60Hz) option available (see the order code for details)

9.1.1.4 Frequency measurement

Table. 9.1.1.4 - 398. Frequency measurement accuracy.

Frequency measurement performance		
Frequency measuring range	675 Hz fundamental, up to the 31 st harmonic current or voltage	
Inaccuracy	10 mHz	

9.1.2 CPU & Power supply

9.1.2.1 Auxiliary voltage

Table. 9.1.2.1 - 399. Power supply model A

Rated values		
Rated auxiliary voltage	85265 V (AC/DC)	
	< 20 W	
Power consumption	< 40 W	

AQ-G257 Instruction manual

Version: 2.08

Maximum permitted interrupt time	< 40 ms with 110 VDC	
DC ripple	< 15 %	
Terminal block connection		
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08	
Solid or stranded wire		
Maximum wire diameter	2.5 mm ²	
Other		
Minimum recommended fuse rating	MCB C2	

Table. 9.1.2.1 - 400. Power supply model B

Rated values	
Rated auxiliary voltage	1872 VDC
Power consumption	< 20 W
	< 40 W
Maximum permitted interrupt time	< 40 ms with 24 VDC
DC ripple	< 15 %
Terminal block connection	
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08
Solid or stranded wire	
Maximum wire diameter	2.5 mm ²
Other	
Minimum recommended fuse rating	MCB C2

9.1.2.2 CPU communication ports

Table. 9.1.2.2 - 401. Front panel local communication port.

Port	
Port media	Copper Ethernet RJ-45
Number of ports	1
	PC-protocols
Port protocols	FTP
	Telnet
Features	
Data transfer rate	100 MB
System integration	Cannot be used for system protocols, only for local programming

Table. 9.1.2.2 - 402. Rear panel system communication port A.

Port	
Port media Copper Ethernet RJ-45	
Number of ports 1	
Features	

	IEC 61850
Port protocols	IEC 104
	Modbus/TCP
	DNP3
	FTP
	Telnet
Data transfer rate	100 MB
System integration	Can be used for system protocols and for local programming

Table. 9.1.2.2 - 403. Rear panel system communication port B.

Port		
Port media	Copper RS-485	
Number of ports	1	
Features		
	Modbus/RTU	
	IEC 103	
Port protocols	IEC 101	
	DNP3	
	SPA	
Data transfer rate	65 580 kB/s	
System integration	Can be used for system protocols	

9.1.2.3 CPU digital inputs

Table. 9.1.2.3 - 404. CPU model-isolated digital inputs, with thresholds defined by order code.

Rated values		
Rated auxiliary voltage	265 V (AC/DC)	
Nominal voltage	Order code defined: 24, 110, 220 V (AC/DC)	
Pick-up threshold Release threshold	Order code defined: 19, 90,170 V Order code defined: 14, 65, 132 V	
Scanning rate	5 ms	
Settings		
Pick-up delay	Software settable: 01800 s	
Polarity	Software settable: Normally On/Normally Off	
Current drain	2 mA	
Terminal block connection		
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08	
Solid or stranded wire		
Maximum wire diameter	2.5 mm ²	

9.1.2.4 CPU digital outputs

Table. 9.1.2.4 - 405. Digital outputs (Normally Open)

Rated values		
Rated auxiliary voltage	265 V (AC/DC)	
Continuous carry	5 A	
Make and carry 0.5 s Make and carry 3 s	30 A 15 A	
Breaking capacity, DC (L/R = 40 ms) at 48 VDC at 110 VDC at 220 VDC	1 A 0.4 A 0.2 A	
Control rate	5 ms	
Settings		
Polarity	Software settable: Normally On/Normally Off	
Terminal block connection		
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08	
Solid or stranded wire Maximum wire diameter	2.5 mm ²	

Table. 9.1.2.4 - 406. Digital outputs (Change-Over)

Rated values		
Rated auxiliary voltage	265 V (AC/DC)	
Continuous carry	5 A	
Make and carry 0.5 s Make and carry 3 s	30 A 15 A	
Breaking capacity, DC (L/R = 40 ms) at 48 VDC at 110 VDC at 220 VDC	1 A 0.4 A 0.2 A	
Control rate	5 ms	
Settings		
Polarity	Software settable: Normally On/Normally Off	
Terminal block connection		
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08	
Solid or stranded wire Maximum wire diameter	2.5 mm ²	

9.1.3 Option cards

9.1.3.1 Digital input module

Table. 9.1.3.1 - 407. Technical data for the digital input module.

Rated values	
Rated auxiliary voltage	5265 V (AC/DC)
Current drain	2 mA

Scanning rate Activation/release delay	5 ms 511 ms	
Settings		
Pick-up threshold Release threshold	Software settable: 16200 V, setting step 1 V Software settable: 10200 V, setting step 1 V	
Pick-up delay	Software settable: 01800 s	
Drop-off delay	Software settable: 01800 s	
Polarity	Software settable: Normally On/Normally Off	
Terminal block connection		
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08	
Solid or stranded wire		
Maximum wire diameter	2.5 mm ²	

9.1.3.2 Digital output module

Table. 9.1.3.2 - 408. Technical data for the digital output module.

Rated values	
Rated auxiliary voltage	265 V (AC/DC)
Continuous carry	5 A
Make and carry 0.5 s Make and carry 3 s	30 A 15 A
Breaking capacity, DC (L/R = 40 ms) at 48 VDC at 110 VDC at 220 VDC	1 A 0.4 A 0.2 A
Control rate	5 ms
Settings	
Polarity	Software settable: Normally On/Normally Off
Terminal block connection	
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08
Solid or stranded wire	
Maximum wire diameter	2.5 mm ²

9.1.3.3 Point sensor arc protection module

Table. 9.1.3.3 - 409. Technical data for the point sensor arc protection module.

Connections		
Input arc point sensor channels	S1, S2, S3, S4 (pressure and light, or light only)	
Sensors per channel	3	
Performance		
Pick-up light intensity	8, 25 or 50 kLx (the sensor is selectable in the order code)	
Point sensor detection radius	180 degrees	
Start and instant operating time (light only)	Typically <5 ms with dedicated semiconductor outputs (HSO) Typically <10 ms regular output relays	

Table. 9.1.3.3 - 410. High-Speed Outputs (HSO1...2)

Rated values		
Rated auxiliary voltage	250 VDC	
Continuous carry	2 A	
Make and carry 0.5 s Make and carry 3 s	15 A 6 A	
Breaking capacity, DC (L/R = 40 ms)	1 A/110 W	
Control rate	5 ms	
Operation delay	<1 ms	
Polarity	Normally Off	
Contact material	Semiconductor	
Terminal block connection		
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08	
Solid or stranded wire		
Maximum wire diameter	2.5 mm ²	

Table. 9.1.3.3 - 411. Binary input channel

Rated values		
Voltage withstand	265 VDC	
Nominal voltage Pick-up threshold Release threshold	24 VDC ≥16 VDC ≤15 VDC	
Scanning rate	5 ms	
Polarity	Normally Off	
Current drain	3 mA	
Terminal block connection		
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08	
Solid or stranded wire		
Maximum wire diameter	2.5 mm ²	

NOTE! Polarity has to be correct.

9.1.3.4 Milliampere module (mA out & mA in)

Table. 9.1.3.4 - 412. Technical data for the milliampere module.

Signals		
Output magnitudes	$4 \times mA$ output signal (DC)	
Input magnitudes	1 × mA input signal (DC)	
mA input		
Range (hardware)	033 mA	
Range (measurement)	024 mA	
Inaccuracy	±0.1 mA	

Update cycle	510 000 ms, setting step 5 ms	
Response time @ 5 ms cycle	~ 15 ms (1318 ms)	
Update cycle time inaccuracy	Max. +20 ms above the set cycle	
mA input scaling range	04000 mA	
Output scaling range	-1 000 000.00001 000 000.0000, setting step 0.0001	
mA output		
Inaccuracy @ 024 mA	±0.01 mA	
Response time @ 5 ms cycle [fixed]	< 5 ms	
mA output scaling range	024 mA, setting step 0.001 mA	
Source signal scaling range	-1 000 000.0001 000 000.0000, setting step 0.0001	

9.1.3.5 RTD input module

Table. 9.1.3.5 - 413. Technical data for the RTD input module.

Channels 1-8	
2/3/4-wire RTD	
Pt100 or Pt1000	

9.1.3.6 RS-232 & serial fiber communication module

Table. 9.1.3.6 - 414. Technical data for the RS-232 & serial fiber communication module.

