

AQ-S254

Alarm and Indication IED

Instruction manual

Table of contents

1	Document information		
	1.1 Version 2 revision notes		5
	1.2 Version 1 revision notes		
2	Abbreviations		8
3	General	. 1	0
4	IED user interface	. 1	1
	4.1 Panel structure	. 1	1
	4.1.1 Local panel structure		
	4.2 Configuring user levels and their passwords		
5	Functions		
Ŭ	5.1 Functions included in AQ-S254.	1	4
	5.2 General menu		
	5.3 Alarming function		
	5.4 Control functions		
	5.4.1 Setting group selection		
	5.4.2 Object control and monitoring.		
	5.4.3 Indicator object monitoring		
	5.4.4 Milliampere output control		
	5.4.5 Programmable control switch		
	5.4.6 Analog input scaling curves		
	5.4.7 Logical outputs		
	5.4.8 Logical inputs		
_	5.5 Programmable stage (PGx>/<; 99)		
6	Communication		
	6.1 Connections menu		
	6.2 Time synchronization		
	6.2.1 Internal		
	6.2.2 NTP		
	6.2.3 PTP		
	6.3 Communication protocols		
	6.3.1 IEC 61850		
	6.3.2 Modbus/TCP and Modbus/RTU		
	6.3.3 GOOSE		
	6.3.4 IEC 103	. 7	5
	6.3.5 IEC 101/104		
	6.3.6 SPA	. 7	8
	6.3.7 DNP3	. 7	8
	6.3.8 Modbus I/O	. 8	0
	6.4 Analog fault registers	. 8	1
	6.5 Real-time measurements to communication	. 8	1
	6.6 Modbus Gateway	. 8	4
7	Connections and application examples		
	7.1 Connections of AQ-S254		
8	Construction and installation		
	8.1 Construction		
	8.2 CPU module		
	8.3 Digital input module (optional)		
	8.4 Digital output module (optional)		
	8.5 RTD input module (optional)		
	8.6 Serial RS-232 communication module (optional)		
	8.7 LC or RJ45 100 Mbps Ethernet communication module (optional)		
	8.8 Double ST 100 Mbps Ethernet communication module (optional)		
	8.9 Double RJ45 10/100 Mbps Ethernet communication module (optional)		
	8.10 Dimensions and installation		
9	Technical data		
•			•

AQ-S254 Instruction manual

Version: 2.08

9.1 Hardware	
9.1.1 CPU & Power supply	107
9.1.1.1 Auxiliary voltage	107
9.1.1.2 CPU communication ports	107
9.1.1.3 CPU digital inputs	108
9.1.1.4 CPU digital outputs	
9.1.2 Option cards	
9.1.2.1 Digital input module	
9.1.2.2 Digital output module	
9.1.2.3 RTD input module	111
9.1.2.4 RS-232 & serial fiber communication module	111
9.1.2.5 Double LC 100 Mbps Ethernet communication module	111
9.1.2.6 Double ST 100 Mbps Ethernet communication module	111
9.1.3 Display	112
9.2 Functions	112
9.2.1 Control functions	112
9.2.1.1 Setting group selection	112
9.2.1.2 Object control and monitoring	112
9.2.2 Monitoring functions	113
9.3 Tests and environmental	113
10 Ordering information	115
11 Contact and reference information	116

Disclaimer

Please read these instructions carefully before using the equipment or taking any other actions with respect to the equipment. Only trained and qualified persons are allowed to perform installation, operation, service or maintenance of the equipment. Such qualified persons have the responsibility to take all appropriate measures, including e.g. use of authentication, encryption, anti-virus programs, safe switching programs etc. necessary to ensure a safe and secure environment and usability of the equipment. The warranty granted to the equipment remains in force only provided that the instructions contained in this document have been strictly complied with.

Nothing contained in this document shall increase the liability or extend the warranty obligations of the manufacturer Arcteq Relays Ltd. The manufacturer expressly disclaims any and all liability for any damages and/or losses caused due to a failure to comply with the instructions contained herein or caused by persons who do not fulfil the aforementioned requirements. Furthermore, the manufacturer shall not be liable for possible errors in this document.

Please note that you must always comply with applicable local legislation and regulations. The manufacturer gives no warranties that the content of this document is in all respects in line with local laws and regulations and assumes no liability for such possible deviations.

You are advised to notify the manufacturer in case you become aware of any errors in this document or of defects in the equipment.

The manufacturer reserves the right to update or amend this document at any time.

Copyright

Copyright © Arcteq Relays Ltd. 2022. All rights reserved.

1 Document information

1.1 Version 2 revision notes

Table. 1.1 - 1. Version 2 revision notes

Revision	2.00
Date	6.6.2019
	- New more consistent look.
	- Improved descriptions generally in many chapters.
Change	- Improved readability of a lot of drawings and images.
Changes	- Updated protection functions included in every IED manual.
	- Every protection IED type now has connection drawing, application example drawing with function block diagram and application example with wiring.
	- Added General-menu description.
Revision	2.01
Date	6.11.2019
	- Added description for LED test and button test.
	- Added display sleep timer description.
	- Complete rewrite of every chapter.
Changes	- Improvements to many drawings and formula images.
	- Order codes revised.
	- Added double ST 100 Mbps Ethernet communication module and Double RJ45 10/100 Mbps Ethernet communication module descriptions
Revision	2.02
Date	7.7.2020
Changes	- A number of image descriptions improved.
Revision	2.03
Date	27.8.2020

1	
	- Terminology consistency improved (e.g. binary inputs are now always called digital inputs).
	- Tech data modified to be more informative about what type of measurement inputs are used (phase currents/voltages, residual currents/voltages), what component of that measurement is available (RMS, TRMS, peak-to-peak) and possible calculated measurement values (powers, impedances, angles etc.).
	- Improvements to many drawings and formula images.
	- AQ-S254 Functions included list Added: Indicator objects.
	- Event read mode parameter added to Modbus description.
	- Added inches to Dimensions and installation chapter.
	- Added raising frames, wall mounting bracket, combiflex frame to order code.
Changes	- Added logical input and logical output function descriptions.
	- Additions to Abbreviations chapter.
	- Added button test description to Local panel structure chapter.
	- Added note to Configuring user levels and passwords chapter that AQ-250 frame units generate a time-stamped event from locking and unlocking user levels.
	- Added note to Configuring user levels and passwords chapter that user level with a password automatically locks itself after 30 minutes of inactivity.
	- Added more "Tripped stage" indications and fault types to Measurement value recorder function.
	- Updated: Digital input activation and release threshold setting ranges and added drop-off delay setting.
Revision	
Revision Date	setting.
	setting. 2.04
	setting. 2.04 8.6.2021
Date	setting. 2.04 8.6.2021 - Increased the consistency in terminology
Date	setting. 2.04 8.6.2021 - Increased the consistency in terminology - Various image upgrades
Date Changes	setting. 2.04 8.6.2021 - Increased the consistency in terminology - Various image upgrades - Visual update to the order codes
Date Changes Revision	setting. 2.04 8.6.2021 - Increased the consistency in terminology - Various image upgrades - Visual update to the order codes 2.05
Date Changes Revision	setting. 2.04 8.6.2021 - Increased the consistency in terminology - Various image upgrades - Visual update to the order codes 2.05 22.6.2021
Date Changes Revision Date	setting. 2.04 8.6.2021 - Increased the consistency in terminology - Various image upgrades - Visual update to the order codes 2.05 22.6.2021 - Fixed phase current measurement continuous thermal withstand from 30A to 20A. - Fixed lots of timing errors written to registers table. "Prefault" is -200 ms from Start event, "Pretrigger" is -20 ms from trip (or start if fault doensn't progress to trip), "Fault" is start (or trip if fault doesn't progress
Date Changes Revision Date	2.04 8.6.2021 - Increased the consistency in terminology - Various image upgrades - Visual update to the order codes 2.05 22.6.2021 - Fixed phase current measurement continuous thermal withstand from 30A to 20A. - Fixed lots of timing errors written to registers table. "Prefault" is -200 ms from Start event, "Pretrigger" is -20 ms from trip (or start if fault doensn't progress to trip), "Fault" is start (or trip if fault doesn't progress to trip).

	- Improved descriptions generally in many chapters.			
	- Improved readability of a lot of drawings and images.			
	- Order codes have been revised.			
	- Added LN mode parameters to all functions (On, Blocked, Test, Test/Blocked, Off).			
	- Added color themes parameter description.			
	- Improved color sleep mode description.			
Changes	- Improved alarm function color behavior description and images.			
	- Added operation time with different measurement values vs setting ratio in instant operation mode to non-directional overcurrent function description.			
	- Added 30 s pretriggering time for disturbance recorder (AQ-250 devices only).			
	- Added new trip detections and fault types to measurement value recorder.			
	- Added user description parameter descriptions for digital inputs, digital outputs, logical inputs, logical outputs and GOOSE inputs.			
	- Added spare part codes and compatibilities to option cards.			
Revision	2.07			
Revision Date	2.07 7.7.2022			
	7.7.2022			
	7.7.2022 - Fixed logical input amounts.			
Date	7.7.2022 - Fixed logical input amounts Added common signals function description.			
Date	7.7.2022 - Fixed logical input amounts. - Added common signals function description. - Added PTP time synchronization description.			
Date	7.7.2022 - Fixed logical input amounts. - Added common signals function description. - Added PTP time synchronization description. - Added Modbus Gateway description.			
Date Changes	7.7.2022 - Fixed logical input amounts. - Added common signals function description. - Added PTP time synchronization description. - Added Modbus Gateway description. - Added alarm view carousel designer setting descriptions.			
Date Changes Revision	7.7.2022 - Fixed logical input amounts. - Added common signals function description. - Added PTP time synchronization description. - Added Modbus Gateway description. - Added alarm view carousel designer setting descriptions.			
Date Changes Revision	7.7.2022 - Fixed logical input amounts. - Added common signals function description. - Added PTP time synchronization description. - Added Modbus Gateway description. - Added alarm view carousel designer setting descriptions. 2.08 22.7.2022			
Date Changes Revision	7.7.2022 - Fixed logical input amounts. - Added common signals function description. - Added PTP time synchronization description. - Added Modbus Gateway description. - Added alarm view carousel designer setting descriptions. 2.08 22.7.2022 - Added stage forcing parameter to function descriptions.			
Date Changes Revision Date	7.7.2022 - Fixed logical input amounts. - Added common signals function description. - Added PTP time synchronization description. - Added Modbus Gateway description. - Added alarm view carousel designer setting descriptions. 2.08 22.7.2022 - Added stage forcing parameter to function descriptions. - Fixes to "Real time signals to comm" description.			

1.2 Version 1 revision notes

Table. 1.2 - 2. Version 1 revision notes

Revision	1.00		
Date	15.1.2018		
Changes	- The first revision for AQ-S254		
Revision	1.01		
Date	18.1.2019		
Changes	- Added HMI display technical data		

2 Abbreviations

- AI Analog input
- AR Auto-recloser
- ASDU Application service data unit
- AVR Automatic voltage regulator
- BCD Binary-coded decimal
- CB Circuit breaker
- CBFP Circuit breaker failure protection
- CLPU Cold load pick-up
- CPU Central processing unit
- CT Current transformer
- CTM Current transformer module
- CTS Current transformer supervision
- DG Distributed generation
- DHCP Dynamic Host Configuration Protocol
- DI Digital input
- DO Digital output
- DOL Direct-on-line
- DR Disturbance recorder
- DT Definite time
- FF Fundamental frequency
- FFT Fast Fourier transform
- FTP File Transfer Protocol
- GI General interrogation
- HMI Human-machine interface
- HR Holding register
- HV High voltage
- HW Hardware
- IDMT- Inverse definite minimum time
- IED Intelligent electronic device

IGBT – Insulated-gate bipolar transistor

I/O – Input and output

IRIG-B – Inter-range instruction group, timecode B

LCD - Liquid-crystal display

LED – Light emitting diode

LV – Low voltage

NC - Normally closed

NO - Normally open

NTP - Network Time Protocol

RMS – Root mean square

RSTP – Rapid Spanning Tree Protocol

RTD – Resistance temperature detector

RTU – Remote terminal unit

SCADA – Supervisory control and data acquisition

SG – Setting group

SOTF - Switch-on-to-fault

SW - Software

THD – Total harmonic distortion

TRMS – True root mean square

VT – Voltage transformer

VTM – Voltage transformer module

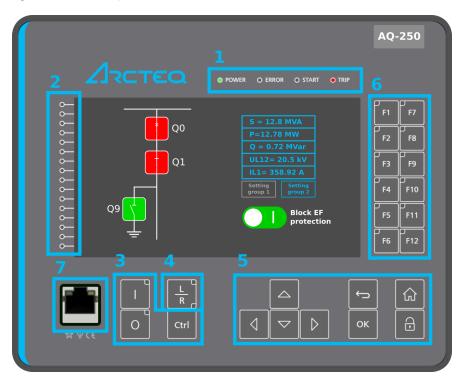
VTS – Voltage transformer supervision

3 General

The AQ-S254 alarm and indication unit is a member of the AQ-200 product line. The hardware and software are modular: the hardware modules are assembled and configured according to the application's I/O requirements and the software determines the available functions. This manual describes the specific application of the AQ-S254 alarm and indication unit. For other AQ-200 series products please consult their respective device manuals.

AQ-S254 may be applied as a substation alarm sounder, a substation general I/O extension unit or in any other application that requires extended I/O capabilities. The local indications are visualized conveniently through the freely programmable alarm display and event list. There are up to fourteen (14) option card slots available for additional I/O or communication cards for more comprehensive monitoring and control applications. AQ-S254 can be connected to a substation automation system by using various standard communication protocols, including the IEC 61850 substation communication standard.

4 IED user interface


4.1 Panel structure

The user interface section of an AQ-200 series device is divided into two user interface sections: one for the hardware and the other for the software. You can access the software interface either through the front panel or through the AQtivate freeware software suite.

4.1.1 Local panel structure

The front panel of AQ-250 series devices have multiple LEDs, control buttons and a local RJ-45 Ethernet port for configuration. Each unit is also equipped with an RS-485 serial interface and an RJ-45 Ethernet interface on the back of the device. See the image and list below.

Figure. 4.1.1 - 1. Local panel structure.

- 1. Four (4) default LEDs: "Power", "Error", "Start" (configurable) and "Trip" (configurable).
- 2. Sixteen (16) freely configurable LEDs (red, orange, green) with programmable legend texts.
- 3. Three (3) object control buttons: Choose the controllable object with the Ctrl button and control the breaker or other object with the I and the O buttons.
- 4. The L/R button switches between the local and the remote control modes.
- 5. Eight (8) buttons for IED local programming: the four navigation arrows, the **Back** and the **OK** buttons, the **Home** and the password activation buttons).
- 6. Twelve (12) freely configurable function buttons (F1...F12). Each button has a freely configurable LED (red, orange, green).
- 7. One (1) RJ-45 Ethernet port for IED configuration.

When the unit is powered on, the green "Power" LED is lit. When the red "Error" LED is lit, the device has an internal (hardware or software) error that affects the operation of the unit. The activation of the yellow "Start" LED and the red "Trip" LED are based on the setting the user has put in place in the software.

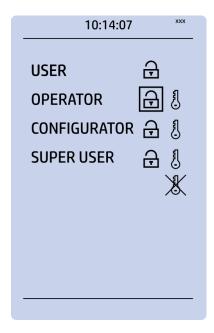
The sixteen freely configurable LEDs are located on the left side of the display. Their activation and color (green, orange, red) are based on the settings the user has put in place in the software.

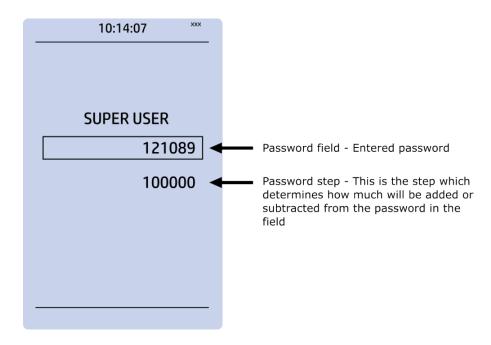
The view in the screen is freely configurable. Virtual switches and buttons can be added which can be used to change the setting groups or control the device's general logic locally or remotely. The status of the object (circuit breaker, disconnector) can be displayed on the screen. All measured and calculated values regardless of the magnitude catecory (current, voltage, power, energy, frequency, etc.) can be shown on the screen.

Holding the I (object control) button down for five seconds brings up the button test menu. It displays all the physical buttons on the front panel. Pressing any of the listed buttons marks them as tested. When all buttons are marked as having been tested, the device will return back to the default view.

4.2 Configuring user levels and their passwords

As a factory default, no user level is locked with a password in an IED. In order to activate the different user levels, click the **Lock** button in the device's HMI and set the desired passwords for the different user levels.




NOTE!

Passwords can only be set locally in an HMI.