Ports	
RS-232	
Serial fiber (GG/PP/GP/PG)	
Serial port wavelength	
660 nm	
Cable type	
1 mm plastic fiber	

9.1.3.7 Double LC 100 Mbps Ethernet communication module

Table. 9.1.3.7 - 415. Technical data for the double LC 100 Mbps Ethernet communication module.

Protocols		
Protocols HSR and PRP		
Ports		
Quantity of fiber ports	2	
Communication port C & D	LC fiber connector Wavelength 1300 nm	
Fiber cable50/125 μm or 62.5/125 μm multimode (glass)		

9.1.3.8 Double ST 100 Mbps Ethernet communication module

Table. 9.1.3.8 - 416. Technical data for the double ST 100 Mbps Ethernet communication module.

General information		
Ports	ST connectors (2) and IRIG-B connector (1)	
Protocols		
Protocols	IEC61850, DNP/TCP, Modbus/TCP, IEC104 & FTP	
ST connectors		
	Duplex ST connectors	
Connector type	62.5/125 μm or 50/125 μm multimode fiber	
	100BASE-FX	
Transmitter wavelength	12601360 nm (nominal: 1310 nm)	
Receiver wavelength	11001600 nm	
Maximum distance	2 km	
IRIG-B Connector		
Connector type	Phoenix Contact MC 1,5/ 2-ST-3,5 BD:1-2	

9.1.4 Display

Table. 9.1.4 - 417. Technical data for the HMI TFT display.

Dimensions and resolution		
Number of dots/resolution	800 x 480	
Size	154.08 × 85.92 mm (6.06 × 3.38 in)	
Display		
Type of display	TFT	
Color	RGB color	

9.2 Functions

9.2.1 Protection functions

9.2.1.1 Non-directional overcurrent protection (I>; 50/51)

Table. 9.2.1.1 - 418. Technical data for the non-directional overcurrent function.

Measurement inputs		
Current inputs	Phase current inputs: I_{L1} (A), I_{L2} (B), I_{L3} (C)	
Current input magnitudes	RMS phase currents TRMS phase currents Peak-to-peak phase currents	
Pick-up		
Pick-up current setting	$0.1050.00 \times I_n$, setting step $0.01 \times I_n$	
Inrush 2nd harmonic blocking	0.1050.00 %l _{fund} , setting step 0.01 %l _{fund}	

Inaccuracy: - Current - 2 nd harmonic blocking	± 0.5 %l _{set} or ± 15 mA (0.104.0 × l _{set}) ± 1.0 %-unit of the 2 nd harmonic setting	
Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time: I _m /I _{set} ratio > 3 - Definite time: I _m /I _{set} ratio = 1.053	±1.0 % or ±20 ms ±1.0 % or ±30 ms	
IDMT setting parameters: - k Time dial setting for IDMT - A IDMT constant - B IDMT constant - C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001	
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms	
Retardation time (overshoot)	<30 ms	
Instant operation time		
Start time and instant operation time (trip): - I _m /I _{set} ratio = 2 - I _m /I _{set} ratio = 5 - I _m /I _{set} ratio = 10	Typically 25 ms Typically 16 ms Typically 12 ms	
Reset		
Reset ratio	97 % of the pick-up current setting	
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±50 ms	
Instant reset time and start-up reset	<50 ms	

Note!

• The release delay does not apply to phase-specific tripping.

9.2.1.2 Non-directional earth fault protection (I0>; 50N/51N)

Table. 9.2.1.2 - 419. Technical data for the non-directional earth fault function.

Measurement inputs	
Current input (selectable)	Residual current channel I ₀₁ (Coarse) Residual current channel I ₀₂ (Fine) Calculated residual current: I _{L1} (A), I _{L2} (B), I _{L3} (C)
Current input magnitudes	RMS residual current (I ₀₁ , I ₀₂ or calculated I ₀) TRMS residual current (I ₀₁ or I ₀₂) Peak-to-peak residual current (I ₀₁ or I ₀₂)
Pick-up	
Used magnitude	Measured residual current I01 (1 A) Measured residual current I02 (0.2 A) Calculated residual current I0Calc (5 A)
Pick-up current setting	$0.000140.00 \times I_n$, setting step $0.0001 \times I_n$
Inaccuracy: - Starting I01 (1 A) - Starting I02 (0.2 A) - Starting I0Calc (5 A)	±0.5 %I0 _{set} or ±3 mA (0.00510.0 × I _{set}) ±1.5 %I0 _{set} or ±1.0 mA (0.00525.0 × I _{set}) ±1.0 %I0 _{set} or ±15 mA (0.0054.0 × I _{set})
Operating time	

AQ-G257 Instruction manual

Version: 2.08

Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time: I _m /I _{set} ratio > 3 - Definite time: I _m /I _{set} ratio = 1.053	±1.0 % or ±20 ms ±1.0 % or ±30 ms	
IDMT setting parameters: - k Time dial setting for IDMT - A IDMT constant - B IDMT constant - C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001	
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms	
Retardation time (overshoot)	<30 ms	
Instant operation time		
Start time and instant operation time (trip): - I _m /I _{set} ratio > 3.5 - I _m /I _{set} ratio = 1.053.5	<50 ms (typically 35 ms) <55 ms	
Reset		
Reset ratio	97 % of the pick-up current setting	
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±50 ms	
Instant reset time and start-up reset	<50 ms	

Note!

• The operation and reset time accuracy does not apply when the measured secondary current in I02 is 1...20 mA. The pick-up is tuned to be more sensitive and the operation times vary because of this.

9.2.1.3 Directional overcurrent protection (Idir>; 67)

Table. 9.2.1.3 - 420. Technical data for the directional overcurrent function.

Input signals	
Current inputs	Phase current inputs: I_{L1} (A), I_{L2} (B), I_{L3} (C)
Current input magnitudes	RMS phase currents TRMS phase currents Peak-to-peak phase currents
Current input calculations	Positive sequence current angle
Voltage inputs	U _{L1} , U _{L2} , U _{L3} U _{L12} , U _{L23} , U _{L31} + U0
Voltage input calculations	Positive sequence voltage angle
Pick-up	
Characteristic direction	Directional, non-directional
Operating sector center	-180.0180.0 deg, setting step 0.1 deg
Operating sector size (+/-)	1.00170.00 deg, setting step 0.10 deg
Pick-up current setting	$0.1040.00 \times I_n$, setting step $0.01 \times I_n$
Inaccuracy: - Current - U1/I1 angle (U > 15 V) - U1/I1 angle (U = 115 V)	±0.5 %I _{set} or ±15 mA (0.104.0 × I _{set}) ±0.20° ±1.5°

Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time: I _m /I _{set} ratio > 3 - Definite time: I _m /I _{set} ratio = 1.053	±1.0 % or ±20 ms ±1.0 % or ±35 ms	
IDMT setting parameters: - k Time dial setting for IDMT - A IDMT constant - B IDMT constant - C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001	
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms	
Instant operation time		
Start time and instant operation time (trip): - I _m /I _{set} ratio > 3 - I _m /I _{set} ratio = 1.053	<40 ms (typically 30 ms) <50 ms	
Reset		
Reset ratio: - Current - U1/l1 angle	97 % of the pick-up current setting 2.0°	
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±50 ms	
Instant reset time and start-up reset	<50 ms	

Note!

• The minimum voltage for direction solving is 1.0 V secondary. During three-phase shortcircuits the angle memory is active for 0.5 seconds in case the voltage drops below 1.0 V.

9.2.1.4 Directional earth fault protection (I0dir>; 67N/32N)

Table. 9.2.1.4 - 421. Technical data for the directional earth fault function.