A number of stars are displayed in the upper right corner of the HMI; these indicate the current user level. The different user levels and their star indicators are as follows (also, see the image below for the HMI view):

- Super user (***)
- Configurator (**)
- Operator (*)
- User ()

You can set a new password for a user level by selecting the key icon next to the user level's name. After this you can lock the user level by pressing the **Return** key while the lock is selected. If you need to change the password, you can select the key icon again and give a new password. Please note that in order to do this the user level whose password is being changed must be unlocked.

As mentioned above, the access level of the different user levels is indicated by the number of stars. The required access level to change a parameter is indicated with a star (*) symbol if such is required. As a general rule the access levels are divided as follows:

- *User:* Can view any menus and settings but cannot change any settings, nor operate breakers or other equipment.
- Operator: Can view any menus and settings but cannot change any settings BUT can operate breakers and other equipment.
- Configurator: Can change most settings such as basic protection pick-up levels or time delays, breaker control functions, signal descriptions etc. and can operate breakers and other equipment.
- Super user: Can change any setting and can operate breakers and other equipment.

NOTE!

In AQ-250 frame units unlocking and locking a user level generates a time-stamped event to the event log.

NOTE!

Any user level with a password automatically locks itself after half an hour (30 minutes) of inactivity.

5 Functions

5.1 Functions included in AQ-S254

The AQ-S254 alarm and indication IED includes the following functions as well as the number of stages in those functions.

Table. 5.1 - 3. Alarming functions of AQ-S254.

Name	IEC ANSI		Description
ALARM	-	-	Alarming function (128 alarms)
PGS (110)	PGx>/<	99	Programmable stage

Table. 5.1 - 4. Control functions of AQ-S254.

Name	IEC	ANSI	Description
OD			Object control and monitoring
OBJ	-	-	(10 objects available)
CINI			Indicator object monitoring
CIN	CIN -		(20 indicators available)

Table. 5.1 - 5. Transducer functions of AQ-S254.

Name	IEC	ANSI	Description
RTD	-	-	Resistance temperature detectors

5.2 General menu

The *General* menu consists of basic settings and indications of the device. Additionally, the all activated functions and their status are displayed in the *Protection*, *Control* and *Monitor* profiles.

Table. 5.2 - 6. Parameters and indications in the *General* menu.

Name	Range	Default	Description	
Device name	-	Unitname	The file name was those fields when leading the logo configuration file from the	
Device location	-	Unitlocation	The file name uses these fields when loading the .aqs configuration file from the AQ-200 unit.	
Enable stage forcing	0: Disabled 1: Enabled	0: Disabled	When this parameter is enabled it is possible for the user to force the protection, control and monitoring functions to different statuses like START and TRIP. This is done in the function's <i>Info</i> page with the <i>Force status to</i> parameter.	
Allow setting of device mode	0: Prohibited 1: From HMI/setting tool only 2: Allowed	0: Prohibited	Allows global mode to be modified from setting tool, HMI and IEC61850.	
Allow setting of individual LN mode	0: Prohibited 1: From HMI/setting tool only 2: Allowed	0: Prohibited	Allow local modes to be modified from setting tool, HMI and IEC61850.	

Name	Range	Default	Description
System phase rotating order	0: A-B-C 1: A-C-B	0: A-B-C	Allows the user to switch the expected order in which the phase measurements are wired to the unit.
Language	0: User defined 1: English 2: Finnish 3: Swedish 4: Spanish 5: French 6: German 7: Russian 8: Ukrainian	1: English	Changes the language of the parameter descriptions in the HMI. If the language has been set to "Other" in the settings of the AQtivate setting tool, AQtivate follows the value set into this parameter.
Clear events	0: - 1: Clear	0: -	Clears the event history recorded in the AQ-200 device.
Display brightness	08	4	Changes the display brightness. Brightness level 0 turns the display off.
Display sleep	03600s	0s	If no buttons are pressed after a set time, the display changes the brightness to whatever is set on the "Display sleep brightness" parameter. If set to 0 s, this feature is not in use.
timeout			When the device is in sleep mode pressing any of the buttons on the front panel of the device will wake the display.
Display sleep brightness	08	0	Defines the brightness of the display when the set display sleep timeout has elapsed. The brightness level "0" turns the display off.
Return to default view	03600s	0s	If the user navigates to a menu and gives no input after a period of time defined with this parameter, the unit automatically returns to the default view. If set to 0 s, this feature is not in use.
LED test	0: - 1: Activated	0: -	When activated, all LEDs are lit up. LEDs with multiple possible colors blink each color.
Display color theme	0: Light theme 1: Dark theme	0: Light theme	Defines the color theme used in the HMI.
Reset latches	0: - 1: Reset	0: -	Resets the latched signals in the logic and the matrix. When a reset command is given, the parameter automatically returns back to "-".
Measurement recorder	0: Disabled 1: Enabled	0: Disabled	Enables the measurement recorder tool, further configured in $Tools \to Misc \to Measurement$ recorder.
Clear active alarms	0: Disabled 1: Enabled	0: Disabled	Enables the clearing of those alarms that still have an activation signal on. If an alarm is cleared while its activation signal is active, the alarm will go to the "active cleared" status.
Reconfigure mimic	0: - 1: Reconfigure	0: -	Reloads the mimic to the unit.

Table. 5.2 - 7. The $\it General$ menu read-only parameters

Name	Description
Serial number	The unique serial number identification of the unit.
Firmware version	The firmware software version of the unit.
Hardware configuration	The order code identification of the unit.
UTC time	The UTC time value which the device's clock uses.

5.3 Alarming function

Figure. 5.3 - 2. Front panel view

Signal alarming is the main feature of AQ-S254 Alarming IEDs. The alarming unit has 128 alarms the user can set. The user defines each alarm description and activating signal. These settings are done in the *Alarm settings* menu ($Control \rightarrow Device I/O \rightarrow Alarm settings$).

The alarming unit generates events with time stamps into the event history and the alarm statuses are shown on the IED's display. The alarm statuses can also be read in the remote terminal unit (RTU).

Alarm descriptions

The user-edited alarm text is displayed in the Alarm view in the HMI when the alarm has been activated. The user can update the descriptions in the settings ($Commands \rightarrow Write\ to\ relay \rightarrow Parameters\ or\ Commands \rightarrow Write\ changes$).

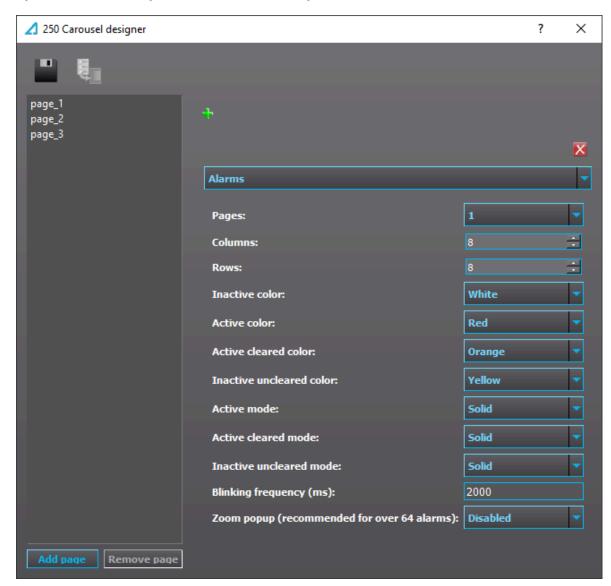

Table. 5.3 - 8. Alarm user description.

Name	Range	Default	Description
User editable description Alarm x	131 characters	Alarm x	Description of the alarm. This description is used in several menu types for easier identification.

Assigning alarm activation signals

Alarm activation signals are divided into eight tabs in groups of 16. The user can assign a digital input, a logic signal or a GOOSE message into each of the alarms. When any of the alarms have been activated by the assigned signal, the alarm appears in the *Alarms* view in the device's HMI.

Figure. 5.3 - 3. Digital inputs assigned as alarm activating signals.



The user can assign signals into alarms by clicking on the matrix. When the matrix is done, it must be sent to the device for the changes to take effect ($Commands \rightarrow Write \ to \ relay \rightarrow Logic$).

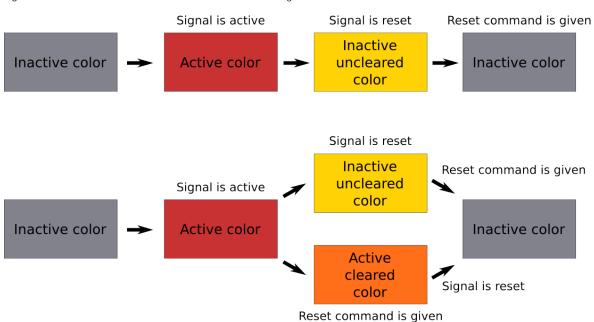
If the alarm signal's ON state has been checked in the *Event Mask*, an ALARM ON event is recorded with a time stamp into the event history. These alarms are also reported in the communication protocol if one is in use.

Changing the look of the Alarms view

Figure. 5.3 - 4. Carousel designer view of the Alarms view settings.

Changing the look of the *Alarms* viewis done in Carousel designer. Carousel designer is found in *Tools* → *Carousel designer*.

The column and row settings allow the user to define the size, shape and number of alarms displayed in the *Alarms* view. Any number of alarms between 1 and 128 can be displayed. The color displayed in different states of the alarm can be gray, red, green, yellow, orange, or blue.


Table. 5.3 - 9. Alarm view settings

18

Parameter	Description	
Pages	Number of pages used. Pages can be scrolled with left and right arrow buttons. Each page used as many columns and rows as is defined with following two parameters.	
Columns	Number of columns used per page.	
Rows	Number of rows used per page.	
Inactive color.	Color displayed for an alarm that hasn't been activated.	
Active color.	Color displayed for an alarm that has a signal currently active.	

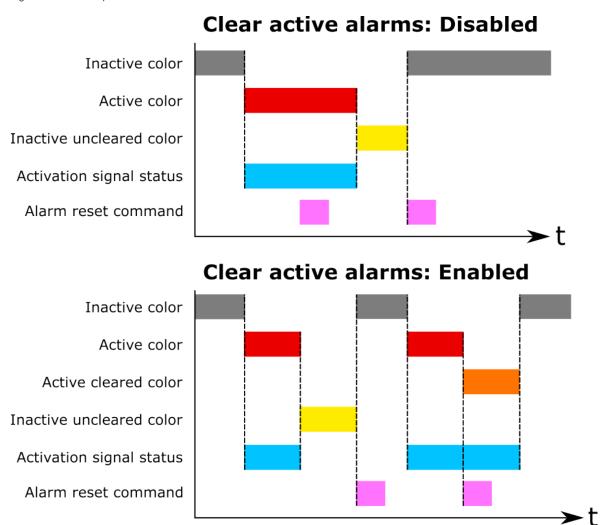

Parameter	Description	
Active cleared color.	Color displayed for an alarm that has a signal currently active AND it has been acknowledged with "Reset command". If "Reset command" is given the alarm will return to "Inactive color" when the activating signal is reset too.	
Inactive uncleared color.	Color displayed for an alarm that had a signal active in the past but hasn't been acknowledged with "Reset command" yet. After "Reset command" is given the alarm will return to "Inactive color".	
Active / Active cleared / Inactive uncleared mode	Selection between solid and blinking modes. If blinking mode is selected the color of alarm will alternate between its color and inacive color.	
Blinking frequency	Sets how frequently blinking states switch colors.	
Zoom pop-up When enabled pressing up arrow button will zoom alarm boxes. Zoomed alarm can then be with up, down, left and right arrow buttons. Press back-button to exit zoomed view.		

Figure. 5.3 - 5. Alarm color behaviour with active alarm clearing enabled and disabled.

By default active alarms cannot be cleared. This can be changed by setting *Clear active* alarms to *Enabled* at *General* \rightarrow *Device info* menu. When enabled the alarms otherwise change color just the same way as with default settings but it is also possible to clear an alarm while the activation signal is still active. If alarm is cleared when signal is active, color will change to what has been set to *Active cleared color* in Carousel designer (orange by default).

Figure. 5.3 - 6. Comparision between clear active alarms disabled and enabled.

Alarm zooming

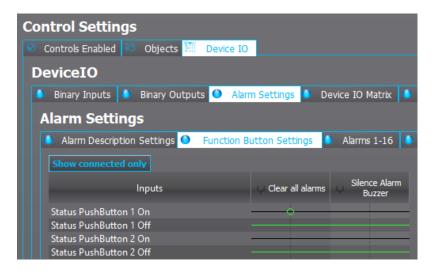

If *Zoom popup* parameter is enabled in *Carousel designer* menu it is possible to enlarge alarms by pressing the up-arrow button. Once in zoomed mode direction arrows up, down, left and right can be used for choosing the alarm. Use Back-button to exit zoomed mode.

Figure. 5.3 - 7. Alarm 1 is zoomed

Alarm 1	m 2	Alarm 3	Alarm 4	Alarm 5	Alarm 6	Alarm 7	Alarm 8
20/06/20 12:32:05.8		Alarm 11	Alarm 12	Alarm 13	Alarm 14	Alarm 15	Alarm 16
12.32.03.0	m 18	Alarm 19	Alarm 20	Alarm 21	Alarm 22	Alarm 23	Alarm 24
Alarm 25	Alarm 26	Alarm 27	Alarm 28	Alarm 29	Alarm 30	Alarm 31	Alarm 32
Alarm 33	Alarm 34	Alarm 35	Alarm 36	Alarm 37	Alarm 38	Alarm 39	Alarm 40
Alarm 41	Alarm 42	Alarm 43	Alarm 44	Alarm 45	Alarm 46	Alarm 47	Alarm 48
Alarm 49	Alarm 50	Alarm 51	Alarm 52	Alarm 53	Alarm 54	Alarm 55	Alarm 56
Alarm 57	Alarm 58	Alarm 59	Alarm 60	Alarm 61	Alarm 62	Alarm 63	Alarm 64
Alarm 65	Alarm 66	Alarm 67	Alarm 68	Alarm 69	Alarm 70	Alarm 71	Alarm 72
Alarm 73	Alarm 74	Alarm 75	Alarm 76	Alarm 77	Alarm 78	Alarm 79	Alarm 80
Alarm 81	Alarm 82	Alarm 83	Alarm 84	Alarm 85	Alarm 86	Alarm 87	Alarm 88
Alarm 89	Alarm 90	Alarm 91	Alarm 92	Alarm 93	Alarm 94	Alarm 95	Alarm 96
Alarm 97	Alarm 98	Alarm 99	Alarm 100	Alarm 101	Alarm 102	Alarm 103	Alarm 104
Alarm 105	Alarm 106	Alarm 107	Alarm 108	Alarm 109	Alarm 110	Alarm 111	Alarm 112
Alarm 113	Alarm 114	Alarm 115	Alarm 116	Alarm 117	Alarm 118	Alarm 119	Alarm 120
Alarm 121	Alarm 122	Alarm 123	Alarm 124	Alarm 125	Alarm 126	Alarm 127	Alarm 128

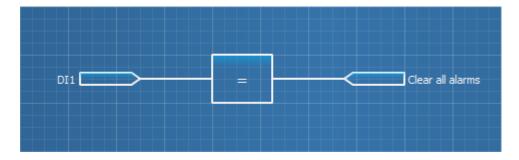

Clearing activated alarms

Figure. 5.3 - 8. Setting up the button for clearing alarms.

The button used for clearing alarms is defined in Control o Device I/O o Alarm settings o Function Button Settings. Please notice that the function button mode should be set to PRESS RELEASE mode in Control o Device I/O o User-button settings.

Alarms can be also cleared by using the CLEAR ALL ALARMS signal in the logic editor. In the example below, a physical push button activates Digital Input 1 which is connected to CLEAR ALL ALARMS.

After doing this in the logic editor, click *Save* and then update logic (*Commands* \rightarrow *Write to relay* \rightarrow *Logic*).

Buzzer activation and deactivation

AQ-S214 and AQ-S254 Alarming IEDs do not have an integrated buzzer. However, if an alarming buzzer is needed it is possible to connect an external buzzer. I is activated by one of the output relays of the IED. The user can set up the buzzer control by connecting the ALARM BUZZER signal to an output ($Control \rightarrow Device I/O \rightarrow Device IO Matrix$). Whenever an alarm is activated the ALARM BUZZER signal will also activate and the output contact can be controlled.

The user can silence the alarm buzzer by pressing the **Back** button located in the IED panel, or by connecting a digital input or some other binary signal in the logic to SILENCE ALARM BUZZER.

Clearing latched alarms

Figure. 5.3 - 9. Latched signals as dots.

Latched signals are represented by filled markers in the matrix.

If a latched signals is connected to an alarm, the alarm unit requires the user to push the **Back** button in the unit's front panel before the latched signal can be cleared. Using latched signals is generally not advised in order to keep alarm clearing simple.

Events

The alarm function generates events from the status changes in the monitored signals. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

Table. 5.3 - 10. Event messages.