Measurement inputs	
Current input (selectable)	Residual current channel I ₀₁ (Coarse) Residual current channel I ₀₂ (Fine) Calculated residual current: I _{L1} (A), I _{L2} (B), I _{L3} (C)
Current input magnitudes	RMS residual current (I_{01} , I_{02} or calculated I_0) TRMS residual current (I_{01} or I_{02}) Peak-to-peak residual current (I_{01} or I_{02})
Voltage input (selectable)	Residual voltage from U3 or U4 voltage channel Residual voltage calculated from U_{L1} , U_{L2} , U_{L3}
Voltage input magnitudes	RMS residual voltage U0 Calculated RMS residual voltage U0
Pick-up	
Characteristic direction	Unearthed (Varmetric 90°) Petersen coil GND (Wattmetric 180°) <u>Earthed</u> (Adjustable sector)
When the <u>earthed</u> mode is active: - Tripping area center - Tripping area size (+/-)	0.00360.00 deg, setting step 0.10 deg 45.00135.00 deg, setting step 0.10 deg
Pick-up current setting Pick-up voltage setting	$0.00540.00 \times I_n$, setting step $0.001 \times I_n$ 1.0075.00 %U0 _n , setting step 0.01 %U0 _n

AQ-G257 Instruction manual

Version: 2.08

Inaccuracy: - Starting I01 (1 A) - Starting I02 (0.2 A) - Starting I0Calc (5 A) - Voltage U0 and U0Calc - U0/I0 angle (U > 15 V) - U0/I0 angle (U = 115 V)	$\begin{array}{l} \pm 0.5 \ \% \text{IO}_{\text{set}} \ \text{or} \pm 3 \ \text{mA} \ (0.00510.0 \times \text{I}_{\text{set}}) \\ \pm 1.5 \ \% \text{IO}_{\text{set}} \ \text{or} \pm 1.0 \ \text{mA} \ (0.00525.0 \times \text{I}_{\text{set}}) \\ \pm 1.5 \ \% \text{IO}_{\text{set}} \ \text{or} \pm 15 \ \text{mA} \ (0.0054.0 \times \text{I}_{\text{set}}) \\ \pm 1.0 \ \% \text{UO}_{\text{set}} \ \text{or} \pm 30 \ \text{mV} \\ \pm 0.2^{\circ} \ (\text{IOCalc} \pm 1.0^{\circ}) \\ \pm 1.0^{\circ} \end{array}$
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time (I _m /I _{set} ratio 1.05→)	±1.0 % or ±45 ms
IDMT setting parameters: - k Time dial setting for IDMT - A IDMT constant - B IDMT constant - C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy:	
- IDMT operating time - IDMT minimum operating time	±1.5 % or ±25 ms ±20 ms
Instant operation time	
Start time and instant operation time (trip): - I_m/I_{set} ratio > 3 - I_m/I_{set} ratio = 1.053	<55 ms (typically 45 ms) <65 ms
Reset	
Current and voltage reset U0/I0 angle	97 % of the pick-up current and voltage setting 2.0°
Reset time setting Inaccuracy: Reset time	0.000150.000 s, step 0.005 s ±1.0 % or ±45 ms
Instant reset time and start-up reset	<50 ms

9.2.1.5 Negative sequence overcurrent/ phase current reversal/ current unbalance protection (I2>; 46/46R/46L)

Table. 9.2.1.5 - 422. Technical data for the current unbalance function.

Measurement inputs	
Current inputs	Phase current inputs: I_{L1} (A), I_{L2} (B), I_{L3} (C)
Current input calculations	Positive sequence current (I1) Negative sequence current (I2)
Pick-up	
Used magnitude	Negative sequence component l2pu Relative unbalance l2/l1
Pick-up setting	0.0140.00 × I _n , setting step 0.01 × I _n (I2pu) 1.00200.00 %, setting step 0.01 % (I2/I1)
Minimum phase current (at least one phase above)	$0.012.00 \times I_n$, setting step $0.01 \times I_n$
Inaccuracy: - Starting I2pu - Starting I2/I1	±1.0 %-unit or ±100 mA (0.104.0 × I _n) ±1.0 %-unit or ±100 mA (0.104.0 × I _n)
Operating time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s

Inaccuracy: - Definite time (I _m /I _{set} ratio > 1.05)	±1.5 % or ±60 ms
IDMT setting parameters: - k Time dial setting for IDMT - A IDMT Constant - B IDMT Constant - C IDMT Constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±2.0 % or ±30 ms ±20 ms
Retardation time (overshoot)	<5 ms
Instant operation time	
Start time and instant operation time (trip): - I _m /I _{set} ratio > 1.05	<70 ms
Reset	
Reset ratio	97 % of the pick-up setting
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.5 % or ±60 ms
Instant reset time and start-up reset	<55 ms

9.2.1.6 Harmonic overcurrent protection (Ih>; 50H/51H/68H)

Table. 9.2.1.6 - 423. Technical data for the harmonic overcurrent function.

Measurement inputs	
Current inputs	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C) Residual current channel I ₀₁ (Coarse) Residual current channel I ₀₂ (Fine)
Pick-up	
Harmonic selection	2^{nd} , 3^{rd} , 4^{th} , 5^{th} , 6^{th} 7^{th} , 9^{th} , 11^{th} , 13^{th} , 15^{th} , 17^{th} or 19^{th}
Used magnitude	Harmonic per unit (× I _N) Harmonic relative (Ih/IL)
Pick-up setting	0.052.00 × I _N , setting step 0.01 × I _N (× I _N) 5.00200.00 %, setting step 0.01 % (Ih/IL)
Inaccuracy: - Starting × I _N - Starting × Ih/IL	$\begin{array}{l} < \! 0.03 \times I_N (2^{nd}, 3^{rd}, 5^{th}) \\ < \! 0.03 \times I_N \text{tolerance to Ih} (2^{nd}, 3^{rd}, 5^{th}) \end{array}$
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time (I _M /I _{SET} ratio >1.05)	±1.0 % or ±35 ms
IDMT setting parameters: k Time dial setting for IDMT A IDMT constant B IDMT constant C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms
Instant operation time	•

AQ-G257 Instruction manual

Version: 2.08

Start time and instant operation time (trip): I _M /I _{SET} ratio >1.05	<50 ms
Reset	
Reset ratio	95 % of the pick-up setting
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±35 ms
Instant reset time and start-up reset	<50 ms

Note!

- Harmonics generally: The amplitude of the harmonic content has to be least $0.02 \times I_N$ when the relative mode (Ih/IL) is used.
- Blocking: To achieve fast activation for blocking purposes with the harmonic overcurrent stage, note that the harmonic stage may be activated by a rapid load change or fault situation. An intentional activation lasts for approximately 20 ms if a harmonic component is not present. The harmonic stage stays active if the harmonic content is above the pick-up limit.
- Tripping: When using the harmonic overcurrent stage for tripping, please ensure that the operation time is set to 20 ms (DT) or longer to avoid nuisance tripping caused by the above-mentioned reasons.

9.2.1.7 Circuit breaker failure protection (CBFP; 50BF/52BF)

Table. 9.2.1.7 - 424. Technical data for the circuit breaker failure protection function.

Measurement inputs		
Current inputs	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C) Residual current channel I ₀₁ (Coarse) Residual current channel I ₀₂ (Fine)	
Current input magnitudes	RMS phase currents RMS residual current (I ₀₁ , I ₀₂ or calculated I ₀)	
Pick-up		
Monitored signals	Digital input status, digital output status, logical signals	
Pick-up current setting: - IL1IL3 - I01, I02, I0Calc	0.1040.00 × I _N , setting step 0.01 × I _N 0.00540.00 × I _N , setting step 0.005 × I _N	
Inaccuracy: - Starting phase current (5A) - Starting I01 (1 A) - Starting I02 (0.2 A) - Starting I0Calc (5 A)	$\begin{array}{l} \pm 0.5 \ \% I_{\text{SET}} \ \text{or} \ \pm 15 \ \text{mA} \ (0.104.0 \times I_{\text{SET}}) \\ \pm 0.5 \ \% I_{\text{OSET}} \ \text{or} \ \pm 3 \ \text{mA} \ (0.00510.0 \times I_{\text{SET}}) \\ \pm 1.5 \ \% I_{\text{OSET}} \ \text{or} \ \pm 1.0 \ \text{mA} \ (0.00525.0 \times I_{\text{SET}}) \\ \pm 1.0 \ \% I_{\text{OSET}} \ \text{or} \ \pm 15 \ \text{mA} \ (0.0054.0 \times I_{\text{SET}}) \end{array}$	
Operation time		
Definite time function operating time setting	0.0501800.000 s, setting step 0.005 s	
Inaccuracy: - Current criteria (I _M /I _{SET} ratio 1.05→) - DO or DI only	±1.0 % or ±55 ms ±15 ms	
Reset		
Reset ratio	97 % of the pick-up current setting	
Reset time	<50 ms	

9.2.1.8 Overvoltage protection (U>; 59)

Table. 9.2.1.8 - 425. Technical data for the overvoltage function.

Measurement inputs	
Voltage inputs	U _{L1} , U _{L2} , U _{L3} U _{L12} , U _{L23} , U _{L31} (+ U ₀)
Voltage input magnitudes	RMS line-to-line or line-to-neutral voltages
Pick-up	
Pick-up terms	1 voltage 2 voltages 3 voltages
Pick-up setting	50.00150.00 %UN, setting step 0.01 %UN
Inaccuracy: - Voltage	±1.5 %U _{SET}
Operating time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time (U _M /U _{SET} ratio 1.05 \rightarrow)	±1.0 % or ±35 ms
IDMT setting parameters: k Time dial setting for IDMT A IDMT constant B IDMT constant C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms
Instant operation time	
Start time and instant operation time (trip): - U_M/U_{SET} ratio 1.05 \rightarrow	<50 ms
Reset	
Reset ratio	97 % of the pick-up voltage setting
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±45 ms
Instant reset time and start-up reset	<50 ms

9.2.1.9 Undervoltage protection (U<; 27)

Table. 9.2.1.9 - 426. Technical data for the undervoltage function.

Measurement inputs		
Voltage inputs	U _{L1} , U _{L2} , U _{L3} U _{L12} , U _{L23} , U _{L31} (+ U ₀)	
Voltage input magnitudes	RMS line-to-line or line-to-neutral voltages	
Pick-up		
Pick-up terms	1 voltage 2 voltages 3 voltages	
Pick-up setting	0.00120.00 %U _N , setting step 0.01 %U _N	
Inaccuracy: - Voltage	±1.5 %U _{SET} or ±30 mV	

Low voltage block		
Pick-up setting	$0.0080.00~\% U_{N},$ setting step 0.01 $\% U_{N}$	
Inaccuracy: - Voltage	±1.5 %U _{SET} or ±30 mV	
Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time (U _M /U _{SET} ratio 1.05 \rightarrow)	±1.0 % or ±35 ms	
IDMT setting parameters: k Time dial setting for IDMT A IDMT constant B IDMT constant C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001	
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms	
Instant operation time		
Start time and instant operation time (trip): - U_M/U_{SET} ratio 1.05 \rightarrow	<65 ms	
Retardation time (overshoot)	<30 ms	
Reset		
Reset ratio	103 % of the pick-up voltage setting	
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±45 ms	
Instant reset time and start-up reset	<50 ms	

Note!

- The low-voltage block is not in use when its pick-up setting is set to 0 %. The undervoltage function is in trip stage when the LV block is disabled and the device has no voltage injection.
- After the low voltage blocking condition, the undervoltage stage does not trip unless the voltage exceeds the pick-up setting first.

9.2.1.10 Neutral overvoltage protection (U0>; 59N)

Table. 9.2.1.10 - 427. Technical data for the neutral overvoltage function.

Measurement inputs	
Voltage input (selectable)	Residual voltage from U3 or U4 voltage channel Residual voltage calculated from U_{L1} , U_{L2} , U_{L3}
Voltage input magnitudes	RMS residual voltage U_0 Calculated RMS residual voltage U_0
Pick-up	
Pick-up voltage setting	1.0050.00 % U0 _N , setting step 0.01 × I _N
Inaccuracy: - Voltage U0 - Voltage U0Calc	± 1.5 %U0_{SET} or ± 30 mV ± 150 mV
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s

Inaccuracy: - Definite time (U0 _M /U0 _{SET} ratio 1.05 \rightarrow)	±1.0 % or ±45 ms	
IDMT setting parameters: k Time dial setting for IDMT A IDMT constant B IDMT constant C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001	
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms	
Instant operation time		
Start time and instant operation time (trip): - $U0_M/U0_{SET}$ ratio 1.05 \rightarrow	<50 ms	
Reset		
Reset ratio	97 % of the pick-up voltage setting	
Reset time setting Inaccuracy: Reset time	0.000 150.000 s, step 0.005 s ±1.0 % or ±50 ms	
Instant reset time and start-up reset	<50 ms	

9.2.1.11 Sequence voltage protection (U1/U2>/<; 47/27P/59NP)

Table. 9.2.1.11 - 428. Technical data for the sequence voltage function.

Measurement inputs	
Voltage inputs	U _{L1} , U _{L2} , U _{L3} U _{L12} , U _{L23} , U _{L31} (+ U ₀)
Voltage input calculations	Positive sequence voltage (I1) Negative sequence voltage (I2)
Pick-up	
Pick-up setting	5.00150.00 %U _N , setting step 0.01 %U _N
Inaccuracy: - Voltage	±1.5 %U _{SET} or ±30 mV
Low voltage block	
Pick-up setting	1.0080.00 %U _N , setting step 0.01 %U _N
Inaccuracy: -Voltage	$\pm 1.5~\% U_{SET}$ or $\pm 30~mV$
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy -Definite Time (U _M /U _{SET} ratio 1.05 \rightarrow)	±1.0 % or ±35 ms
IDMT setting parameters: k Time dial setting for IDMT A IDMT constant B IDMT constant C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms
Instant operation time	
Start time and instant operation time (trip): - U_M/U_{SET} ratio <0.95/1.05 \rightarrow	<65 ms

Reset	
Reset ratio	97 or 103 % of the pick-up voltage setting
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±35 ms
Instant reset time and start-up reset	<50 ms

9.2.1.12 Overfrequency and underfrequency protection (f>/<; 81O/81U)

Table. 9.2.1.12 - 429. Technical data for the overfrequency and underfrequency function.

Input signals		
Sampling mode	Fixed Tracking	
Frequency reference 1 Frequency reference 2 Frequency reference 3	CT1IL1, CT2IL1, VT1U1, VT2U1 CT1IL2, CT2IL2, VT1U2, VT2U2 CT1IL3, CT2IL3, VT1U3, VT2U3	
Pick-up		
f> pick-up setting f< pick-up setting	10.0070.00 Hz, setting step 0.01 Hz 7.0065.00 Hz, setting step 0.01 Hz	
Inaccuracy (sampling mode): - Fixed - Tracking	±20 mHz (50/60 Hz fixed frequency) ±20 mHz (U > 30 V secondary) ±20 mHz (I > 30 % of rated secondary)	
Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time (I _M /I _{SET} ratio +/- 50 mHz)	±1.5 % or ±50 ms (max. step size: 100 mHz)	
Instant operation time		
Start time and instant operation time (trip): - I _M /I _{SET} ratio +/- 50 mHz (Fixed) - I _M /I _{SET} ratio +/- 50 mHz (Tracking)	<70 ms (max. step size: 100 mHz) <3 cycles or <60 ms (max. step size: 100 mHz)	
Reset		
Reset ratio	0.020 Hz	
Instant reset time and start-up reset: - I _M /I _{SET} ratio +/- 50 mHz (Fixed) - I _M /I _{SET} ratio +/- 50 mHz (Tracking)	<110 ms (max. step size: 100 mHz) <3 cycles or <70 ms (max. step size: 100 mHz)	

Note!

- The secondary voltage must exceed 2 volts or the current must exceed 0.25 amperes (peakto peak) in order for the function to measure frequency.
- The frequency is measured two seconds after a signal is received.
- The fixed frequency mode: When the fixed mode is used, the system's nominal frequency should be set to 50 or 60 Hz.
- The tracked frequency mode: When tracked mode is used, the system's nominal frequency can be anything between 7...75 Hz.

9.2.1.13 Rate-of-change of frequency protection (df/dt>/<; 81R)

Table. 9.2.1.13 - 430. Technical data for the rate-of-change of frequency function.

Input signals

	Fixed
Sampling mode	Tracking
Frequency reference 1	CT1IL1, CT2IL1, VT1U1, VT2U1
Frequency reference 2	CT1IL2, CT2IL2, VT1U2, VT2U2
Frequency reference 3	CT1IL3, CT2IL3, VT1U3, VT2U3
Pick-up	
df/dt >/< pick-up setting	0.151.00 Hz/s, setting step 0.01 Hz
f> limit	10.0070.00 Hz, setting step 0.01 Hz
f< limit	7.0065.00 Hz, setting step 0.01 Hz
Pick-up inaccuracy	
- df/dt	±5.0 %I _{SET} or ±20 mHz/s
- frequency	±15 mHz (U > 30 V secondary)
	±20 mHz (I > 30 % of rated secondary)
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy:	
- Definite time (I _M /I _{SET} ratio +/- 50 mHz)	±1.5 % or ±110 ms (max. step size: 100 mHz)
Start time and instant operation time (trip):	
- f _M /f _{SET} ratio +/- 20 mHz (overreach)	<200 ms
- f _M /f _{SET} ratio +/- 200 mHz (overreach)	<90 ms
Reset	
f< and f> frequency limit	±0.020 Hz
df/dt	±10.0 % of pick-up or 50 mHz/s
Instant reset time and start-up reset:	
- f _M /f _{SET} ratio +/- 50 mHz	<325 ms (max. step size: 100 mHz)

Note!

• Frequency is measured two seconds after a signal is received.

9.2.1.14 Machine thermal overload protection (TM>; 49M)

Table. 9.2.1.14 - 431. Technical data for the machine thermal overload protection function.