Event block name		Event name	
	ALARM1	Alarm 1 ON	

Event block name	Event name
ALARM1	Alarm 1 OFF
ALARM1	Alarm 2 ON
ALARM1	Alarm 2 OFF
ALARM1	Alarm 3 ON
ALARM1	Alarm 3 OFF
ALARM1	Alarm 4 ON
ALARM1	Alarm 4 OFF
ALARM1	Alarm 5 ON
ALARM1	Alarm 5 OFF
ALARM1	Alarm 6 ON
ALARM1	Alarm 6 OFF
ALARM1	Alarm 7 ON
ALARM1	Alarm 7 OFF
ALARM1	Alarm 8 ON
ALARM1	Alarm 8 OFF
ALARM1	Alarm 9 ON
ALARM1	Alarm 9 OFF
ALARM1	Alarm 10 ON
ALARM1	Alarm 10 OFF
ALARM1	Alarm 11 ON
ALARM1	Alarm 11 OFF
ALARM1	Alarm 12 ON
ALARM1	Alarm 12 OFF
ALARM1	Alarm 13 ON
ALARM1	Alarm 13 OFF
ALARM1	Alarm 14 ON
ALARM1	Alarm 14 OFF
ALARM1	Alarm 15 ON
ALARM1	Alarm 15 OFF
ALARM1	Alarm 16 ON
ALARM1	Alarm 16 OFF
ALARM1	Alarm 17 ON
ALARM1	Alarm 17 OFF
ALARM1	Alarm 18 ON
ALARM1	Alarm 18 OFF
ALARM1	Alarm 19 ON
ALARM1	Alarm 19 OFF
ALARM1	Alarm 20 ON

Event block name	Event name
ALARM1	Alarm 20 OFF
ALARM1	Alarm 21 ON
ALARM1	Alarm 21 OFF
ALARM1	Alarm 22 ON
ALARM1	Alarm 22 OFF
ALARM1	Alarm 23 ON
ALARM1	Alarm 23 OFF
ALARM1	Alarm 24 ON
ALARM1	Alarm 24 OFF
ALARM1	Alarm 25 ON
ALARM1	Alarm 25 OFF
ALARM1	Alarm 26 ON
ALARM1	Alarm 26 OFF
ALARM1	Alarm 27 ON
ALARM1	Alarm 27 OFF
ALARM1	Alarm 28 ON
ALARM1	Alarm 28 OFF
ALARM1	Alarm 29 ON
ALARM1	Alarm 29 OFF
ALARM1	Alarm 30 ON
ALARM1	Alarm 30 OFF
ALARM1	Alarm 31 ON
ALARM1	Alarm 31 OFF
ALARM1	Alarm 32 ON
ALARM1	Alarm 32 OFF
ALARM2	Alarm 33 ON
ALARM2	Alarm 33 OFF
ALARM2	Alarm 34 ON
ALARM2	Alarm 34 OFF
ALARM2	Alarm 35 ON
ALARM2	Alarm 35 OFF
ALARM2	Alarm 36 ON
ALARM2	Alarm 36 OFF
ALARM2	Alarm 37 ON
ALARM2	Alarm 37 OFF
ALARM2	Alarm 38 ON
ALARM2	Alarm 38 OFF
ALARM2	Alarm 39 ON

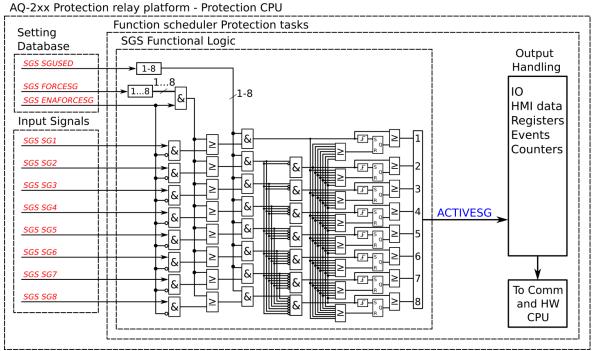
Event block name	Event name
ALARM2	Alarm 39 OFF
ALARM2	Alarm 40 ON
ALARM2	Alarm 40 OFF
ALARM2	Alarm 41 ON
ALARM2	Alarm 41 OFF
ALARM2	Alarm 42 ON
ALARM2	Alarm 42 OFF
ALARM2	Alarm 43 ON
ALARM2	Alarm 43 OFF
ALARM2	Alarm 44 ON
ALARM2	Alarm 44 OFF
ALARM2	Alarm 45 ON
ALARM2	Alarm 45 OFF
ALARM2	Alarm 46 ON
ALARM2	Alarm 46 OFF
ALARM2	Alarm 47 ON
ALARM2	Alarm 47 OFF
ALARM2	Alarm 48 ON
ALARM2	Alarm 48 OFF
ALARM2	Alarm 49 ON
ALARM2	Alarm 49 OFF
ALARM2	Alarm 50 ON
ALARM2	Alarm 50 OFF
ALARM2	Alarm 51 ON
ALARM2	Alarm 51 OFF
ALARM2	Alarm 52 ON
ALARM2	Alarm 52 OFF
ALARM2	Alarm 53 ON
ALARM2	Alarm 53 OFF
ALARM2	Alarm 54 ON
ALARM2	Alarm 54 OFF
ALARM2	Alarm 55 ON
ALARM2	Alarm 55 OFF
ALARM2	Alarm 56 ON
ALARM2	Alarm 56 OFF
ALARM2	Alarm 57 ON
ALARM2	Alarm 57 OFF
ALARM2	Alarm 58 ON

Event block name	Event name
ALARM2	Alarm 58 OFF
ALARM2	Alarm 59 ON
ALARM2	Alarm 59 OFF
ALARM2	Alarm 60 ON
ALARM2	Alarm 60 OFF
ALARM2	Alarm 61 ON
ALARM2	Alarm 61 OFF
ALARM2	Alarm 62 ON
ALARM2	Alarm 62 OFF
ALARM2	Alarm 63 ON
ALARM2	Alarm 63 OFF
ALARM2	Alarm 64 ON
ALARM2	Alarm 64 OFF
ALARM3	Alarm 65 ON
ALARM3	Alarm 65 OFF
ALARM3	Alarm 66 ON
ALARM3	Alarm 66 OFF
ALARM3	Alarm 67 ON
ALARM3	Alarm 67 OFF
ALARM3	Alarm 68 ON
ALARM3	Alarm 68 OFF
ALARM3	Alarm 69 ON
ALARM3	Alarm 69 OFF
ALARM3	Alarm 70 ON
ALARM3	Alarm 70 OFF
ALARM3	Alarm 71 ON
ALARM3	Alarm 71 OFF
ALARM3	Alarm 72 ON
ALARM3	Alarm 72 OFF
ALARM3	Alarm 73 ON
ALARM3	Alarm 73 OFF
ALARM3	Alarm 74 ON
ALARM3	Alarm 74 OFF
ALARM3	Alarm 75 ON
ALARM3	Alarm 75 OFF
ALARM3	Alarm 76 ON
ALARM3	Alarm 76 OFF
ALARM3	Alarm 77 ON

Event block name	Event name
ALARM3	Alarm 77 OFF
ALARM3	Alarm 78 ON
ALARM3	Alarm 78 OFF
ALARM3	Alarm 79 ON
ALARM3	Alarm 79 OFF
ALARM3	Alarm 80 ON
ALARM3	Alarm 80 OFF
ALARM3	Alarm 81 ON
ALARM3	Alarm 81 OFF
ALARM3	Alarm 82 ON
ALARM3	Alarm 82 OFF
ALARM3	Alarm 83 ON
ALARM3	Alarm 83 OFF
ALARM3	Alarm 84 ON
ALARM3	Alarm 84 OFF
ALARM3	Alarm 85 ON
ALARM3	Alarm 85 OFF
ALARM3	Alarm 86 ON
ALARM3	Alarm 86 OFF
ALARM3	Alarm 87 ON
ALARM3	Alarm 87 OFF
ALARM3	Alarm 88 ON
ALARM3	Alarm 88 OFF
ALARM3	Alarm 89 ON
ALARM3	Alarm 89 OFF
ALARM3	Alarm 90 ON
ALARM3	Alarm 90 OFF
ALARM3	Alarm 91 ON
ALARM3	Alarm 91 OFF
ALARM3	Alarm 92 ON
ALARM3	Alarm 92 OFF
ALARM3	Alarm 93 ON
ALARM3	Alarm 93 OFF
ALARM3	Alarm 94 ON
ALARM3	Alarm 94 OFF
ALARM3	Alarm 95 ON
ALARM3	Alarm 95 OFF
ALARM3	Alarm 96 ON

Event block name	Event name
ALARM3	Alarm 96 OFF
ALARM4	Alarm 97 ON
ALARM4	Alarm 97 OFF
ALARM4	Alarm 98 ON
ALARM4	Alarm 98 OFF
ALARM4	Alarm 99 ON
ALARM4	Alarm 99 OFF
ALARM4	Alarm 100 ON
ALARM4	Alarm 100 OFF
ALARM4	Alarm 101 ON
ALARM4	Alarm 101 OFF
ALARM4	Alarm 102 ON
ALARM4	Alarm 102 OFF
ALARM4	Alarm 103 ON
ALARM4	Alarm 103 OFF
ALARM4	Alarm 104 ON
ALARM4	Alarm 104 OFF
ALARM4	Alarm 105 ON
ALARM4	Alarm 105 OFF
ALARM4	Alarm 106 ON
ALARM4	Alarm 106 OFF
ALARM4	Alarm 107 ON
ALARM4	Alarm 107 OFF
ALARM4	Alarm 108 ON
ALARM4	Alarm 108 OFF
ALARM4	Alarm 109 ON
ALARM4	Alarm 109 OFF
ALARM4	Alarm 110 ON
ALARM4	Alarm 110 OFF
ALARM4	Alarm 111 ON
ALARM4	Alarm 111 OFF
ALARM4	Alarm 112 ON
ALARM4	Alarm 112 OFF
ALARM4	Alarm 113 ON
ALARM4	Alarm 113 OFF
ALARM4	Alarm 114 ON
ALARM4	Alarm 114 OFF
ALARM4	Alarm 115 ON

Event block name	Event name
ALARM4	Alarm 115 OFF
ALARM4	Alarm 116 ON
ALARM4	Alarm 116 OFF
ALARM4	Alarm 117 ON
ALARM4	Alarm 117 OFF
ALARM4	Alarm 118 ON
ALARM4	Alarm 118 OFF
ALARM4	Alarm 119 ON
ALARM4	Alarm 119 OFF
ALARM4	Alarm 120 ON
ALARM4	Alarm 120 OFF
ALARM4	Alarm 121 ON
ALARM4	Alarm 121 OFF
ALARM4	Alarm 122 ON
ALARM4	Alarm 122 OFF
ALARM4	Alarm 123 ON
ALARM4	Alarm 123 OFF
ALARM4	Alarm 124 ON
ALARM4	Alarm 124 OFF
ALARM4	Alarm 125 ON
ALARM4	Alarm 125 OFF
ALARM4	Alarm 126 ON
ALARM4	Alarm 126 OFF
ALARM4	Alarm 127 ON
ALARM4	Alarm 127 OFF
ALARM4	Alarm 128 ON
ALARM4	Alarm 128 OFF

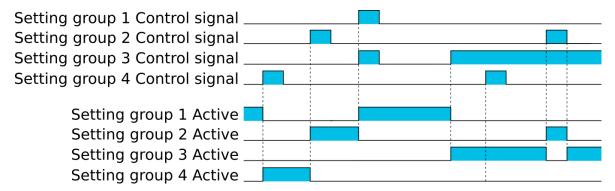

5.4 Control functions

5.4.1 Setting group selection

All relay types support up to eight (8) separate setting groups. The Setting group selection function block controls the availability and selection of the setting groups. By default, only Setting group 1 (SG1) is active and therefore the selection logic is idle. When more than one setting group is enabled, the setting group selector logic takes control of the setting group activations based on the logic and conditions the user has programmed.

The following figure presents a simplified function block diagram of the setting group selection function.

Figure. 5.4.1 - 10. Simplified function block diagram of the setting group selection function.



Setting group selection can be applied to each of the setting groups individually by activating one of the various internal logic inputs and connected digital inputs. The user can also force any of the setting groups on when the "Force SG change" setting is enabled by giving the wanted quantity of setting groups as a number in the communication bus or in the local HMI, or by selecting the wanted setting group from Control → Setting groups. When the forcing parameter is enabled, the automatic control of the local device is overridden and the full control of the setting groups is given to the user until the "Force SG change" is disabled again.

Setting groups can be controlled either by pulses or by signal levels. The setting group controller block gives setting groups priority values for situations when more than one setting group is controlled at the same time: the request from a higher-priority setting group is taken into use.

Setting groups follow a hierarchy in which setting group 1 has the highest priority, setting group 2 has second highest priority etc. If a static activation signal is given for two setting groups, the setting group with higher priority will be active. If setting groups are controlled by pulses, the setting group activated by pulse will stay active until another setting groups receives and activation signal.

Figure. 5.4.1 - 11. Example sequences of group changing (control with pulse only, or with both pulses and static signals).

Settings and signals

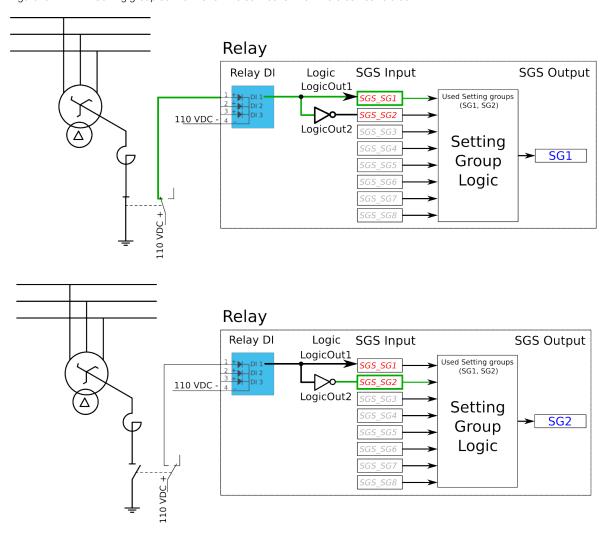
The settings of the setting group control function include the active setting group selection, the forced setting group selection, the enabling (or disabling) of the forced change, the selection of the number of active setting groups in the application, as well as the selection of the setting group changed remotely. If the setting group is forced to change, the corresponding setting group must be enabled and the force change must be enabled. Then, the setting group can be set from communications or from HMI to any available group. If the setting group control is applied with static signals right after the "Force SG" parameter is released, the application takes control of the setting group selection.

Table. 5.4.1 - 11. Settings of the setting group selection function.

Name	Range	Step	Default	Description
Active setting group			SG1	Displays which setting group is active.
Force setting group	0: None 1: SG1 2: SG2 3: SG3 4: SG4 5: SG5 6: SG6 7: SG7 8: SG8	-	0: None	The selection of the overriding setting group. After "Force SG change" is enabled, any of the configured setting groups in the relay can be overriden. This control is always based on the pulse operating mode. It also requires that the selected setting group is specifically controlled to ON after "Force SG" is disabled. If there are no other controls, the last set setting group remains active.
Force setting group change	0: Disabled 1: Enabled	-	0: Disabled	The selection of whether the setting group forcing is enabled or disabled. This setting has to be active before the setting group can be changed remotely or from a local HMI. This parameter overrides the local control of the setting groups and it remains on until the user disables it.
Used setting groups	0: SG1 1: SG12 2: SG13 3: SG14 4: SG15 5: SG16 6: SG17 7: SG18	-	0: SG1	The selection of the activated setting groups in the application. Newly-enabled setting groups use default parameter values.
Remote setting group change	0: None 1: SG1 2: SG2 3: SG3 4: SG4 5: SG5 6: SG6 7: SG7 8: SG8	-	0: None	This parameter can be controlled through SCADA to change the setting group remotely. Please note that if a higher priority setting group is being controlled by a signal, a lower priority setting group cannot be activated with this parameter.

Table. 5.4.1 - 12. Signals of the setting group selection function.

Name	Range	Step	Default	Description
Setting group 1	0: Not active 1: Active	-	0: Not active	The selection of Setting group 1 ("SG1"). Has the highest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, no other SG requests will be processed.


Name	Range	Step	Default	Description
Setting group 2	0: Not active 1: Active	-	0: Not active	The selection of Setting group 2 ("SG2"). Has the second highest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, no requests with a lower priority than SG1 will be processed.
Setting group 3	0: Not active 1: Active	-	0: Not active	The selection of Setting group 3 ("SG3"). Has the third highest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, no requests with a lower priority than SG1 and SG2 will be processed.
Setting group 4	0: Not active 1: Active	-	0: Not active	The selection of Setting group 4 ("SG4"). Has the fourth highest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, no requests with a lower priority than SG1, SG2 and SG3 will be processed.
Setting group 5	0: Not active 1: Active	-	0: Not active	The selection of Setting group 5 ("SG5"). Has the fourth lowest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, SG6, SG7 and SG8 requests will not be processed.
Setting group 6	0:Not active 1:Active	-	0:Not active	The selection of Setting group 6 ("SG6"). Has the third lowest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, SG7 and SG8 requests will not be processed.
Setting group 7	0: Not active 1: Active	-	0: Not active	The selection of Setting group 7 ("SG7"). Has the second lowest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, only SG8 requests will not be processed.
Setting group 8	0: Not active 1: Active	-	0: Not active	The selection of Setting group 8 ("SG8"). Has the lowest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, all other SG requests will be processed regardless of the signal status of this setting group.