Measurement inputs	
Current inputs	Phase current inputs: IL1 (A), IL2 (B), IL3 (C)
Current input magnitudes	TRMS phase currents (up to the 31 st harmonic)
Pick-up (Heating)	
NPS bias factor (unbalance effect) Pick-up current setting Thermal alarm and trip level setting range Motor service factor	0.110.0, setting step 0.1 0.1040.00 × I_N , setting step 0.01 × I_N 0.0150.0 %, setting step 0.1 % 0.015.00 × I_N , setting step 0.01 × I_N
Cold condition: - Long heat T const (cold) - Short heat T const (cold)	0.0500.0 min, setting step 0.1 min 0.0500.0 min, setting step 0.1 min

Hot condition: - Long heat T const (hot) - Short heat T const (hot) - Hot condition theta limit (Cold → Hot spot)	0.0500.0 min, setting step 0.1 min 0.0500.0 min, setting step 0.1 min 0.00100.00 %, setting step 0.01 %
Reset (Cooling)	
Reset ratio (pick-up and alarms)	99 %
Stop condition: - Long cool T const (stop) - Short cool T const (stop) - Short cool T in use time	0.0500.0 min, setting step 0.1 min 0.0500.0 min, setting step 0.1 min 0.03000.0 min, setting step 0.1 min
Run condition: - Long cool T const (stop)	0.0500.0 min, setting step 0.1 min
Operation time	
Definite time function operating time setting	0.03600.0 s, setting step 0.1 s
Inaccuracy: - Pick-up and reset	±1.0 % or ±500 ms
Environmental settings	
Thermal replica temperature estimates	Selectable between °C and °F
Ambient temperature effect k min. and max. range Ambient temperature min. and max. range	Linear or manually set curve 0.015.00 × I _N , setting step 0.01 × I _N –60500 deg, setting step 1 deg
Thermal model biasing (ambient): - Set ambient temperature - RTD	–60…500 deg, setting step 1 deg Used measured ambient value

9.2.1.15 Power protection (P, Q, S>/<; 32)

Table. 9.2.1.15 - 432. Technical data for the power protection function.

Measurement inputs	
Current inputs	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C)
Voltage inputs	U _{L1} , U _{L2} , U _{L3} U _{L12} , U _{L23} , U _{L31} (+ U ₀)
Calculated measurements	Three-phase active, reactive or apparent power (P, Q or S) value based on the chosen or set nominal amplitude.
Pick-up	
Comparator selection	> or <
> or <	-500.000500.000 %/MVA _N , setting step 0.005 %/MVA _N
Inaccuracy: - Active, reactive, or apparent power	Typically <1.0 %P _{SET}
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time (P _M /P _{SET} ratio 1.05→)	±1.0 % or ±35 ms
Instant operation time	
Start time and instant operation time (trip): - PQS_M/PQS_{SET} ratio 1.05 \rightarrow	<40 ms

Reset	
Reset ratio	97 or 103 %Pset
Instant reset time and start-up reset	<40 ms

Note!

- The voltage measurement starts from 0.5 V and the current measurement from 25 mA. In case either or both are missing, the measured magnitude is forced to 0 MW/MVar/MVA. Please avoid using settings that should operate below the relay's current squelch limit (25 mA on the relay terminal).
- With very small under power pick-up settings time delay inaccuracy might double.

9.2.1.16 Underimpedance protection (Z<; 21U)

Table. 9.2.1.16 - 433. Technical data for the underimpedance function.

Measurement inputs		
Current inputs	Phase current inputs: IL1 (A), IL2 (B), IL3 (C)	
Voltage inputs	UL1, UL2, UL3 UL12, UL23, UL31 + U0	
Calculated impedances	Phase-to-phase impedances Phase-to-ground impedances Positive sequence impedance	
Pick-up		
Pick-up setting	0.1150.0 Ω , setting step 0.1 Ω	
Inaccuracy: - Impedance calculation	Typically <1.0 %Z _{SET}	
Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time (Z _M /Z _{SET} ratio <0.95)	±1.0 % or ±25 ms	
Instant operation time		
Start time and instant operation time (trip): - Z_M/Z_{SET} ratio <0.95	<45 ms	
Reset		
Reset ratio	103 %Z _{SET}	
Reset time setting Inaccuracy: Reset time	0.010150.000 s, step 0.005 s ±1.0 % or ±25 ms	
Instant reset time and start-up reset	<45 ms	

Note!

- Impedance calculation: Voltage measurement starts from 0.5 V and current measurement from 50 mA. In case either or both are missing, the impedance measurement is forced to infinite.
- Angle memory: During three-phase short-circuits the angle memory is active for 0.5 seconds in case the voltage drops below the squelch limit (0.5 V). During this 0.5 s time the impedance is calculated based on the 1.0 V secondary voltage value and voltage angles before the fault.

9.2.1.17 Voltage-restrained overcurrent protection (Iv>; 51V)

Table. 9.2.1.17 - 434. Technical data for the voltage-restrained overcurrent protection function.

Measurement inputs		
Current inputs	Phase current inputs: IL1 (A), IL2 (B), IL3 (C)	
Current input magnitudes	RMS phase currents	
Voltage inputs	UL1, UL2, UL3 UL12, UL23, UL31 + U0	
Voltage input calculation	Positive sequence voltage	
Pick-up		
Pick-up current setting (point 1 & 2)	$0.1040.00\times I_N,$ setting step $0.01\times I_N$	
Pick-up voltage setting (point 1 & 2)	0.05150.00 %U _N , setting step 0.01 %U _N	
Inaccuracy: - Current - Voltage	±0.5 %Iset or ±15 mA (0.104.0 × Iset) ±1.5 %Uset or ±30 mV	
Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time (I _M /I _{SET} ratio 1.05→)	±1.0 % or ±25 ms	
IDMT setting parameters: k Time dial setting for IDMT A IDMT constant B IDMT constant C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001	
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms	
Instant operation time		
Start time and instant operation time (trip): $-I_M/I_{SET}$ ratio 1.05 \rightarrow	<40 ms	
Reset		
Reset ratio: - Current	97 % of the pick-up current setting	
Reset time setting Inaccuracy: Reset time	0.000150.000 s, step 0.005 s ±1.0 % or ±25 ms	
Instant reset time and start-up reset	<45 ms	

9.2.1.18 100 % stator earth fault protection (U03rd>; 64S)

Table. 9.2.1.18 - 435. Technical data for the 100 % stator earth fault protection function.

Measurement updates	
Current inputs	Phase current inputs: IL1 (A), IL2 (B), IL3 (C)
Current input calculation	Positive sequence current (I1)
Voltage inputs	Residual voltage from U3 or U4 voltage channel
Voltage input magnitude	Zero sequence voltage third harmonic
Pick-up	
Pick-up voltage setting	1.0095.00 %U0 _N , setting step 0.01 %U0 _N

Inaccuracy: - U0 3rd harmonic	±1.0 %U0 _{SET} or ±50 mV	
Low-current blocking		
"No load" current setting	$0.001.00 \times I_N$, setting step $0.01 \times I_N$	
Inaccuracy: - Starting (I1)	± 1.0 %I1 _{SET} or ± 100 mA (0.104.0 × I _N)	
Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time (I _M /I _{SET} ratio 0.95)	±1.0 % or ±30 ms	
Instant operation time		
Start time and instant operation time (trip): - U _M /U _{SET} ratio <0.95	<60 ms	
Reset		
Reset ratio	103 % of the pick-up voltage setting	
Reset time setting Inaccuracy: Reset time	0.010150.000 s, step 0.005 s ±1.0 % or ±30 ms	
Instant reset time and start-up reset	<45 ms	

Note!

• "No load" current setting: The "No load" current setting value of $0.00 \times I_N$ is only for commissioning purpose. When using the device under normal conditions always use the value $0.01 \times I_N$ or greater.

9.2.1.19 Resistance temperature detectors

Table. 9.2.1.19 - 436. Technical data of the resistance temperature detectors.

Inputs	
Resistance input magnitudes	Measured temperatures measured by RTD sensors
Alarm channels	12 individual alarm channels
Settable alarms	24 alarms available (two per each alarm channel)
Pick-up	
Alarm setting range Inaccuracy Reset ratio	101.002000.00 deg, setting step 0.1 deg (either < or > setting) ±3 % of the set pick-up value 97 % of the pick-up setting
Operation	
Operating time	Typically <500 ms

9.2.1.20 Power factor protection (PF<; 55)

Table. 9.2.1.20 - 437. Technical data for the power factor protection function.

Measurement inputs	
Current inputs	Phase current inputs: IL1 (A), IL2 (B), IL3 (C)
Voltage inputs	U _{L1} , U _{L2} , U _{L3} U _{L12} , U _{L23} , U _{L31} (+ U ₀)

Calculated measurement	Three-phase power factor
Pick-up	
Pick-up setting	0.000.99, setting step 0.01
Inaccuracy: - power factor (when U > 1.0 V and I > 0.1 A)	±0.001
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time (at least 0.01 below the setting)	±1.0 % or ±30 ms
Instant operation time	
Start time and instant operation time (trip): - at least 0.01 below the setting	<50 ms
Reset	
Reset ratio	1.03 of the power factor setting
Reset time	<50 ms

Note!

• The minimum voltage for the power factor calculation is 1.0 V secondary and the minimum current is 0.1 A secondary.

9.2.1.21 Volts-per-hertz overexcitation protection (V/Hz>; 24)

Table. 9.2.1.21 - 438. Technical data for the volts-per-hertz overexcitation protection function.

Measurement inputs	
Voltage input	UL1, UL2, UL3 UL12, UL23, UL31
Voltage input magnitude	Maximum line-to-line voltage
Frequency reference 1 Frequency reference 2 Frequency reference 3	CT1IL1, CT2IL1, VT1U1, VT2U1 CT1IL2, CT2IL2, VT1U2, VT2U2 CT1IL3, CT2IL3, VT1U3, VT2U3
Pick-up	
Pick-up setting	0.0175.00 %, setting step 0.01 %
Inaccuracy: - V/Hz	±1.0 %
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time (VHZ _M /VHZ _{SET} ratio 1.05)	±1.0 % or ±25 ms
Instant operation time	
Start time and instant operation time (trip): - VHZ _M /VHZ _{SET} ratio 1.05)	<40 ms
Reset	
Reset ratio	97 % of the pick-up setting
Reset time setting Inaccuracy: Reset time	0.000150.000 s, step 0.005 s ±1.0 % or ±25 ms

Instant reset time and start-up reset	<40 ms

Note!

• Measurement: Volts-per-hertz protection checks the highest line-to-line voltage. The used sampling mode for frequency must be "Tracking".

9.2.1.22 Underexcitation protection (Q<; 40)

Table. 9.2.1.22 - 439. Technical data for the underexcitation protection function.

Measurement inputs	
Current inputs	Phase current inputs: I_{L1} (A), I_{L2} (B), I_{L3} (C)
Voltage inputs	U _{L1} , U _{L2} , U _{L3} U _{L12} , U _{L23} , U _{L31} + U ₀
Calclucated measurements	Three-phase reactive power
Pick-up	
Pick-up setting	-1 000 000.000.00 kVar, setting step 0.01 kVar
Inaccuracy: - Reactive power	Typically <1.0 %Q _{SET}
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time (Q_M/Q_{SET} ratio 1.05 \rightarrow)	±1.0 % or ±35 ms
Instant operation time	
Start time and instant operation time (trip): - Q _M /Q _{SET} ratio <0.95	<50 ms
Reset	
Reset ratio	97 % of the set pick-up value
Reset time setting Inaccuracy: Reset time	0.000150.000 s, step 0.005 s ±1.0 % or ±35 ms
Instant reset time and start-up reset	<50 ms

Note!

• Voltage measurement starts from 0.5 V and current measurement from 50 mA. If either or both are missing the reactive power measurement is 0 kVar.

9.2.1.23 Generator/transformer differential protection (Idb>/Idi>/I0dHV>/I0dLV>; 87T/ 87N/87G)

Table. 9.2.1.23 - 440. Technical data for the transformer differential protection function.

Measurement inputs	
Current inputs (CT1 and CT2 current measurement module)	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C) Residual current channel I ₀₁ (Coarse) Residual current channel I ₀₂ (Fine) Calculated residual current: I _{L1} (A), I _{L2} (B), I _{L3} (C)

AQ-G257 Instruction manual

Version: 2.08

Current input magnitudes	The phase currents of the high-voltage and the low-voltage sides. Residual current measurement for HV/LV REF protection. Phase currents 2 nd and 5 th harmonic measurement.
Characteristics (differential and REF)	
Differential calculation mode Bias calculation mode	Add or subtract (CT direction) Average or maximum (sensitivity)
ldb> pick-up	0.01100.00 %, step 0.01 %, default 10.00 %
Turnpoint 1	0.0150.00 × I _N , step 0.01 × I _N , default 1.00 × I _N
Slope 1	0.01250.00 %, step 0.01 %, default 10.00 %
Turnpoint 2	0.0150.00 × I _N , step 0.01 × I _N , default 3.00 × I _N
Slope 2	0.01250.00 %, step 0.01 %, default 200.00 %
ldi> pick-up	200.001500.00 %, step 0.01 %, default 600.00 %
Internal harmonic blocking selection	None, 2 nd harmonic, 5 th harmonic, both 2 nd and 5 th harmonic.
2 nd harmonic blocking pick-up	0.0150.00 %, step 0.01 %, default 15.00 %
5 th harmonic blocking pick-up	0.0150.00 %, step 0.01 %, default 35.00 %
Inaccuracy:	
- Differential current	±3.0 %ISET or ±30 mA (0.104.0 × ISET)
Instant operation time	
Instant operation time >1.05 × I_{SET}	<40 ms (Harmonic blocking active)
Instant operation time >3.00 \times I _{SET}	<30 ms (Harmonic blocking active)
Reset	
Reset ratio: differential current	97 % of the differential current setting (typically)
Reset time	<45 ms

9.2.1.24 Arc fault protection (IArc>/I0Arc>; 50Arc/50NArc) (optional)

Table. 9.2.1.24 - 441. Technical data for the arc fault protection function.

Measurement inputs		
Current inputs	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C) Residual current channel I ₀₁ (Coarse) Residual current channel I ₀₂ (Fine)	
Current input magnitudes	Sample-based phase current measurement Sample-based residual current measurement	
Arc point sensor inputs	Channels S1, S2, S3, S4 (pressure and light sensor, or light-only sensor) Up to four (4) sensors per channel	
System frequency operating range	6.0075.00 Hz	
Pick-up		
Pick-up current setting (phase current) Pick-up current setting (residual current) Pick-up light intensity	$\begin{array}{l} 0.5040.00 \times I_N, \mbox{ setting step } 0.01 \times I_N \\ 0.1040.00 \times I_N, \mbox{ setting step } 0.01 \times I_N \\ 8, \mbox{ 25 or 50 kLx (the sensor is selected in the order code)} \end{array}$	
Starting inaccuracy (IArc> and I0Arc>)	± 3 % of the set pick-up value > 0.5 × I _N setting. 5 mA < 0.5 × I _N setting.	
Point sensor detection radius	180 degrees	
Operation time		

Light only: - Semiconductor outputs HSO1 and HSO2 - Regular relay outputs	Typically 7 ms (312 ms) Typically 10 ms (6.515 ms)
Light + current criteria (zone 14): - Semiconductor outputs HSO1 and HSO2 - Regular relay outputs	Typically 10 ms (6.514 ms) Typically 14 ms (1018 ms)
Arc BI only: - Semiconductor outputs HSO1 and HSO2 - Regular relay outputs	Typically 7 ms (212 ms) Typically 10 ms (6.515 ms)
Reset	
Reset ratio for current	97 % of the pick-up setting
Reset time	<35 ms

Note!

• The maximum length of the arc sensor cable is 200 meters.

9.2.1.25 Voltage memory

Table. 9.2.1.25 - 442. Technical data for the voltage memory function.

Measurement inputs		
Voltage inputs	U _{L1} , U _{L2} , U _{L3} U _{L12} , U _{L23} , U _{L31} + U ₀	
Current inputs (back-up frequency)	Phase current inputs: I_{L1} (A), I_{L2} (B), I_{L3} (C)	
Pick-up		
Pick-up voltage setting Pick-up current setting (optional)	2.0050.00 %U _N , setting step 0.01 x %U _N 0.0150.00 × I _N , setting step 0.01 × I _N	
Inaccuracy: - Voltage - Current	±1.5 %U _{SET} or ±30 mV ±0.5 %I _{SET} or ±15 mA (0.104.0 × I _{SET})	
Operation time		
Angle memory activation delay	<20 ms (typically 5 ms)	
Maximum active time	0.02050.000 s, setting step 0.005 s	
Inaccuracy: - Definite time (U _M /U _{SET} ratio >1.05)	±1.0 % or ±35 ms	
Angle memory		
Angle drift while voltage is absent	±1.0° per 1 second	
Reset		
Reset ratio: - Voltage memory (voltage) - Voltage memory (current)	103 % of the pick-up voltage setting 97 % of the pick-up current setting	
Reset time	<50 ms	

Note!