Example applications for setting group control

This chapter presents some of the most common applications for setting group changing requirements.

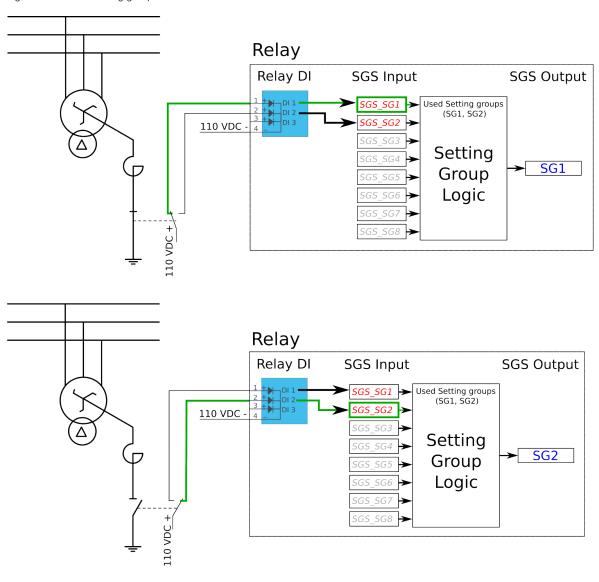
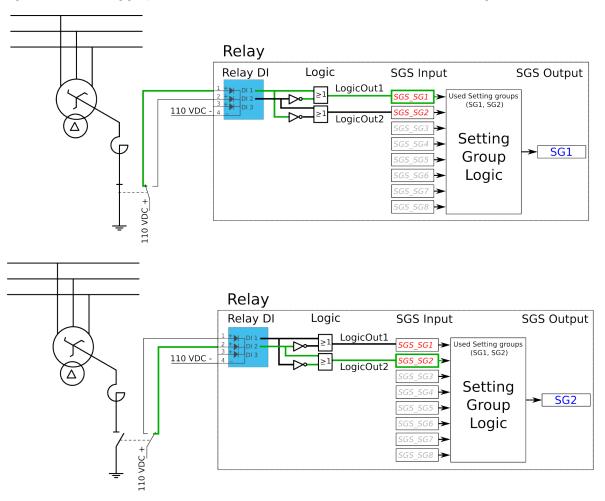
A Petersen coil compensated network usually uses directional sensitive earth fault protection. The user needs to control its characteristics between varmetric and wattmetric; the selection is based on whether the Petersen coil is connected when the network is compensated, or whether it is open when the network is unearthed.

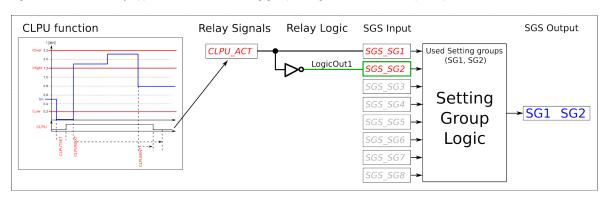
Figure. 5.4.1 - 12. Setting group control – one-wire connection from Petersen coil status.

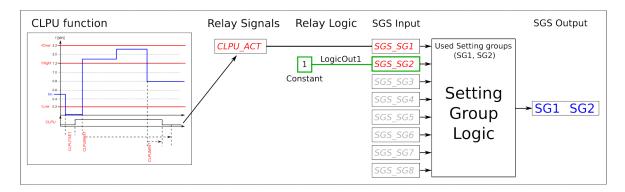
Depending on the application's requirements, the setting group control can be applied either with a one-wire connection or with a two-wire connection by monitoring the state of the Petersen coil connection.

When the connection is done with one wire, the setting group change logic can be applied as shown in the figure above. The status of the Petersen coil controls whether Setting group 1 is active. If the coil is disconnected, Setting group 2 is active. This way, if the wire is broken for some reason, the setting group is always controlled to SG2.

Figure. 5.4.1 - 13. Setting group control – two-wire connection from Petersen coil status.


Figure. 5.4.1 - 14. Setting group control - two-wire connection from Petersen coil status with additional logic.



The images above depict a two-wire connection from the Petersen coil: the two images at the top show a direct connection, while the two images on the bottom include additional logic. With a two-wire connection the state of the Petersen coil can be monitored more securely. The additional logic ensures that a single wire loss will not affect the correct setting group selection.

The application-controlled setting group change can also be applied entirely from the relay's internal logics. For example, the setting group change can be based on the cold load pick-up function (see the image below).

Figure. 5.4.1 - 15. Entirely application-controlled setting group change with the cold load pick-up function.

In these examples the cold load pick-up function's output is used for the automatic setting group change. Similarly to this application, any combination of the signals available in the relay's database can be programmed to be used in the setting group selection logic.

As all these examples show, setting group selection with application control has to be built fully before they can be used for setting group control. The setting group does not change back to SG1 unless it is controlled back to SG1 by this application; this explains the inverted signal NOT as well as the use of logics in setting group control. One could also have SG2 be the primary SG, while the ON signal would be controlled by the higher priority SG1; this way the setting group would automatically return to SG2 after the automatic control is over.

Events

The setting group selection function block (abbreviated "SGS" in event block names) generates events from its controlling status, its applied input signals, enabling and disabling of setting groups, as well as unsuccessful control changes. The function does not have a register.

Table. 5.4.1 - 13. Event messages.

Event block name	Event names
SGS	SG2 Enabled
SGS	SG2 Disabled
SGS	SG3 Enabled
SGS	SG3 Disabled
SGS	SG4 Enabled
SGS	SG4 Disabled
SGS	SG5 Enabled
SGS	SG5 Disabled

Event block name	Event names	
SGS	SG6 Enabled	
SGS	SG6 Disabled	
SGS	SG7 Enabled	
SGS	SG7 Disabled	
SGS	SG8 Enabled	
SGS	SG8 Disabled	
SGS	SG1 Request ON	
SGS	SG1 Request OFF	
SGS	SG2 Request ON	
SGS	SG2 Request OFF	
SGS	SG3 Request ON	
SGS	SG3 Request OFF	
SGS	SG4 Request ON	
SGS	SG4 Request OFF	
SGS	SG5 Request ON	
SGS	SG5 Request OFF	
SGS	SG6 Request ON	
SGS	SG6 Request OFF	
SGS	SG7 Request ON	
SGS	SG7 Request OFF	
SGS	SG8 Request ON	
SGS	SG8 Request OFF	
SGS	Remote Change SG Request ON	
SGS	Remote Change SG Request OFF	
SGS	Local Change SG Request ON	
SGS	Local Change SG Request OFF	
SGS	Force Change SG ON	
SGS	Force Change SG OFF	
SGS	SG Request Fail Not configured SG ON	
SGS	SG Request Fail Not configured SG OFF	
SGS	Force Request Fail Force ON	
SGS	Force Request Fail Force OFF	
SGS	SG Req. Fail Lower priority Request ON	
SGS	SG Req. Fail Lower priority Request OFF	
SGS	SG1 Active ON	
SGS	SG1 Active OFF	
SGS	SG2 Active ON	
SGS	SG2 Active OFF	

Event block name	Event names
SGS	SG3 Active ON
SGS	SG3 Active OFF
SGS	SG4 Active ON
SGS	SG4 Active OFF
SGS	SG5 Active ON
SGS	SG5 Active OFF
SGS	SG6 Active ON
SGS	SG6 Active OFF
SGS	SG7 Active ON
SGS	SG7 Active OFF
SGS	SG8 Active ON
SGS	SG8 Active OFF

5.4.2 Object control and monitoring

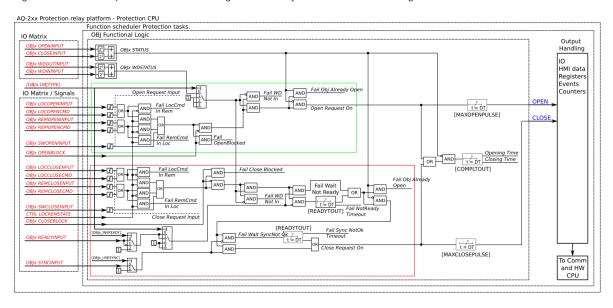
The object control and monitoring function takes care of both for circuit breakers and disconnectors. The monitoring and controlling are based on the statuses of the relay's configured digital inputs and outputs. The number of controllable and monitored objects in each relay depends on the device type and amount of digital inputs. One controllable object requires a minimum of two (2) output contacts. The status monitoring of one monitored object usually requires two (2) digital inputs. Alternatively, object status monitoring can be performed with a single digital input: the input's active state and its zero state (switched to 1 with a NOT gate in the Logic editor).

An object can be controlled manually or automatically. Manual control can be done by local control, or by remote control. Local manual control can be done by relays front panel (HMI) or by external push buttons connected to relays digital inputs. Manual remote control can be done through one of the various communication protocols available (Modbus, IEC101/103/104 etc.). The function supports the modes "Direct control" and "Select before execute" while controlled remotely. Automatic controlling can be done with functions like auto-reclosing function (ANSI 79).

Object control consists of the following:

- · control logic
- · control monitor
- · output handler.

The main outputs of the function are the OBJECT OPEN and OBJECT CLOSE control signals. Additionally, the function reports the monitored object's status and applied operations. The setting parameters are static inputs for the function, which can only be changed by the user in the function's setup phase.


The inputs for the function are the following:

- digital input status indications (the OPEN and CLOSE status signals)
- blockings (if applicable)
- the OBJECT READY and SYNCHROCHECK monitor signals (if applicable).
- Withdrawable cart IN and OUT status signals (if applicable).

The function generates general time stamped ON/OFF events to the common event buffer from each of the two (2) output signals as well as several operational event signals. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for OPEN, CLOSE, OPEN FAILED, and CLOSE FAILED events.

The following figure presents a simplified function block diagram of the object control and monitoring function.

Figure. 5.4.2 - 16. Simplified function block diagram of the object control and monitoring function.

Settings

The following parameters help the user to define the object. The operation of the function varies based on these settings and the selected object type. The selected object type determines how much control is needed and which setting parameters are required to meet those needs.

Table. 5.4.2 - 14. Object settings and status parameters.

Name	Range	Default	Description
Local/Remote status	0: Local 1: Remote	1: Remote	Displays the status of the relay's "local/remote" switch. Local controls cannot override the open and close commands while device is in "Remote" status. The remote controls cannot override the open and close commands while device is in "Local" status.

Name	Range	Default	Description	
Object status force to	0: Normal 1: Openreq On 2: Closereq On 3: Opensignal On 4: Closesignal On 5: WaitNoRdy On 6: WaitNoSnc On 7: NotrdyFail On 8: NosyncFail On 9: Opentout On 10: Clotout On 11: OpenreqUSR On 12: CloreqUSR On	0: Normal	Force the status of the function. Visible only when <i>Enable stage</i> forcing parameter is enabled in <i>General</i> menu.	
OBJ LN mode	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	1: On	Set mode of OBJ block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
OBJ LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	-	Displays the mode of OBJ block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
Object name	-	Objectx	The user-set name of the object, at maximum 32 characters long.	
Object type	0: Withdrawable circuit breaker 1: Circuit breaker 2: Disconnector (MC) 3: Disconnector (GND)	1: Circuit breaker	I Withdrawanie cart is in/out status is monitored. See the next table ("Unlect	
Objectx Breaker status	0: Intermediate 1: Open 2: Closed 3: Bad	-	Displays the status of breaker. Intermediate is displayed when neither of the status signals (open or close) are active. Bad status is displayed when both status signals (open and close) are active.	
Objectx Withdraw status	0: WDIntermediate 1: WDCartOut 2: WDCart In 3: WDBad 4: Not in use	-	Displays the status of circuit breaker cart. WDIntermediate is displayed when neither of the status signals (in or out) are active. WDBad status is displayed when both status signals (in and out) are active. If the selected object type is not set to "Withdrawable circuit breaker", this setting displays the "No in use" option.	
Additional status information	0: Open Blocked 1: Open Allowed 2: Close Blocked 3: Close Allowed 4: Object Ready 5: Object Not Ready 6: Sync Ok 7: Sync Not Ok	-	Displays additional information about the status of the object.	

Name	Range	Default	Description	
Use	1 "	0: Not	Selects whether the "Synchrocheck" condition is in use for the circuit breaker close command. If "In use" is selected the input chosen to "Sync.check status in" has to be active to be able to close circuit breaker.	
Synchrocheck		in use	Synchrocheck status can be either an internal signal generated by synchrocheck function or digital input activation with an external synchrocheck device.	
Use Object ready	0: Ready High 1: Ready Low 2: Not in use	2: Not in use		
Open requests	02 ³² –1	-	Displays the number of successful "Open" requests.	
Close requests	02 ³² –1	-	Displays the number of successful "Close" requests.	
Open requests failed	02 ³² –1	-	Displays the number of failed "Open" requests.	
Close requests failed	02 ³² –1	-	Displays the number of failed "Close" requests.	
Clear statistics	0: - 1: Clear	0: -	Clears the request statistics, setting them back to zero (0). Automatically returns to "-" after the clearing is finished.	

Table. 5.4.2 - 15. Object types.

Name	Functionalities	Description
Withdrawable circuit breaker	Breaker cart position Circuit breaker position Circuit breaker control Object ready check before closing breaker Synchrochecking before closing breaker Interlocks	The monitor and control configuration of the withdrawable circuit breaker.
Circuit breaker	Position indication Control Object ready check before closing breaker Synchrochecking before closing breaker Interlocks	The monitor and control configuration of the circuit breaker.
Disconnector (MC)	Position indication Control	The position monitoring and control of the disconnector.
Disconnector (GND)	Position indication	The position indication of the earth switch.

Table. 5.4.2 - 16. I/O.

Signal	Range	Description
Objectx Open input ("Objectx Open Status In")	Digital input or other logical signal selected by the user (SWx)	A link to a physical digital input. The monitored object's OPEN status. "1" refers to the active open state of the monitored object. If IEC 61850 is enabled, GOOSE signals can be used for status indication.
Objectx Close input ("Objectx Close Status In")		A link to a physical digital input. The monitored object's CLOSE status. "1" refers to the active close state of the monitored object. If IEC 61850 is enabled, GOOSE signals can be used for status indication.

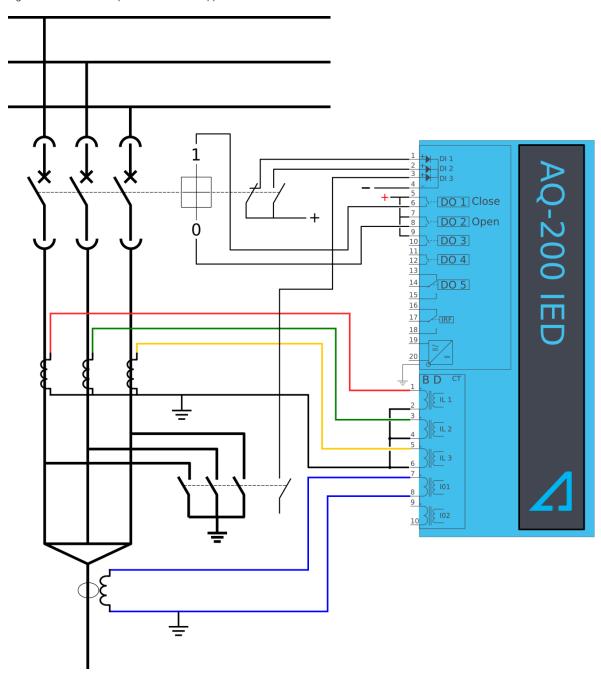
Signal	Range	Description
WD Object In ("Withdrw.CartIn.Status In")		A link to a physical digital input. The monitored withdrawable object's position is IN. "1" means that the withdrawable object cart is in. If IEC 61850 is enabled, GOOSE signals can be used for status indication.
WD Object Out ("Withdrw.CartOut.Status In")		A link to a physical digital input. The monitored withdrawable object's position is OUT. "1" means that the withdrawable object cart is pulled out. If IEC 61850 is enabled, GOOSE signals can be used for status indication.
Object Ready (Objectx Ready status In")		A link to a physical digital input. Indicates that status of the monitored object. "1" means that the object is ready and the spring is charged for a close command. If IEC 61850 is enabled, GOOSE signals can be used for status indication.
Syncrocheck permission ("Sync.Check status In")		A link to a physical digital input or a synchrocheck function. "1" means that the synchrocheck conditions are met and the object can be closed. If IEC 61850 is enabled, GOOSE signals can be used for status indication.
Objectx Open command ("Objectx Open Command")	OUT4 OUT.	The physical "Open" command pulse to the device's output relay.
Objectx Close command ("Objectx Close Command")	OUT1OUTx	The physical "Close" command pulse to the device's output relay.