- Voltage memory is activated only when all line voltages fall below set pick-up value.
- Voltage memory activation captures healthy situation voltage angles, one cycle before actual activation (50Hz/20ms before "bolted" fault)

9.2.2 Control functions

9.2.2.1 Setting group selection

Table. 9.2.2.1 - 443. Technical data for the setting group selection function.

Settings and control modes		
Setting groups	8 independent, control-prioritized setting groups	
Control scale	Common for all installed functions which support setting groups	
Control mode		
Local	Any digital signal available in the device	
Remote	Force change overrule of local controls either from the setting tool, HMI or SCADA	
Operation time		
Reaction time	<5 ms from receiving the control signal	

9.2.2.2 Object control and monitoring

Table. 9.2.2.2 - 444. Technical data for the object control and monitoring function.

Signals	
Input signals	Digital inputs Software signals
Output signals	Close command output Open command output
Operation time	
Breaker traverse time setting	0.02500.00 s, setting step 0.02 s
Max. close/open command pulse length	0.02500.00 s, setting step 0.02 s
Control termination time out setting	0.02500.00 s, setting step 0.02 s
Inaccuracy: - Definite time operating time	±0.5 % or ±10 ms
Breaker control operation time	
External object control time	<75 ms
Object control during auto-reclosing	See the technical sheet for the auto-reclosing function.

9.2.2.3 Vector jump (Δφ; 78)

Table. 9.2.2.3 - 445. Technical data for the vector jump protection function.

Measurement inputs	
Voltage inputs	U _{L1} , U _{L2} , U _{L3} U _{L12} , U _{L23} , U _{L31} + U ₀
Monitored voltages	Any or all system line-to-line voltage(s) Any or all system line-to-neutral voltage(s) Specifically chosen line-to-line or line-to-neutral voltage U4 channel voltage
Pick-up	
Pick-up setting	0.0530.00°, setting step 0.01°
Inaccuracy: - Voltage angle	±30% overreach or 1.00 °

Low-voltage blocking		
Pick-up setting	0.01100.00 %U _N , setting step 0.01 %U _N	
Inaccuracy: - Voltage	±1.5 %U _{SET} or ±30 mV	
Instant operation time		
Alarm and trip operation time: - (Im/lset ratio > ±30% overreach or 1.00 °)	<40 ms (typically 30 ms) 50/60 Hz <50 ms (typically 40 ms) 16.67 Hz	
Reset		
Trip pulse	~5-10ms	

9.2.2.4 Synchrocheck (ΔV/Δa/Δf; 25)

Table. 9.2.2.4 - 446. Technical data for the synchrocheck function.

Input signals	
Voltage inputs	U1, U2, U3 or U4 voltage channel
Voltage input magnitudes	RMS line-to-line or line-to-neutral voltages U3 or U4 voltage channel RMS
Pick-up	
U diff < setting	2.0050.00 %U _N , setting step 0.01 %U _N
Angle diff < setting	3.090.0 deg, setting step 0.10 deg
Freq diff < setting	0.050.50 Hz, setting step 0.01 Hz
Inaccuracy: - Voltage - Frequency - Angle	±3.0 %User or ±0.3 %U _N ±25 mHz (U> 30 V secondary) ±1.5° (U> 30 V secondary)
Reset	
Reset ratio: - Voltage - Frequency - Angle	99 % of the pick-up voltage setting 20 mHz ±2.0°
Activation time	
Activation (to LD/DL/DD) Activation (to Live Live)	<35 ms <60 ms
Reset	<40 ms
Bypass modes	
Voltage check mode (excluding LL)	LL+LD, LL+DL, LL+DD, LL+LD+DL, LL+LD+DD, LL+DL+DD, bypass
U live > limit U dead < limit	0.10100.00 %U _N , setting step 0.01 %U _N 0.00100.00 %U _N , setting step 0.01 %U _N

Note!

- Voltage is scaled to the primary amplitude; therefore, the different sized PT secondaries are possible.
- The minimum voltage for direction and frequency solving is 20.0 $\% U_{N}.$
- U< dead limit is not in use when set to 0 $\% U_N.$
- When SYN3 is used, SYN1 and SYN2 must have the same reference voltage.
- In 3LN mode the synchronization to the L-N and L-L voltages is possible. In 3LL/2LL modes the synchronization is only supported to the L-L voltage.

9.2.3 Monitoring functions

9.2.3.1 Current transformer supervision

Table. 9.2.3.1 - 447. Technical data for the current transformer supervision function.

Measurement inputs	
Current inputs	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C) Residual current channel I ₀₁ (Coarse) (optional) Residual current channel I ₀₂ (Fine) (optional)
Current input magnitudes	RMS phase currents RMS residual current (I ₀₁ , I ₀₂) (optional)
Pick-up	
Pick-up current settings: - IsET high limit - ISET low limit - ISUM difference - ISET ratio - I2/11 ratio	$\begin{array}{l} 0.1040.00 \times I_{N}, \text{ setting step } 0.01 \times I_{N} \\ 0.1040.00 \times I_{N}, \text{ setting step } 0.01 \times I_{N} \\ 0.1040.00 \times I_{N}, \text{ setting step } 0.01 \times I_{N} \\ 0.01100.00 \ \%, \text{ setting step } 0.01 \ \% \\ 0.01100.00 \ \%, \text{ setting step } 0.01 \ \% \end{array}$
Inaccuracy: - Starting IL1, IL2, IL3 - Starting I2/I1 - Starting I01 (1 A) - Starting I02 (0.2 A)	
Time delay for alarm	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy_ - Definite time (I _M /I _{SET} ratio > 1.05)	±2.0 % or ±80 ms
Instant operation time (alarm): - Im/Iset ratio > 1.05	<80 ms (<50 ms in differential protection relays)
Reset	
Reset ratio	97/103 % of the pick-up current setting
Instant reset time and start-up reset	<80 ms (<50 ms in differential protection relays)

9.2.3.2 Voltage transformer supervision (60)

Table. 9.2.3.2 - 448. Technical data for the voltage transformer supervision function.

Measurement inputs	
Voltage inputs	UL1, UL2, UL3 UL12, UL23, UL31
Voltage input magnitudes	RMS line-to-line or line-to-neutral voltages
Pick-up	
Pick-up settings: - Voltage (low pick-up) - Voltage (high pick-up) - Angle shift limit	$\begin{array}{l} 0.050.50\times U_N\text{, setting step } 0.01\times U_N\\ 0.501.10\times U_N\text{, setting step } 0.01\times U_N\\ 2.0090.00\text{ deg, setting step } 0.10\text{ deg} \end{array}$
Inaccuracy: - Voltage - U angle (U> 1 V)	±1.5 %Uset ±1.5°
External line/bus side pick-up (optional)	$0 \rightarrow 1$
Time delay for alarm	

Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time (U _M /U _{SET} ratio > 1.05/0.95)	±1.0 % or ±35 ms
Instant operation time (alarm): - U _M /U _{SET} ratio > 1.05/0.95	<80 ms
VTS MCB trip bus/line (external input)	<50 ms
Reset	
Reset ratio	97/103 % of the pick-up voltage setting
Reset time setting Inaccuracy: Reset time	0.010…10.000 s, step 0.005 s ±2.0 % or ±80 ms
Instant reset time and start-up reset	<50 ms
VTS MCB trip bus/line (external input)	<50 ms

Note!

• When turning on the auxiliary power of an IED, the normal condition of a stage has to be fulfilled before tripping.

9.2.3.3 Circuit breaker wear monitoring

Table. 9.2.3.3 - 449. Technical data for the circuit breaker wear monitoring function.

Pick-up		
Breaker characteristics settings: - Nominal breaking current - Maximum breaking current - Operations with nominal current - Operations with maximum breaking current	0.00100.00 kA, setting step 0.001 kA 0.00100.00 kA, setting step 0.001 kA 0200 000 operations, setting step 1 operation 0200 000 operations, setting step 1 operation	
Pick-up setting for Alarm 1 and Alarm 2	0200 000 operations, setting step 1 operation	
Inaccuracy		
Inaccuracy for current/operations counter: - Current measurement element - Operation counter	$0.1\times$ I_N > I < 2 \times I_N ± 0.2 % of the measured current, rest 0.5 % ± 0.5 % of operations deducted	

9.2.3.4 Total harmonic distortion

Table. 9.2.3.4 - 450. Technical data for the total harmonic distortion function.