Table. 5.4.2 - 17. Operation settings.

Name	Range	Step	Default	Description
Breaker traverse time	0.02500.00 s	0.02 s	0.2 s	Determines the maximum time between open and close statuses when the breaker switches. If this set time is exceeded and both open and closed status inputs are active, the status "Bad" is activated in the "Objectx Breaker status" setting. If neither of the status inputs are active after this delay, the status "Intermediate" is activated.
Maximum Close command pulse length	0.02500.00 s	0.02 s	0.2 s	Determines the maximum length for a Close pulse from the output relay to the controlled object. If the object operates faster than this set time, the control pulse is reset and a status change is detected.
Maximum Open command pulse length	0.02500.00 s	0.02 s	0.2 s	Determines the maximum length for a Open pulse from the output relay to the controlled object. If the object operates faster than this set time, the control pulse is reset and a status change is detected.
Control termination timeout	0.02500.00 s	0.02 s	10 s	Determines the control pulse termination timeout. If the object has not changed it status in this given time the function will issue error event and the control is ended. This parameter is common for both open and close commands.
Final trip pulse length	0.00500.00 s	0.02 s	0.2 s	Determines the length of the final trip pulse length. When the object has executed the final trip, this signal activates. If set to 0 s, the signal is continuous. If auto-recloser function controls the object, "final trip" signal is activated only when there are no automatic reclosings expected after opening the breaker.

Table. 5.4.2 - 18. Control settings (DI and Application).

Signal	Range	Description
Access level for MIMIC control	0: User 1: Operator 2: Configurator 3: Super user	Defines what level of access is required for MIMIC control. The default is the "Configurator" level.
Objectx LOCAL Close control input	Digital input or other logical signal selected by the user	The local Close command from a physical digital input (e.g. a push button).


Signal	Range	Description
Objectx LOCAL Open control input		The local Open command from a physical digital input (e.g. a push button).
Objectx REMOTE Close control input		The remote Close command from a physical digital input (e.g. RTU).
Objectx REMOTE Open control input		The remote Open command from a physical digital input (e.g. RTU).
Objectx Application Close		The Close command from the application. Can be any logical signal.
Objectx Application Open		The Close command from the application. Can be any logical signal.

Blocking and interlocking

The interlocking and blocking conditions can be set for each controllable object, with Open and Close set separately. Blocking and interlocking can be based on any of the following: other object statuses, a software function or a digital input.

The image below presents an example of an interlock application, where the closed earthing switch interlocks the circuit breaker close command.

Figure. 5.4.2 - 17. Example of an interlock application.

In order for the blocking signal to be received on time, it has to reach the function 5 ms before the control command.

Events and registers

The object control and monitoring function (abbreviated "OBJ" in event block names) generates events and registers from the status changes in monitored signals as well as control command fails and operations. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The function registers its operation into the last twelve (12) time-stamped registers. The events triggered by the function are recorded with a time stamp and with process data values.

Table. 5.4.2 - 19. Event messages of the OBJ function instances 1 - 10.

OBJ1OBJ10 Object Open OBJ1OBJ10 Object Open OBJ1OBJ10 Object Close OBJ1OBJ10 WD Interrediate OBJ1OBJ10 WD Out OBJ1OBJ10 WD Out OBJ1OBJ10 WD Interrediate OBJ1OBJ10 Open Request On OBJ1OBJ10 Open Request Off OBJ1OBJ10 Open Command Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Command On OBJ1OBJ10 Close Command Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Ready OBJ1OBJ10 Open Command Fail <	Event block name	Description
OBJ1OBJ10 Object Bad OBJ1OBJ10 Object Bad OBJ1OBJ10 WD Intermediate OBJ1OBJ10 WD Out OBJ1OBJ10 WD Bad OBJ1OBJ10 Open Request On OBJ1OBJ10 Open Request Off OBJ1OBJ10 Open Command On OBJ1OBJ10 Open Command Off OBJ1OBJ10 Open Command Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Command On OBJ1OBJ10 Close Command Off OBJ1OBJ10 Open Blocked On OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alar	OBJ1OBJ10	Object Intermediate
OBJ1OBJ10 Object Bad OBJ1OBJ10 WD Intermediate OBJ1OBJ10 WD Out OBJ1OBJ10 WD Bad OBJ1OBJ10 Open Request On OBJ1OBJ10 Open Request Off OBJ1OBJ10 Open Command On OBJ1OBJ10 Open Command Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Command Off OBJ1OBJ10 Close Command Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceede	OBJ1OBJ10	Object Open
OBJ1OBJ10 WD Intermediate OBJ1OBJ10 WD Out OBJ1OBJ10 WD In OBJ1OBJ10 WD Bad OBJ1OBJ10 Open Request On OBJ1OBJ10 Open Request Off OBJ1OBJ10 Open Command On OBJ1OBJ10 Open Command Off OBJ1OBJ10 Close Request On OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Command On OBJ1OBJ10 Close Command Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 Switch Operating Time E	OBJ1OBJ10	Object Close
OBJ1OBJ10 WD Out OBJ1OBJ10 WD in OBJ1OBJ10 WD Bad OBJ1OBJ10 Open Request On OBJ1OBJ10 Open Request Off OBJ1OBJ10 Open Command On OBJ1OBJ10 Open Command Off OBJ1OBJ10 Close Request On OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Command On OBJ1OBJ10 Close Command Off OBJ1OBJ10 Open Blocked On OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked On OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off	OBJ1OBJ10	Object Bad
OBJ1OBJ10 WD in OBJ1OBJ10 WD Bad OBJ1OBJ10 Open Request On OBJ1OBJ10 Open Request Off OBJ1OBJ10 Open Command On OBJ1OBJ10 Open Command Off OBJ1OBJ10 Close Request Of OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Command On OBJ1OBJ10 Open Blocked On OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip On OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operat	OBJ1OBJ10	WD Intermediate
OBJ1OBJ10 WD Bad OBJ1OBJ10 Open Request On OBJ1OBJ10 Open Request Off OBJ1OBJ10 Open Command On OBJ1OBJ10 Open Command Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Command On OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Neady OBJ1OBJ10 Object Neady OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ1	OBJ1OBJ10	WD Out
OBJ1OBJ10 Open Request Of OBJ1OBJ10 Open Request Off OBJ1OBJ10 Open Command Of OBJ1OBJ10 Open Command Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Command On OBJ1OBJ10 Open Blocked On OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off	OBJ1OBJ10	WD in
OBJ1OBJ10 Open Request Off OBJ1OBJ10 Open Command On OBJ1OBJ10 Open Command Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Command On OBJ1OBJ10 Open Blocked On OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip Off OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off	OBJ1OBJ10	WD Bad
OBJ1OBJ10 Open Command Off OBJ1OBJ10 Open Command Off OBJ1OBJ10 Close Request On OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Command On OBJ1OBJ10 Open Blocked On OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Final trip Off OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm Of OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off	OBJ1OBJ10	Open Request On
OBJ1OBJ10 Open Command Off OBJ1OBJ10 Close Request On OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Command On OBJ1OBJ10 Close Command Off OBJ1OBJ10 Open Blocked On OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked On OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Open Request Off
OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Command On OBJ1OBJ10 Close Command Off OBJ1OBJ10 Open Blocked On OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked Of OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off	OBJ1OBJ10	Open Command On
OBJ1OBJ10 Close Request Off OBJ1OBJ10 Close Command On OBJ1OBJ10 Close Command Off OBJ1OBJ10 Open Blocked On OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked Of OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off	OBJ1OBJ10	Open Command Off
OBJ1OBJ10 Close Command Off OBJ1OBJ10 Open Blocked On OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked On OBJ1OBJ10 Object Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip Off OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XCBR Loc Off	OBJ1OBJ10	Close Request On
OBJ1OBJ10 Close Command Off OBJ1OBJ10 Open Blocked On OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked On OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XCBR Loc Off	OBJ1OBJ10	Close Request Off
OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Close Command On
OBJ1OBJ10 Open Blocked Off OBJ1OBJ10 Close Blocked On OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XCBR Loc Off	OBJ1OBJ10	Close Command Off
OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Open Blocked On
OBJ1OBJ10 Close Blocked Off OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Open Blocked Off
OBJ1OBJ10 Object Ready OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Close Blocked On
OBJ1OBJ10 Object Not Ready OBJ1OBJ10 Sync Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XCBN Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Close Blocked Off
OBJ1OBJ10 Sync Ok OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Object Ready
OBJ1OBJ10 Sync Not Ok OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Object Not Ready
OBJ1OBJ10 Open Command Fail OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Sync Ok
OBJ1OBJ10 Close Command Fail OBJ1OBJ10 Final trip On OBJ1OBJ10 Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Sync Not Ok
OBJ1OBJ10 Final trip On Final trip Off OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Open Command Fail
OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Close Command Fail
OBJ1OBJ10 Contact Abrasion Alarm On OBJ1OBJ10 Contact Abrasion Alarm Off OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Final trip On
OBJ1OBJ10 Contact Abrasion Alarm Off Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Final trip Off
OBJ1OBJ10 Switch Operating Time Exceeded On OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Contact Abrasion Alarm On
OBJ1OBJ10 Switch Operating Time Exceeded Off OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Contact Abrasion Alarm Off
OBJ1OBJ10 XCBR Loc On OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Switch Operating Time Exceeded On
OBJ1OBJ10 XCBR Loc Off OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	Switch Operating Time Exceeded Off
OBJ1OBJ10 XSWI Loc On	OBJ1OBJ10	XCBR Loc On
	OBJ1OBJ10	XCBR Loc Off
OBJ1OBJ10 XSWI LOC Off	OBJ1OBJ10	XSWI Loc On
	OBJ1OBJ10	XSWI LOC Off

Table. 5.4.2 - 20. Register content.

Name	Description	
Date and time	dd.mm.yyyy hh:mm:ss.mss	
Event	Event name	
Recorded Object opening time	Time difference between the object receiving an "Open" command and the object receiving the "Open" status.	
Recorded Object closing time	Time difference between the object receiving a "Close" command and object receiving the "Closed" status.	
Object status	The status of the object.	
WD status	The status of the withdrawable circuit breaker.	
Open fail	The cause of an "Open" command's failure.	
Close fail	The cause of a "Close" command's failure.	
Open command	The source of an "Open" command.	
Close command	The source of an "Open" command.	
General status	The general status of the function.	

5.4.3 Indicator object monitoring

The indicator object monitoring function takes care of the status monitoring of disconnectors. The function's sole purpose is indication and does not therefore have any control functionality. To control circuit breakers and/or disconnectors, please use the Object control and monitoring function. The monitoring is based on the statuses of the configured relay's digital inputs. The number of monitored indicators in a relay depends on the device type and available inputs. The status monitoring of one monitored object usually requires two (2) digital inputs. Alternatively, object status monitoring can be performed with a single digital input: the input's active state and its zero state (switched to 1 with a NOT gate in the Logic editor).

The outputs of the function are the monitored indicator statuses (Open, Close, Intermediate and Bad). The setting parameters are static inputs for the function, which can only be changed by the use in the function's setup phase.

The inputs of the function are the binary status indications. The function generates general time stamped ON/OFF events to the common event buffer from each of the following signals: OPEN, CLOSE, BAD and INTERMEDIATE event signals. The time stamp resolution is 1 ms.

Settings

Function uses available hardware and software digital signal statuses. These input signals are also setting parameters for the function.

Table. 5.4.3 - 21. Indicator status.

Name	Range	Default	Description
Indicator name ("Ind. Name")	-	IndX	The user-set name of the object, at maximum 32 characters long.
IndicatorX Object status ("Ind.X Object Status")	0: Intermediate 1: Open 2: Closed 3: Bad	-	Displays the status of the indicator object. Intermediate status is displayed when neither of the status conditions (open or close) are active. Bad status is displayed when both of the status conditions (open and close) are active.

Table. 5.4.3 - 22. Indicator I/O.

Signal	Range	Description
IndicatorX Open input ("Ind.X Open Status In")	Digital input or other logical signal selected by the user (SWx)	A link to a physical digital input. The monitored indicator's OPEN status. "1" refers to the active "Open" state of the monitored indicator. If IEC 61850 is enabled, GOOSE signals can be used for status indication.
IndicatorX Close input ("Ind.X Close Status In")	Digital input or other logical signal selected by the user (SWx)	A link to a physical digital input. The monitored indicator's CLOSE status. "1" refers to the active "Close" state of the monitored indicator. If IEC 61850 is enabled, GOOSE signals can be used for status indication.

Events

The indicator object monitoring function (abbreviated "CIN" in event block names) generates events from the status changes in the monitored signals, including the continuous status indications. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

Table. 5.4.3 - 23. Event messages (instances 1-20).

Event block name	Event names
CIN1	Intermediate
CIN1	Open
CIN1	Close
CIN1	Bad
CIN2	Intermediate
CIN2	Open
CIN2	Close
CIN2	Bad
CIN3	Intermediate
CIN3	Open
CIN3	Close
CIN3	Bad
CIN4	Intermediate
CIN4	Open
CIN4	Close
CIN4	Bad
CIN5	Intermediate
CIN5	Open
CIN5	Close
CIN5	Bad
CIN6	Intermediate
CIN6	Open

Event block name	Event names
CIN6	Close
CIN6	Bad
CIN7	Intermediate
CIN7	Open
CIN7	Close
CIN7	Bad
CIN8	Intermediate
CIN8	Open
CIN8	Close
CIN8	Bad
CIN9	Intermediate
CIN9	Open
CIN9	Close
CIN9	Bad
CIN10	Intermediate
CIN10	Open
CIN10	Close
CIN10	Bad
CIN11	Intermediate
CIN11	Open
CIN11	Close
CIN11	Bad
CIN12	Intermediate
CIN12	Open
CIN12	Close
CIN12	Bad
CIN13	Intermediate
CIN13	Open
CIN13	Close
CIN13	Bad
CIN14	Intermediate
CIN14	Open
CIN14	Close
CIN14	Bad
CIN15	Intermediate
CIN15	Open
CIN15	Close
CIN15	Bad

Event block name	Event names
CIN16	Intermediate
CIN16	Open
CIN16	Close
CIN16	Bad
CIN17	Intermediate
CIN17	Open
CIN17	Close
CIN17	Bad
CIN18	Intermediate
CIN18	Open
CIN18	Close
CIN18	Bad
CIN19	Intermediate
CIN19	Open
CIN19	Close
CIN19	Bad
CIN20	Intermediate
CIN20	Open
CIN20	Close
CIN20	Bad

5.4.4 Milliampere output control

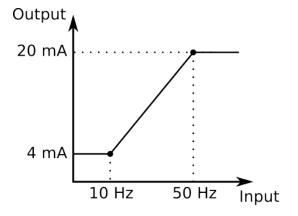
The milliamp current loop is the prevailing process control signal in many industries. It is an ideal method of transferring process information because a current does not change as it travels from a transmitter to a receiver. It is also much more simple and cost-effective.

The benefits of 4...20 mA loops:

- · the dominant standard in many industries
- the simplest option to connect and configure
- uses less wiring and connections than other signals, thus greatly reducing initial setup costs
- good for travelling long distances, as current does not degrade over long connections like voltage does
- · less sensitive to background electrical noise
- detects a fault in the system incredibly easily since 4 mA is equal to 0 % output.

Milliampere (mA) outputs

AQ-200 series supports up to two (2) independent mA option cards. Each card has four (4) mA output channels and one (1) mA input channel. If the device has an mA option card, enable mA outputs at $Control \rightarrow Device\ IO \rightarrow mA\ outputs$. The outputs are activated in groups of two: channels 1 and 2 are activated together, as are channels 3 and 4.


Table. 5.4.4 - 24. Main settings (output channels).

Name		Range	Default	Description
mA option	Enable mA output channels 1 and 2	0:	0:	Enables and disables the outputs of the mA output
card 1	Enable mA output channels 3 and 4	Disabled 1: Enabled	Disabled	card 1.
mA option	Enable mA output channels 5 and 6	0: Disabled	0:	Enables and disables the outputs of the mA output
card 2	Enable mA output channels 7 and 8	Disabled 1: Enabled	Disabled	card 2.

Table. 5.4.4 - 25. Settings for mA output channels.

Name	Range	Step	Default	Description
Enable mA output channel	0: Disabled 1: Enabled	-	0: Disabled	Enables and disables the selected mA output channel. If the channel is disabled, the channel settings are hidden.
Magnitude selection for mA output channel	0: Currents 1: Voltages 2: Powers 3: Impedance and admittance 4: Other	-	0: Currents	Defines the measurement category that is used for mA output control.
Magnitude of mA output channel	(dependent on the measurement category selection)	-	(dependent on the measurement category selection)	Defines the measurement magnitude used for mA output control. The available measurements depend on the selection of the "Magnitude selection for mA output channel" parameter.
Input value 1	-10 ⁷ 10 ⁷	0.001	0	The first input point in the mA output control curve.
Scaled mA output value 1	0.000024.0000mA	0.0001mA	0mA	The mA output value when the measured value is equal to or less than Input value 1.
Input value 2	-10 ⁷ 10 ⁷	0.001	1	The second input point in the mA output control curve.
Scaled mA output value 2	0.000024.0000mA	0.0001mA	0mA	The mA output value when the measured value is equal to or greater than Input value 2.

Figure. 5.4.4 - 18. Example of the effects of mA output channel settings.

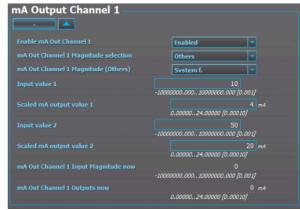


Table. 5.4.4 - 26. Hardware indications.

Name	Range	Step	Description
Hardware in mA output channels 14	0: None 1: Slot A		
Hardware in mA output channels 58	2: Slot B 3: Slot C 4: Slot D 5: Slot E 6: Slot F 7: Slot G 8: Slot H 9: Slot I 10: Slot J 11: Slot K 12: Slot L 13: Slot M 14: Slot N 15: Too many cards installed	-	Indicates the option card slot where the mA output card is located.

Table. 5.4.4 - 27. Measurement values reported by mA output cards.

Name	Range	Step	Description
mA in Channel 1	0.000024.0000mA	0.0001mA	Displays the measured mA value of the selected input
mA in Channel 2	0.000024.0000IIIA	0.000 IMA	channel.
mA Out Channel Input Magnitude now	-10 ⁷ 10 ⁷	0.001	Displays the input value of the selected mA output channel at that moment.
mA Out Channel Outputs now	0.000024.0000mA	0.0001mA	Displays the output value of the selected mA output channel at that moment.

5.4.5 Programmable control switch

The programmable control switch is a control function that controls its binary output signal. This output signal can be controlled locally from the relay's mimic (displayed as a box in the mimic) or remotely from the RTU. The main purpose of programmable control switches is to block or enable function and to change function properties by changing the setting group. However, this binary signal can also be used for any number of other purposes, just like all other binary signals. Once a programmable control switch has been activated or disabled, it remains in that state until given a new command to switch to the opposite state (see the image below). The switch cannot be controlled by an auxiliary input, such as digital inputs or logic signals; it can only be controlled locally (mimic) or remotely (RTU).

Settings.

These settings can be accessed at $Control \rightarrow Device I/O \rightarrow Programmable control switch$.

Table. 5.4.5 - 28. Settings.

Name	Range	Default	Description
Switch name	-	Switchx	The user-settable name of the selected switch. The name can be up to 32 characters long.

Name	Range	Default	Description
Access level for Mimic control	0: User 1: Operator 2: Configurator 3: Super user	2: Configurator	Determines which access level is required to be able to control the programmable control switch via the Mimic.

Events

The programmable control switch function (abbreviated "PCS" in event block names) generates events from status changes. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers five (5) independent switches.

Table. 5.4.5 - 29. Event messages.

Event block name	Event names
PCS	Switch 1 ON
PCS	Switch 1 OFF
PCS	Switch 2 ON
PCS	Switch 2 OFF
PCS	Switch 3 ON
PCS	Switch 3 OFF
PCS	Switch 4 ON
PCS	Switch 4 OFF
PCS	Switch 5 ON
PCS	Switch 5 OFF

5.4.6 Analog input scaling curves

Sometimes when measuring with RTD inputs, milliampere inputs and digital inputs the measurement might be inaccurate because the signal coming from the source is inaccurate. One common example of this is tap changer location indication signal not changing linearly from step to step. If the output difference between the steps are not equal to each other, measuring the incoming signal accurately is not enough. "Analog input scaling curves" menu can be used to take these inaccuracies into account.

Analog input scaling curve settings can be found at *Measurement* \rightarrow *Al(mA, Dl volt) scaling* menu.

Currently following measurements can be scaled with analog input scaling curves:

- RTD inputs and mA inputs in "RTD & mA input" option cards
- mA inputs in "mA output & mA input" option cards
- Digital input voltages

Table. 5.4.6 - 30. Main settings (input channel).

Name	Range	Step	Default	Description
Analog input scaling	0: Disabled 1: Activated	-	0: Disabled	Enables and disables the input.
Scaling curve 14	0: Disabled 1: Activated	-	0: Disabled	Enables and disables the scaling curve and the input measurement.

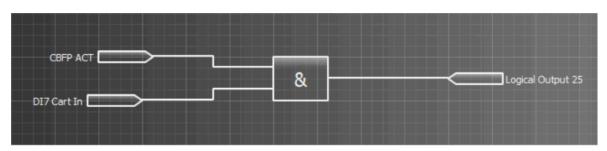
Name	Range	Step	Default	Description
Curve 14 input signal select	0: S7 mA Input 1: S8 mA Input 2: S15 mA Input 3: S16 mA Input 4: DI1 Voltage 23: DI20 Voltage 24: RTD S1 Resistance 39: RTD S16 Resistance 40: mA In 1 (I card 1) 41: mA In 2 (I card 2)	-	0: S7 mA Input	Defines the measurement used by scaling curve.
Curve 14 input signal filtering	0: No 1: Yes	-	0: No	Enables calculation of the average of received signal.
Curve 14 input signal filter time	0.0053800.000 s	0.005 s	1 s	Time constant for input signal filtering. This parameter is visible when "Curve 14 input signal
constant	5			filtering" has been set to "Yes".
Curve 14 input signal out of range set	0: No 1: Yes	-	0: No	Enables out of range signals. If input signal is out of minimum and maximum limits, "ASC14 input out of range" signal is activated.
Curve14 input minimum	-1 000 000.001 000 000.00	0.00001	0	Defines the minimum input of the curve. If input is below the set limit, "ASC14 input out of range" is activated.
Curve 14 input	-1 000 000.001 000 000.00	0.00001	-	Displays the input measurement received by the curve.
Curve14 input maximum	-1 000 000.001 000 000.00	0.00001	0	Defines the maximum input of the curve. If input is above the set limit, "ASC14 input out of range" is activated.
Curve14 output	-1 000 000.001 000 000.00	0.00001	-	Displays the output of the curve.

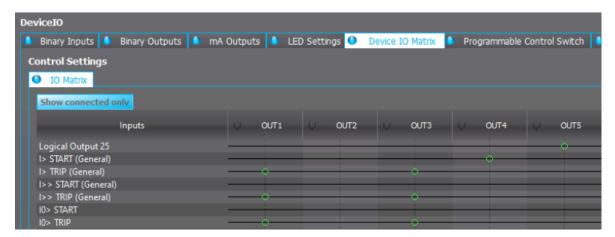
The input signal filtering parameter calculates the average of received signals according to the set time constant. This is why rapid changes and disturbances (such as fast spikes) are smothered. The Nyquist rate states that the filter time constant must be at least double the period time of the disturbance process signal. For example, the value for the filter time constant is 2 seconds for a 1 second period time of a disturbance oscillation.

$$H(s) = \frac{Wc}{S + Wc} = \frac{1}{1 + s/Wc}$$

When the curve signal is out of range, it activates the "ASC1...4 input out of range" signal, which can be used inside logic or with other relay functions. The signal can be assigned directly to an output relay or to an LED in the I/O matrix. The "Out of range" signal is activated, when the measured signal falls below the set input minimum limit, or when it exceeds the input maximum limit.

If for some reason the input signal is lost, the value is fixed to the last actual measured cycle value. The value does not go down to the minimum if it has been something else at the time of the signal breaking.


Table. 5.4.6 - 31. Output settings and indications.


Name	Range	Step	Default	Description
Curve 14 update cycle	510 000ms	5ms	150ms	Defines the length of the input measurement update cycle. If the user wants a fast operation, this setting should be fairly low.
Scaled value handling	0: Floating point 1: Integer out (Floor) 2: Integer (Ceiling) 3: Integer (Nearest)	-	0: Floating point	Rounds the milliampere signal output as selected.
Input value 1	04000	0.000 01	0	The measured input value at Curve Point 1.
Scaled output value 1	-10 ⁷ 10 ⁷	0.000 01	0	Scales the measured milliampere signal at Point 1.
Input value 2	04000	0.000 01	1	The measured input value at Curve Point 2.
Scaled output value 1	-10 ⁷ 10 ⁷	0.000 01	0	Scales the measured milliampere signal at Point 2.
Add curvepoint 320	0: Not used 1: Used	-	0: Not used	Allows the user to create their own curve with up to twenty (20) curve points, instead of using a linear curve between two points.

5.4.7 Logical outputs

Logical outputs are used for sending binary signals out from a logic that has been built in the logic editor. Logical signals can be used for blocking functions, changing setting groups, controlling digital outputs, activating LEDs, etc. The status of logical outputs can also be reported to a SCADA system. 64 logical outputs are available. The figure below presents a logic output example where a signal from the circuit breaker failure protection function controls the digital output relay number 5 ("OUT5") when the circuit breaker's cart status is "In".

Figure. 5.4.7 - 19. Logic output example. Logical output is connected to an output relay in matrix.

Logical output descriptions

Logical outputs can be given a description. The user defined description are displayed in most of the menus (logic editor, matrix, block settings etc.).

Table. 5.4.7 - 32. Logical output user description.

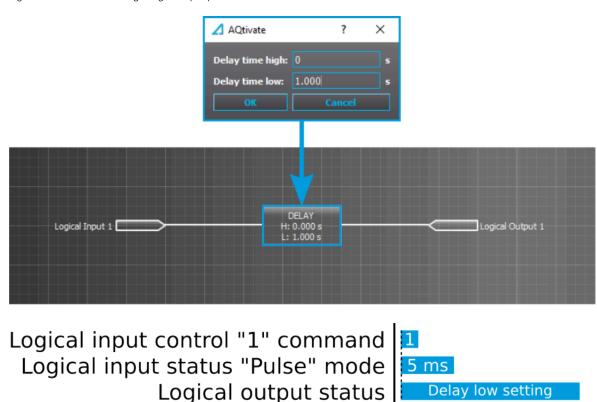
Name	Range	Default	Description
User editable description LOx	131 characters	Logical output x	Description of the logical output. This description is used in several menu types for easier identification.

5.4.8 Logical inputs

Logical inputs are binary signals that a user can control manually to change the behavior of the AQ-200 unit or to give direct control commands. Logical inputs can be controlled with a virtual switch built in the mimic and from a SCADA system (IEC 61850, Modbus, IEC 101, etc.). Logical inputs are volatile signals: their status will always return to "0" when the AQ-200 device is rebooted. 32 logical inputs are available.

Logical inputs have two modes available: Hold and Pulse. When a logical input which has been set to "Hold" mode is controlled to "1", the input will switch to status "1" and it stays in that status until it is given a control command to go to status "0" or until the device is rebooted. When a logical input which has been set to "Pulse" mode is controlled to "1", the input will switch to status "1" and return back to "0" after 5 ms.

The figure below presents the operation of a logical input in Hold mode and in Pulse mode.


Figure. 5.4.8 - 20. Operation of logical input in "Hold" and "Pulse" modes.

Logical input control "0" command
Logical input control "1" command
Logical input status "Hold" mode
Logical input status "Pulse" mode

5 ms
5 ms

A logical input pulse can also be extended by connecting a DELAY-low gate to a logical output, as has been done in the example figure below.

Figure. 5.4.8 - 21. Extending a logical input pulse.

Logical input descriptions

Logical inputs can be given a description. The user defined description are displayed in most of the menus (logic editor, matrix, block settings etc.).

Table. 5.4.8 - 33. Logical input user description.

Name	Range	Default	Description
User editable description Llx	131 characters		Description of the logical input. This description is used in several menu types for easier identification.

5.5 Programmable stage (PGx>/<; 99)

The programmable stage is a stage that the user can program to create more advanced applications, either as an individual stage or together with programmable logic. The relay has ten programmable stages, and each can be set to follow one to three analog measurements. The programmable stages have three available pick up terms options: overX, underX and rate-of-change of the selected signal. Each stage includes a definite time delay to trip after a pick-up has been triggered.

The programmable stage cycle time is 5 ms. The pick-up delay depends on which analog signal is used as well as its refresh rate (typically under a cycle in a 50 Hz system).

The number of programmable stages to be used is set in the *INFO* tab. When this function has been set as "Activated", the number of programmable stages can be set anywhere between one (1) and ten (10) depending on how many the application needs. In the image below, the number of programmable stages have been set to two which makes PS1 and PS2 to appear. Inactive stages are hidden until they are activated.

Please note that setting the number of available stages does not activate those stages, as they also need to be enabled individually with the *PSx >/< Enabled* parameter. When enabled an active stage shows its current state (condition), the expected operating time and the time remaining to trip under the activation parameters. If a stage is not active the *PSx>/< condition* parameter will merely display "Disabled".

The function's outputs are START, TRIP and BLOCKED signals. The programmable stage function uses a total of eight (8) separate setting groups which can be selected from one common source.

The function can operate on instant or time-delayed mode. Definite time (DT) delay can be selected in the In time-delayed mode.

The inputs for the function are the following:

- operating mode selections
- · setting parameters
- · digital inputs and logic signals
- · measured and pre-processed magnitudes.

The function's outputs are START, TRIP and BLOCKED signals which can be used for direct I/O controlling and user logic programming. The function generates general time-stamped ON/OFF events to the common event buffer from each of the three (3) output signals. In the instant operating mode the function outputs START and TRIP events simultaneously with an equivalent time stamp. The time stamp resolution is 1 ms. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 5.5 - 34. General settings of the function.

Name	Range	Description
PSx >/< LN mode	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	Set mode of PGS block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
PSx >/< LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	Displays the mode of PGS block. This parameter is visible only when Allow setting of individual LN mode is enabled in General menu.
PSx >/< Available stages	110	Defines the available amount of stages.
PSx >/< Enabled	0: Disabled 1: Enabled	Enables the stage.

Name	Range	Description
PSx >/< Force status to	0: Normal 1: Start 2: Trip 3: Blocked	Force the status of the function. Visible only when <i>Enable stage</i> forcing parameter is enabled in <i>General</i> menu.
PSx >/< Measurement setting	0: One magnitude comp 1: Two magnitude comp 2: Three magnitude comp	Defines how many measurement magnitudes are used by the stage.
	0: Mag1 x Mag2	Multiplies Signal 1 by Signal 2. The comparison uses the product of this calculation.
	1: Mag1 / Mag2	Divides Signal 1 by Signal 2. The comparison uses the product of this calculation.
	2: Max (Mag1, Mag2)	The bigger value of the chosen signals is used in the comparison.
PSx >/< Magnitude handling ("Two magnitude comp" selected)	3: Min (Mag1, Mag2)	The smaller value of the chosen signals is used in the comparison.
	4: Mag1 OR Mag2	Either of the chosen signals has to fulfill the pick-up condition. Both signals have their own pick-up setting.
	5: Mag1 AND Mag2	Both of the chosen signals have to fulfill the pick-up condition. Both signals have their own pick-up setting.
	6: Mag1 – Mag2	Subtracts Signal 2 from Signal 1. The comparison uses the product of this calculation.
	0: Mag1 x Mag2 x Mag3	Multiplies Signals 1, 2 and 3. The comparison uses the product of this calculation.
	1: Max (Mag1, Mag2, Mag3);	The biggest value of the chosen signals is used in the comparison.
DOUX/«Magnitude handling	2: Min (Mag1, Mag2, Mag3)	The smallest value of the chosen signals is used in the comparison.
PSx >/< Magnitude handling ("Three magnitude comp" selected)	3: Mag1 OR Mag2 OR Mag3	Any of the signals fulfills the pick-up condition. Each signal has their own pick-up setting.
	4: Mag1 AND Mag2 AND Mag3	All of the signals need to fulfill the pick-up condition. Each signal has their own pick-up setting.
	5: (Mag1 OR Mag2) AND Mag3	Signals 1 OR 2 AND 3 need to fulfill the pick-up condition. Each signal has their own pick-up setting.
PSx Magnitude selection	0: Currents 1: Voltages 2: Powers 3: Impedances and admittances 4: Others	Defines the measurement type used by the stage
PSx MagnitudeX	See table below.	Defines the measurement used by the stage. Available parameters depend on selected measurement type.
PSx MagnitudeX multiplier	-5 000 0005 000 000	Multiplies the selected measurement. 1 by default (no multiplication). See section "Magnitude multiplier" for more information.

Analog values

The numerous analog signals have been divided into categories to help the user find the desired value.