Input signals		
Current inputs	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C) Residual current channel I ₀₁ (Coarse) Residual current channel I ₀₂ (Fine)	
Current input magnitudes	Current measurement channels (FFT result) up to the 31 st harmonic component.	
Pick-up		
Operating modes	Power THD Amplitude THD	
Pick-up setting for all comparators	0.10200.00 % , setting step 0.01 %	
Inaccuracy	± 3 % of the set pick-up value > 0.5 × IN setting; 5 mA < 0.5 × IN setting.	
Time delay		

AQ-G257 Instruction manual

Version: 2.08

Definite time function operating time setting for all timers	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time operating time - Instant operating time, when I _M /I _{SET} ratio > 3 - Instant operating time, when I _M /I _{SET} ratio 1.05 < I _M /I _{SET} < 3	±0.5 % or ±10 ms Typically <20ms Typically <25 ms
Reset	
Reset time	Typically <10 ms
Reset ratio	97 %

9.2.3.5 Disturbance recorder

Table. 9.2.3.5 - 451. Technical data for the disturbance recorder function.

Recorded values		
Recorder analog channels	020 channels Freely selectable	
Recorder digital channels	095 channels Freely selectable analog and binary signals 5 ms sample rate (FFT)	
Performance		
Sample rate	8, 16, 32 or 64 samples/cycle	
Recording length	0.0001800.000 s, setting step 0.001 s The maximum length is determined by the chosen signals.	
Number of recordings	0100, 60 MB of shared flash memory reserved The maximum number of recordings according to the chosen signals and operation time setting combined	

9.2.3.6 Event logger

Table. 9.2.3.6 - 452. Technical data for the event logger function.

General information	
Event history capacity	15 000 events
Event timestamp resolution	0.001 seconds

9.3 Tests and environmental

Electrical environment compatibility

Table. 9.3 - 453. Disturbance tests.

All tests CE-approved and tested according to EN 60255-26		
Emissions		
Conducted emissions:		
EN 60255-26 Ch. 5.2, CISPR 22	150 kHz30 MHz	
Radiated emissions:	301 000 MHz	
EN 60255-26 Ch. 5.1, CISPR 11		

Immunity		
Electrostatic discharge (ESD):	Air discharge 15 kV	
EN 60255-26, IEC 61000-4-2	Contact discharge 8 kV	
Electrical fast transients (EFT):	Power supply input 4 kV, 5/50 ns, 5 kHz	
EN 60255-26, IEC 61000-4-4	Other inputs and outputs 4 kV, 5/50 ns, 5 kHz	
Surge:	Between wires: 2 kV, 1.2/50 µs	
EN 60255-26, IEC 61000-4-5	Between wire and earth: 4 kV, 1.2/50 μs	
Radiated RF electromagnetic field:	f = 801 000 MHz, 10 V/m	
EN 60255-26, IEC 61000-4-3		
Conducted RF field:		
EN 60255-26, IEC 61000-4-6	f = 150 kHz80 MHz, 10 V (RMS)	

Table. 9.3 - 454. Voltage tests.

Dielectric voltage test	
EN 60255-27, IEC 60255-5, EN 60255-1 2 kV, 50 Hz, 1 min	
Impulse voltage test	
EN 60255-27, IEC 60255-5	5 kV, 1.2/50 μs, 0.5 J

Physical environment compatibility

Table. 9.3 - 455. Mechanical tests.

Vibration test	
	213.2 Hz, ± 3.5 mm
EN 60255-1, EN 60255-27, IEC 60255-21-1	13.2100 Hz, ± 1.0 g
Shock and bump test	
EN 60255-1, EN 60255-27, IEC 60255-21-2	20 g, 1 000 bumps/dir.

Table. 9.3 - 456. Environmental tests.

Damp heat (cyclic)		
EN 60255-1, IEC 60068-2-30 Operational: +25+55 °C, 9397 % (RH), 12+12h		
Dry heat		
EN 60255-1, IEC 60068-2-2	Storage: +70 °C, 16 h	
	Operational: +55 °C, 16 h	
Cold test		
	Storage: –40 °C, 16 h	
EN 60255-1, IEC 60068-2-1	Operational: –20 °C, 16 h	

Table. 9.3 - 457. Environmental conditions.

IP classes	
	IP54 (front)
Casing protection class	IP21 (rear)

Temperature ranges	
Ambient service temperature range -35+70 °C	
Transport and storage temperature range	-40…+70 °C
Other	
Altitude	<2000 m
Overvoltage category	
Pollution degree	2

Casing and package

Table. 9.3 - 458. Dimensions and weight.

Without packaging (net)	
Dimensions	Height: 208 mm Width: 257 mm (½ rack) Depth: 165 mm (no cards or connectors)
Weight	1.5 kg
With packaging (gross)	
Dimensions	Height: 250 mm Width: 343 mm Depth: 256 mm
Weight	2.0 kg

10 Ordering information

		AQ -	G	2	5 7	7)	x - I	Р)	()	x	A	X	Α	- X	хх	X	хх	x :	хх
C	Model																		
0	Generator protection																		
	Device size																		
5	1/2 of 19" rack																		
	Analog measurement																		
7	10 Current measurement channels and 4 voltage measurem	nent c	hann	els															
	Functionality package																		
Α	Protection																		
	Protection + Synchronizer																		
	Mounting																		
Ρ	Panel mounted																		
	Auxiliary voltage																		
Н	80265 V AC/DC																		
	1872 VDC																		
0	Measurement accuracy																		
	Power/Energy measurement accuracy 0.5% Power/Energy measurement accuracy 0.2%																		
2	Tower/Energy measurement accuracy 0.270																		
	Terminals																		
A	Standard																		
В	Ring lug terminals																		
	Reserved for future use																		
A	N/A																		
	Digital inputs on power supply module																		
	3 Digital inputs, 24 V nominal threshold																		
	3 Digital inputs, 110 V nominal threshold 3 Digital inputs, 220 V nominal threshold																		
Ŭ	o bigital inputo, 220 V noninal triboliora																		
	Reserved for future use																		
A	N/A																		
A	Slots F, G, H, I, J, K, L, M, N (9 pcs) Empty																		
	8 Digital inputs																		
	5 Output relays ****																		
	Arc protection with 4 sensor channels, 2 x HSO, 1 x BI																		
	2 x mA input - 8 x RTD input **																		
	2 x RJ-45 100Mb Ethernet & IRIG-B */***																		
	2 x ST 100Mb Ethemet & IRIG-B */***																		
	4 x mA outputs - 1 x mA input ** Double LC 100Mb Ethemet (HSR, PRP redundant protocols	s) */**	*																
	Double RJ45 100Mb Ethemet (HSR, PRP redundant protocols																		
	RS-232 - Serial fiber (Plastic-Plastic) */***	5.5)																	
	RS-232 - Serial fiber (Plastic-Glass) */***																		
Ν	RS-232 - Serial fiber (Glass-Plastic) */***																		
0	RS-232 - Serial fiber (Glass-Glass) */***																		
	* One could at most not ID																		
	* One card at most per IED ** Two cards at most per IED																		
	*** Can only be applied to the last slot																		
	**** Six cards at most per IED																		

Accessories

Order code	Description	Note	Manufacturer
ADAM-4015-	E External 6-channel 2 or 3 wires RTD Input module, pre-configured	Requires an external power module	Advanced Co. Ltd.

AQ-G257 Instruction manual

Version: 2.08

ADAM-4018+- BE	External 8-ch Thermocouple mA Input module, pre-configured	Requires an external power module	Advanced Co. Ltd.
AQX121	Raising frame 120mm	Not available in Generator Commander applications.	Arcteq Ltd.
AQX122	Raising frame 40mm	Not available in Generator Commander applications.	Arcteq Ltd.
AQX098	Wall mounting bracket	Not available in Generator Commander applications.	Arcteq Ltd.
AQ-01A	Light point sensor unit (8,000 lux threshold)	Max. cable length 200 m	Arcteq Ltd.
AQ-01B	Light point sensor unit (25,000 lux threshold)	Max. cable length 200 m	Arcteq Ltd.
AQ-01C	Light point sensor unit (50,000 lux threshold)	Max. cable length 200 m	Arcteq Ltd.
AQ-02A	Pressure and light point sensor unit (8,000 lux threshold)	Max. cable length 200 m	Arcteq Ltd.
AQ-02B	Pressure and light point sensor unit (25,000 lux threshold)	Max. cable length 200 m	Arcteq Ltd.
AQ-02C	Pressure and light point sensor unit (50,000 lux threshold)	Max. cable length 200 m	Arcteq Ltd.

11 Contact and reference information

Manufacturer

Arcteq Relays Ltd.

Visiting and postal address

Kvartsikatu 2 A 1

65300 Vaasa, Finland

Contacts

Phone:	+358 10 3221 370
Website:	arcteq.fi
Technical support:	support.arcteq.fi
	+358 10 3221 388 (EET 9:00 – 17.00)
E-mail (sales):	sales@arcteq.fi