Table. 5.5 - 35. Phase and residual current measurements (IL1, IL2, IL3, Io1 and Io2)

Name	Description
ILx ff (p.u.)	Fundamental frequency RMS value (in p.u.)
ILx 2 nd h.	ILx 2 nd harmonic value (in p.u.)
ILx 3 rd h.	ILx 3 nd harmonic value (in p.u.)
ILx 4 th h.	ILx 4 nd harmonic value (in p.u.)
ILx 5 th h.	ILx 5 nd harmonic value (in p.u.)
ILx 7 th h.	ILx 7 nd harmonic value (in p.u.)
ILx 9 th h.	ILx 9 nd harmonic value (in p.u.)
ILx 11 th h.	ILx 11 nd harmonic value (in p.u.)
ILx 13 th h.	ILx 13 nd harmonic value (in p.u.)
ILx 15 th h.	ILx 15 nd harmonic value (in p.u.)
ILx 17 th h.	ILx 17 nd harmonic value (in p.u.)
ILx 19 th h.	ILx 19 nd harmonic value (in p.u.)
ILx TRMS	ILx TRMS value (in p.u.)
ILx Ang	ILx Angle (degrees)

Table. 5.5 - 36. Other current measurements

Name	Description
I0Z Mag	Zero sequence current value (in p.u.)
IOCALC Mag	Calculated I0 value (in p.u.)
I1 Mag	Positive sequence current value (in p.u.)
I2 Mag	Negative sequence current value (in p.u.)
I0CALC Ang	Angle of calculated residual current (degrees)
I1 Ang	Angle of positive sequence current (degrees)
I2 Ang	Angle of negative sequence current (degrees)
I01ResP	I01 primary current of a current-resistive component
I01CapP	I01 primary current of a current-capacitive component
I01ResS	I01 secondary current of a current-resistive component
I01CapS	I01 secondary current of a current-capacitive component
I02ResP	I02 primary current of a current-resistive component
I02CapP	I02 primary current of a current-capacitive component
I02ResS	I02 secondary current of a current-resistive component
I02CapS	I02 secondary current of a current-capacitive component

Table. 5.5 - 37. Voltage measurements

Name	Description
UL12Mag	UL12 Primary voltage V

Name	Description			
UL23Mag	UL23 Primary voltage V			
UL31Mag	UL31 Primary voltage V			
UL1Mag	UL1 Primary voltage V			
UL2Mag	UL2 Primary voltage V			
UL3Mag	UL3 Primary voltage V			
UL12Ang	UL12 angle (degrees)			
UL23Ang	UL23 angle (degrees)			
UL31Ang	UL31 angle (degrees)			
UL1Ang	UL1 angle (degrees)			
UL2Ang	UL2 angle (degrees)			
UL3Ang	UL3 angle (degrees)			
U0Ang	UL0 angle (degrees)			
U0CalcMag	Calculated residual voltage			
U1 pos.seq.V Mag	Positive sequence voltage			
U2 neg.seq.V Mag	Negative sequence voltage			
U0CalcAng	Calculated residual voltage angle (degrees)			
U1 pos.seq.V Ang	Positive sequence voltage angle (degrees)			
U2 neg.seq.V Ang	Negative sequence voltage angle (degrees)			

Table. 5.5 - 38. Power measurements

Name	Description		
S3PH	Three-phase apparent power S (kVA)		
РЗРН	Three-phase active power P (kW)		
Q3PH	Three-phase reactive power Q (kvar)		
tanfi3PH	Three-phase active power direction		
cosfi3PH	Three-phase reactive power direction		
SLx	Phase apparent power L1 / L2 / L3 S (kVA)		
PLx	Phase active power L1 / L2 / L3 P (kW)		
QLx	Phase reactive power L1 / L2 / L3 Q (kVar)		
tanfiLx	Phase active power direction L1 / L2 / L3		
cosfiLx	Phase reactive power direction L1 / L2 / L3		

Table. 5.5 - 39. Phase-to-phase and phase-to-neutral impedances, resistances and reactances

Name	Description			
RLxPri	Resistance R L12, L23, L31, L1, L2, L3 primary (Ω)			
XLxPri	Reactance X L12, L23, L31, L1, L2, L3 primary (Ω)			
ZLxPri	Impedance Z L12, L23, L31, L1, L2, L3 primary (Ω)			
RLxSec	Resistance R L12, L23, L31, L1, L2, L3 secondary (Ω)			
XLxSec	Reactance X L12, L23, L31, L1, L2, L3 secondary (Ω)			

Name	Description			
ZLxSec	Impedance Z L12, L23, L31, L1, L2, L3 secondary (Ω)			
ZLxAngle	Impedance Z L12, L23, L31, L1, L2, L3 angle			

Table. 5.5 - 40. Other impedances, resistances and reactances

Name	Description			
RSeqPri	Positive Resistance R primary (Ω)			
XSeqPri	Positive Reactance X primary (Ω)			
RSeqSec	Positive Resistance R secondary (Ω)			
XSeqSec	Positive Reactance X secondary (Ω)			
ZSeqPri	Positive Impedance Z primary (Ω)			
ZSeqSec	Positive Impedance Z secondary (Ω)			
ZSeqAngle	Positive Impedance Z angle			

Table. 5.5 - 41. Conductances, susceptances and admittances (L1, L2, L3)

Name	Description			
GLxPri	Conductance G L1, L2, L3 primary (mS)			
BLxPri	Susceptance B L1, L2, L3 primary (mS)			
YLxPriMag	Admittance Y L1, L2, L3 primary (mS)			
GLxSec	Conductance G L1, L2, L3 secondary (mS)			
BLxSec	Susceptance B L1, L2, L3 secondary (mS)			
YLxSecMag	Admittance Y L1, L2, L3 secondary (mS)			
YLxAngle	Admittance Y L1, L2, L3 angle (degrees)			

Table. 5.5 - 42. Other conductances, susceptances and admittances

Name	Description		
G0Pri	Conductance G0 primary (mS)		
B0Pri	Susceptance B0 primary (mS)		
G0Sec	Conductance G0 secondary (mS)		
B0Sec	Susceptance B0 secondary (mS)		
Y0Pri	Admittance Y0 primary (mS)		
Y0Sec	Admittance Y0 secondary (mS)		
Y0Angle	Admittance Y0 angle		

Table. 5.5 - 43. Other measurements

Name	Description			
System f.	System frequency			
Ref f1	Reference frequency 1			
Ref f2	Reference frequency 2			
M Thermal T	Motor thermal temperature			

Name	Description			
F Thermal T	Feeder thermal temperature			
T Thermal T	Transformer thermal temperature			
RTD meas 116	RTD measurement channels 116			
Ext RTD meas 18	External RTD measurement channels 18 (ADAM)			
mA input 7,8,15,16	mA input channels 7, 8, 15, 16			
ASC 14	Analog scaled curves 14			

Magnitude multiplier

Programmable stages can be set to follow one, two or three analog measurements with the *PSx* >/< *Measurement setting* parameter. The user must choose a measurement signal value to be compared to the set value, and possibly also set a scaling for the signal. The image below is an example of scaling: a primary neutral voltage has been scaled to a percentage value for easier handling when setting up the comparator.

The scaling factor was calculated by taking the inverse value of a 20 kV system:

$$k = \frac{1}{20\ 000\ \text{V}/\sqrt{3}} = 0.008\ 66$$

When this multiplier is in use, the full earth fault neutral voltage is 11 547 V primary which is then multiplied with the above-calculated scaling factor, inversing the final result to 100%. This way a pre-processed signal is easier to set, although it is also possible to just use the scaling factor of 1.0 and set the desired pick-up limit as the primary voltage. Similarly, any chosen measurement value can be scaled to the desired form.

Read-only parameters

The relay's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the relay's HMI display, or through the setting tool software when it is connected to the relay and its Live Edit mode is active.

Table. 5.5 - 44. Information displayed by the function.

Name	Range	Description		
PSx >/< LN behaviour	1: On 2: Blocked 3: Test 4: Test/Blocked 5: Off	Displays the mode of PGS block. This parameter is visible only when Allow setting of individual LN mode is enabled in General menu.		
Condition	0: Normal 1: Start 2: Trip 3: Blocked	Displays status of the function.		
Expected operating time	-1800.0001800.000s	Displays the expected operating time when a fault occurs.		
Time remaining to trip	remaining to trip 0.0001800.000s When the function has detected a fault and counts down time trip, this displays how much time is left before tripping occurs			
PSx Scaled magnitude X		Displays measurement value after multiplying it the value set to PSx Magnitude multiplier.		
PSx >/< MeasMag1/ MagSet1 at the moment	-5 000 0005 000 000	The ratio between measured magnitude and the pick-up setting.		

Name	Range	Description	
PSx >/< MeasMag2/ MagSet2 at the moment	-5 000 0005 000 000	The ratio between measured magnitude and the pick-up setting.	
PSx >/< MeasMag3/ MagSet3 at the moment	-5 000 0005 000 000	The ratio between measured magnitude and the pick-up setting.	
PSx >/< CalcMeasMag/ MagSet at the moment	-5 000 0005 000 000	The ratio between calculated magnitude and the pick-up setting.	

Pick-up

The *Pick-up setting Mag* setting parameter controls the pick-up of the PGx>/< function. This defines the maximum or minimum allowed measured magnitude before action from the function. The function constantly calculates the ratio between the set and the measured magnitudes. The user can set the reset hysteresis in the function (by default 3 %). It is always relative to the *Pick-up setting Mag* value.

Table. 5.5 - 45. Pick-up settings.

Name	Range	Step	Default	Description
PS# Pick-up term Mag#	0: Over > 1: Over (abs) > 2: Under < 3: Under (abs) < 4: Delta set (%) +/-> 5: Delta abs (%) > 6: Delta +/- measval 7: Delta abs measval	-	0: Over	Comparator mode for the magnitude. See "Comparator modes" section below for more information.
PS# Pick-up setting Mag#/calc >/<	-5 000 000.00005 000 000.0000	0.0001	0.01	Pick-up magnitude
PS# Setting hysteresis Mag#	0.000050.0000%	0.0001%	3%	Setting hysteresis
Definite operating time delay	0.0001800.000s	0.005s	0.04s	Delay setting
Release time delays	0.0001800.000s	0.005s	0.06s	Pick-up release delay

The pick-up activation of the function is not directly equal to the START signal generation of the function. The START signal is allowed if the blocking condition is not active.

Comparator modes

When setting the comparators, the user must first choose a comparator mode.

Table. 5.5 - 46. Comparator modes

Mode	Description	
0: Over >	Greater than. If the measured signal is greater than the set pick-up level, the comparison condition is fulfilled.	
1: Over (abs) >	Greater than (absolute). If the absolute value of the measured signal is greater than the set pick-up level, the comparison condition is fulfilled.	
2: Under <	Less than. If the measured signal is less than the set pick-up level, the comparison condition is fulfilled. The user can also set a blocking limit: the comparison is not active when the measured value is less than the set blocking limit.	

Mode	Description
3: Under (abs) <	Less than (absolute). If the absolute value of the measured signal is less than the set pick-up level, the comparison condition is fulfilled. The user can also set a blocking limit: the comparison is not active when the measured value is less than the set blocking limit.
4: Delta set (%) +/- >	Relative change over time. If the measured signal changes more than the set relative pick-up value in 20 ms, the comparison condition is fulfilled. The condition is dependent on direction.
5: Delta abs (%) >	Relative change over time (absolute). If the measured signal changes more than the set relative pick-up value in 20 ms in either direction, the comparison condition is fulfilled. The condition is not dependent on direction.
6: Delta +/- measval	Change over time. If the measured signal changes more than the set pick-up value in 20 ms, the comparison condition is fulfilled. The condition is dependent on direction.
7: Delta abs measval	Change over time (absolute). If the measured signal changes more than the set pick-up value in 20 ms in either direction, the comparison condition is fulfilled. The condition is not dependent on direction.

The pick-up level is set individually for each comparison. When setting up the pick-up level, the user needs to take into account the modes in use as well as the desired action. The pick-up limit can be set either as positive or as negative. Each pick-up level has a separate hysteresis setting which is 3 % by default.

The user can set the operating and releasing time delays for each stage.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time-stamped blocking event with information of the startup values of the selected signal and its fault type to be issued.

The blocking signal can also be tested in the commissioning phase by a software switch signal when the relay's testing mode "Enable stage forcing" is activated ($General \rightarrow Device$).

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

The programmable stage function (abbreviated "PGS" in event block names) generates events and registers from the status changes in START, TRIP, and BLOCKED. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The events triggered by the function are recorded with a time stamp and with process data values.

Table. 5.5 - 47. Event messages.

Event block name	Event names
PGS1	PS1 >/< Start ON

Event block name	Event names
PGS1	PS1 >/< Start OFF
PGS1	PS1 >/< Trip ON
PGS1	PS1 >/< Trip OFF
PGS1	PS1 >/< Block ON
PGS1	PS1 >/< Block OFF
PGS1	PS2 >/< Start ON
PGS1	PS2 >/< Start OFF
PGS1	PS2 >/< Trip ON
PGS1	PS2 >/< Trip OFF
PGS1	PS2 >/< Block ON
PGS1	PS2 >/< Block OFF
PGS1	PS3 >/< Start ON
PGS1	PS3 >/< Start OFF
PGS1	PS3 >/< Trip ON
PGS1	PS3 >/< Trip OFF
PGS1	PS3 >/< Block ON
PGS1	PS3 >/< Block OFF
PGS1	PS4 >/< Start ON
PGS1	PS4 >/< Start OFF
PGS1	PS4 >/< Trip ON
PGS1	PS4 >/< Trip OFF
PGS1	PS4 >/< Block ON
PGS1	PS4 >/< Block OFF
PGS1	PS5 >/< Start ON
PGS1	PS5 >/< Start OFF
PGS1	PS5 >/< Trip ON
PGS1	PS5 >/< Trip OFF
PGS1	PS5 >/< Block ON
PGS1	PS5 >/< Block OFF
PGS1	reserved
PGS1	reserved
PGS1	PS6 >/< Start ON
PGS1	PS6 >/< Start OFF
PGS1	PS6 >/< Trip ON
PGS1	PS6 >/< Trip OFF
PGS1	PS6 >/< Block ON
PGS1	PS6 >/< Block OFF
PGS1	PS7 >/< Start ON

Event block name	Event names
PGS1	PS7 >/< Start OFF
PGS1	PS7 >/< Trip ON
PGS1	PS7 >/< Trip OFF
PGS1	PS7 >/< Block ON
PGS1	PS7 >/< Block OFF
PGS1	PS8 >/< Start ON
PGS1	PS8 >/< Start OFF
PGS1	PS8 >/< Trip ON
PGS1	PS8 >/< Trip OFF
PGS1	PS8 >/< Block ON
PGS1	PS8 >/< Block OFF
PGS1	PS9 >/< Start ON
PGS1	PS9 >/< Start OFF
PGS1	PS9 >/< Trip ON
PGS1	PS9 >/< Trip OFF
PGS1	PS9 >/< Block ON
PGS1	PS9 >/< Block OFF
PGS1	PS10 >/< Start ON
PGS1	PS10 >/< Start OFF
PGS1	PS10 >/< Trip ON
PGS1	PS10 >/< Trip OFF
PGS1	PS10 >/< Block ON
PGS1	PS10 >/< Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 5.5 - 48. Register content.

Date and time	Event	>/< Mag#	Mag#/Set#	Trip time remaining	Used SG
dd.mm.yyyy hh:mm:ss.mss	Event name	The numerical value of the magnitude	Ratio between the measured magnitude and the pick-up setting	0 ms1800s	Setting group 18 active

6 Communication

6.1 Connections menu

"Connections" menu is found under "Communication" menu. It contains all basic settings of ethernet port and RS-485 serial port included with every AQ-200 device as well as settings of communication option cards.

Table. 6.1 - 49. Settings of back panel ethernet port.

Name	Range	Description
IP address	0.0.0.0255.255.255	Set IP address of the ethernet port in the back of the AQ-200 series device.
Netmask	0.0.0.0255.255.255	Set netmask of the ethernet port in the back of the AQ-200 series device.
Gateway	0.0.0.0255.255.255	Set gateway of the ethernet port in the back of the AQ-200 series device.
MAC- Address	00-00-00-00-00-00FF-FF-FF-FF-FF-FF	Indication of MAC address of the AQ-200 series device.

Virtual Ethernet enables the device to be connected to multiple different networks simultaneously via one physical Ethernet connection. Virtual Ethernet has its own separate IP address and network configurations. All Ethernet-based protocol servers listen for client connections on the IP addresses of both the physical Ethernet and the Virtual Ethernet.

Table. 6.1 - 50. Virtual Ethernet settings.

Name	Description
Enable virtual adapter (No / Yes)	Enable virtual adapter. Off by default.
IP address	Set IP address of the virtual adapter.
Netmask	Set netmask of the virtual adapter.
Gateway	Set gateway of the virtual adapter.

AQ-200 series devices are always equipped with an RS-485 serial port. In the software it is identified as "Serial COM1" port.

Table. 6.1 - 51. Serial COM1 settings.

Name	Range	Description
Bitrate	0: 9600bps 1: 19200bps 2: 38400bps	Bitrate used by RS-485 port.
Databits	78	Databits used by RS-485 port.
Parity	0: None 1: Even 2: Odd	Paritybits used by RS-485 port.
Stopbits	12	Stopbits used by RS-485 port.

Name	Range	Description
Protocol	0: None 1: ModbutRTU 2: ModbusIO 3: IEC103 4: SPA 5: DNP3 6: IEC101	Communication protocol used by RS-485 port.

AQ-200 series supports communication option card type that has serial fiber ports (Serial COM2) an RS-232 port (Serial COM3).

Table. 6.1 - 52. Serial COM2 settings.

Name	Range	Description
Bitrate	0: 9600bps 1: 19200bps 2: 38400bps	Bitrate used by serial fiber channels.
Databits	78	Databits used by serial fiber channels.
Parity	0: None 1: Even 2: Odd	Paritybits used by serial fiber channels.
Stopbits	12	Stopbits used by serial fiber channels.
Protocol	0: None 1: ModbutRTU 2: ModbusIO 3: IEC103 4: SPA 5: DNP3 6: IEC101	Communication protocol used by serial fiber channels.
Echo	0: Off 1: On	Enable or disable echo.
Idle Light	0: Off 1: On	Idle light behaviour.

Table. 6.1 - 53. Serial COM3 settings.

Name	Range	Description
Bitrate	0: 9600bps 1: 19200bps 2: 38400bps	Bitrate used by RS-232 port.
Databits	78	Databits used by RS-232 port.
Parity	0: None 1: Even 2: Odd	Paritybits used by RS-232 port.
Stopbits	12	Stopbits used by RS-232 port.
Protocol	0: None 1: ModbutRTU 2: ModbusIO 3: IEC103 4: SPA 5: DNP3 6: IEC101	Communication protocol used by RS-232 port.

6.2 Time synchronization

Time synchronization source can be selected with "Time synchronization" parameter at *Communication* \rightarrow *Synchronization* \rightarrow *General*.

Table. 6.2 - 54. General time synchronization source settings.

Name	Range	Description
Time synchronization source	0: Internal	
	1: External NTP	
	2: External serial	Selection of time synchronization source.
	3: IRIG-B	
	4: PTP	

6.2.1 Internal

If no external time synchronization source is available the mode should be set to "internal". This means that the AQ-200 device clock runs completely on its own. Time can be set to the device with AQtivate setting tool with $Commands \rightarrow Sync\ Time$ command or in the clock view from the HMI. When using $Sync\ time$ command AQtivate sets the time to device the connected computer is currently using. Please note that the clock doesn't run when the device is powered off.

6.2.2 NTP

When enabled, the NTP (Network Time Protocol) service can use external time sources to synchronize the device's system time. The NTP client service uses an Ethernet connection to connect to the NTP time server. NTP can be enabled by setting the primary time server and the secondary time server parameters to the address of the system's NTP time source(s).

Table. 6.2.2 - 55. Server settings.

Name	Range	Description
Primary time server address	0.0.0.0255.255.255.255	Defines the address of the primary NTP server. Setting this parameter at "0.0.0.0" means that the server is not in use.
Secondary time server address	0.0.0.0255.255.255	Defines the address of the secondary (or backup) NTP server. Setting this parameter at "0.0.0.0" means that the server is not in use.

Table. 6.2.2 - 56. Status.

Name	Range	Description
NTP quality for events	0: No sync 1: Synchronized	Displays the status of the NTP time synchronization at the moment. NOTE: This indication is not valid if another time synchronization method is used (external serial).
NTP-processed message count	04294967295	Displays the number of messages processed by the NTP protocol.

Additionally, the time zone of the relay can be set by connecting to the relay and the selecting the time zone at $Commands \rightarrow Set time zone$ in AQtivate setting tool.

6.2.3 PTP

PTP, Precision Time Protocol, is a higher accuracy synchronization protocol for Ethernet networks. Accuracy of microsecond level can be achieved.

In a PTP network the devices can have different roles. There is a Grandmaster clock that is the clock source, normally connected to GPS. Most devices take the role of an Ordinary clock which receive synchronization from the Grandmaster clock. In the PTP network there can also be Boundary and Transparent clock roles, these are most often PTP enabled switches that can redistribute time or compensate for their delays.

BMCA, Best Master Clock Algorithm, is an algorithm that PTP devices use to determine the best clock source. This is utilized in network segments where there are 2 Grandmaster clocks or in situations where there are no Grandmaster available. In these situations the devices make a selection which device will act as the clock source. In these cases without GPS synchronized clock source, the accuracy between the devices is still high.

Settings

Select PTP as the time synchronization source from $Communication \rightarrow Synchronization \rightarrow General menu.$

The following settings are available in Communication \rightarrow Synchronization \rightarrow PTP menu.

Table. 6.2.3 - 57. PTP time synchronization settings.

Name	Range	Description
Role	0: Auto (Default) 1: Master 2: Slave	In Auto mode, the device can take both the role of a clock source and clock consumer. In Master mode the device is forced to concider itself to be a clock source. In Slave mode the device is forced to be a clock consumer.
Mechanism	0: P2P (Default) 1: E2E	Delay measurement mechanism used. Peer-to-peer can utilize the PTP enabled switches as transparent ro boundary clocks while End-to-end must be used if non-PTP enabled switches are found in the network.
Domain number	0255	PTP devices can be set to belong to a grouping called domain. Devices in same domain is primearly being synchronized together.

Status indications

The following status indications are available in Communication \rightarrow Synchronization \rightarrow PTP menu.

Table. 6.2.3 - 58. PTP status indications

Name	Description
State	State of the PTP application (Master, Slave, Listening).
Best master	Identification of best master in network. Id consist of MAC address plus id number.
Last receive	Time when last synchronization frame was received.
Message sent	Diagnostic message counter.
Message receive	Diagnostic message counter.
PTP timesource	Diagnostic number describing the current time source.

6.3 Communication protocols

6.3.1 IEC 61850

The user can enable the IEC 61850 protocol in device models that support this protocol at $Communication \rightarrow Protocols \rightarrow IEC61850$. AQ-21x frame units support Edition 1 of IEC 61850. AQ-25x frame units support both Edition 1 and 2 of IEC 61850. The following services are supported by IEC 61850 in Arcteq devices:

- Up to six data sets (predefined data sets can be edited with the IEC 61850 tool in AQtivate)
- Report Control Blocks (both buffered and unbuffered reporting)
- Control ('Direct operate with normal security', 'Select before operate with normal security, 'Direct with enhanced security' and 'Select before operate with enhanced sequrity' control sequences)
- Disturbance recording file transfer
- GOOSE
- Time synchronization

The device's current IEC 61850 setup can be viewed and edited with the IEC61850 tool ($Tools \rightarrow Communication \rightarrow IEC 61850$).

Settings.

The general setting parameters for the IEC 61850 protocol are visible both in AQtivate and in the local HMI. The settings are described in the table below.

Table. 6.3.1 - 59. General settings.

Name	Range	Step	Default	Description
Enable IEC 61850	0: Disabled 1: Enabled	-	0: Disabled	Enables and disables the IEC 61850 communication protocol.
Reconfigure IEC 61850	0: - 1: Reconfigure	-	0: -	Reconfigures IEC 61850 settings.
IP port	065 535	1	102	Defines the IP port used by the IEC 61850 protocol. The standard (and default) port is 102.
IEC61850 edition	0: Ed1 0: Ed2	-	-	Displays the IEC61850 edition used by the device. Edition can be chosen by loading a new CID file at <i>Tools</i> → <i>Communication</i> → <i>IEC</i> 61850 with <i>Open</i> button.
Control Authority switch	0: Remote Control 1: Station Level Control	-	0: Remote Control	The device can be set to allow object control via IEC 61850 only from clients that are of category Station level control. This would mean that other Remote control clients would not be allowed to control. In Remote control mode all IEC 61850 clients of both remote and station level category are allowed to control objects.
Ethernet port	0: All 1: COM A 2: Double ethernet card	-	0: All	Determines which ports use IEC61850. Visible if double ethernet option card is found in the device.
Configure GOOSE Subscriber from CID file allowed	0: Disabled 1: Allowed	-	0: Disabled	In edition 2 of IEC 61850 GOOSE subscriber configuration is a part of the CID file. Determines if it is possible to import published GOOSE settings of another device with a CID file and set them to GOOSE input at $Tools \rightarrow Communication \rightarrow IEC 61850 \rightarrow GOOSE$ subscriptions.
General deadband	0.110.0 %	0.1 %	2 %	Determines the general data reporting deadband settings.
Active energy deadband	0.11000.0 kWh	0.1 kWh	2 kWh	Determines the data reporting deadband settings for this measurement.
Reactive energy deadband	0.11000.0 kVar	0.1 kVar	2 kVar	Determines the data reporting deadband settings for this measurement.
Active power deadband	0.11000.0 kW	0.1 kW	2 kW	Determines the data reporting deadband settings for this measurement.
Reactive power deadband	0.11000.0 kVar	0.1 kVar	2 kVar	Determines the data reporting deadband settings for this measurement.

Name	Range	Step	Default	Description
Apparent power deadband	0.11000.0 kVA	0.1 kVA	2 kVA	Determines the data reporting deadband settings for this measurement.
Power factor deadband	0.010.99	0.01	0.05	Determines the data reporting deadband settings for this measurement.
Frequency deadband	0.011.00 Hz	0.01 Hz	0.1 Hz	Determines the data reporting deadband settings for this measurement.
Current deadband	0.0150.00 A	0.01 A	5 A	Determines the data reporting deadband settings for this measurement.
Residual current deadband	0.0150.00 A	0.01 A	0.2 A	Determines the data reporting deadband settings for this measurement.
Voltage deadband	0.015000.00 V	0.01 V	200 V	Determines the data reporting deadband settings for this measurement.
Residual voltage deadband	0.015000.00 V	0.01 V	200 V	Determines the data reporting deadband settings for this measurement.
Angle measurement deadband	0.15.0 deg	0.1 deg	1 deg	Determines the data reporting deadband settings for this measurement.
Integration time	010 000 ms	1 ms	0 ms	Determines the integration time of the protocol. If this parameter is set to "0 ms", no integration time is in use.
GOOSE Ethernet port	0: All 1: COM A 2: Double ethernet card	-	0: All	Determines which ports can use GOOSE communication. Visible if double ethernet option card is found in the device.

For more information on the IEC 61850 communication protocol support, please refer to the conformance statement documents (<u>www.arcteg.fi/downloads/</u> \rightarrow AQ-200 series \rightarrow Resources).

6.3.2 Modbus/TCP and Modbus/RTU

The device supports both Modbus/TCP and Modbus/RTU communication. Modbus/TCP uses the Ethernet connection to communicate with Modbus/TCP clients. Modbus/RTU is a serial protocol that can be selected for the available serial ports.

The following Modbus function types are supported:

- Read multiple holding registers (function code 3)
- Write single holding register (function code 6)
- Write multiple holding registers (function code 16)
- Read/Write multiple registers (function code 23)

The following data can be accessed using both Modbus/TCP and Modbus/RTU:

- Device measurements
- Device I/O
- Commands
- Events
- Time

Once the configuration file has been loaded, the user can access the Modbus map of the relay via the AQtivate software ($Tools \rightarrow Communication \rightarrow Modbus Map$). Please note that holding registers start from 1. Some masters might begin numbering holding register from 0 instead of 1; this will cause an offset of 1 between the relay and the master. Modbus map can be edited with Modbus Configurator ($Tools \rightarrow Communication \rightarrow Modbus Configurator$).

Table. 6.3.2 - 60. Modbus/TCP settings.

Parameter	Range	Description				
Enable Modbus/ TCP	0: Disabled 1: Enabled	Enables and disables the Modbus/TCP on the Ethernet port.				
IP port	065 535	Defines the IP port used by Modbus/TCP. The standard port (and the default setting) is 502.				
Ethernet port	0: All 1: COM A 2: Double Ethernet card	Defines which ethernet ports are available for Modbus connection. Visible if any double ethernet option card is installed in the device.				
	0: Get oldest available	0: Get oldest event possible (Default)				
Event read mode	1: Continue previous	1: Continue with the event idx from previous connection				
	2: New events only	2: Get only new events from connection time and forward.				

Table. 6.3.2 - 61. Modbus/RTU settings.

Parameter	Range	Description
Slave address	1247	Defines the Modbus/RTU slave address for the unit.

Reading events

Modbus protocol does not support time-stamped events by standard definition. This means that every vendor must come up with their own definition how to transfer events from the device to the client. In AQ-200 series devices events can be read from HR17...HR22 holding registers. HR17 contains the event-code, HR18...20 contains the time-stamp in UTC, HR21 contains a sequential index and HR22 is reserved for future expansion. See the Modbus Map for more information. The event-codes and their meaning can be found from Event list ($Tools \rightarrow Events \ ang \ Logs \rightarrow Event \ list$ in setting tool). The event-code in HR17 is 0 if no new events can be found in the device event-buffer. Every time HR17 is read from client the event in event-buffer is consumed and on following read operation the next un-read event information can be found from event registers. HR11...HR16 registers contains a back-up of last read event. This is because some users want to double-check that no events were lost

6.3.3 GOOSE

Arcteq relays support both GOOSE publisher and GOOSE subscriber. GOOSE subscriber is enabled with the "GOOSE subscriber enable" parameter at *Communication* → *Protocols* → *IEC 61850/GOOSE*. The GOOSE inputs are configured using either the local HMI or the AQtivate software.

There are up to 64 GOOSE inputs available for use. Each of the GOOSE inputs also has a corresponding input quality signal which can also be used in internal logic. The quality is good, when the input quality is low (that is, when the quality is marked as "0"). The value of the input quality can increase as a result of a GOOSE time-out or a configuration error, for example. The status and quality of the various logical input signals can be viewed at the GOOSE~IN~status and GOOSE~IN~quality tabs at $Control \rightarrow Device~I/O \rightarrow Logical~signals$.

General GOOSE setting

The table below presents general settings for GOOSE publisher.

Table. 6.3.3 - 62. General GOOSE publisher settings.

Name	Range	Description	
GOOSE control block 1 simulation bit	0: Disabled (Default)	The publisher will publish frames with simulation bit active if enabled. For	
GOOSE control block 2 simulation bit	1: Enabled	GOOSE simulation testing purposes.	

The table below presents general settings for GOOSE subscriber

Table. 6.3.3 - 63. General GOOSE subscriber settings.

Name	Range	Description	
GOOSE subscriber enable	0: Disabled (Default) 1: Enabled	Enables or disables GOOSE subscribing for the device.	
Not used GOOSE input Quality	1: Bad quality (1) 2: Good quality (0)	Defines what state should GOOSE input quality signal to be in the logic if the input has been set as "disabled".	
Subscriber checks GoCBRef	0: No (Default)	When subscriber sees GOOSE frame it checks APPID and Conf. Rev but can also check if GoCBRef or SqNum match.	
Subscriber checks SqNum	1: Yes	also check if Goodrei of Sqinum match.	
Subscriber process simulation messages	0: No (Default) 1: Yes	Subscriber can be set to process frames which are published with simulation bit high if enabled	

GOOSE input settings

The table below presents the different settings available for all 64 GOOSE inputs.

Table. 6.3.3 - 64. GOOSE input settings.

Name	Range	Description			
In use	0: No (Default) 1: Yes	Enables and disables the GOOSE input in question.			
Application ID ("AppID")	0×00×3FFF	Defines the application ID that will be matched with the publisher's GOOSE control block.			
Configuration revision ("ConfRev")	12 ³² -1	Defines the configuration revision that will be matched with the publisher's GOOSE control block.			
Data index ("Dataldx")	099	Defines the data index of the value in the matched published frame. It is the status of the GOOSE input.			
Nextldx is quality	0: No (Default) 1: Yes	Selects whether or not the next received input is the quality bit of the GOOSE input.			
Data type	0: Boolean (Default) 1: Integer 2: Unsigned 3: Floating point	Selects the data type of the GOOSE input.			

Name	Range	Description
Control block reference	-	GOOSE subscriber can be set to check the GCB reference of the published GOOSE frame. This setting is automatically filled when Ed2 GOOSE configuration is done by importing cid file of the publisher.

GOOSE input descriptions

GOOSE inputs can be given a description. The user defined description are displayed in most of the menus (logic editor, matrix, block settings etc.).

Table. 6.3.3 - 65. GOOSE input user description.

Name	Range	Default	Description
User editable description GI x	131 characters		Description of the GOOSE input. This description is used in several menu types for easier identification.

GOOSE events

GOOSE signals generate events status changes. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp and with process data values. The time stamp resolution is 1 ms.

Table. 6.3.3 - 66. GOOSE event

Event block name	Event name					
GOOSE1GOOSE2	GOOSE IN 164 ON/OFF					
GOOSE3GOOSE4	GOOSE IN 164 quality Bad/Good					
GOOSE5GOOSE6	GOOSE Subscription status 164 Active/Not active					
GOOSE7GOOSE8	GOOSE Processing simulated messages 164 True/False					
GOOSE9GOOSE10	GOOSE Subscription needs commissioning 164 True/False					

Setting the publisher

The configuration of the GOOSE publisher is done using the IEC 61850 tool in AQtivate ($Tools \rightarrow Communication \rightarrow IEC 61850$). Refer to AQtivate-200 Instruction manual for more information on how to set up GOOSE publisher.

6.3.4 IEC 103

IEC 103 is the shortened form of the international standard IEC 60870-5-103. The AQ-200 series units are able to run as a secondary (slave) station. The IEC 103 protocol can be selected for the serial ports that are available in the device. A primary (master) station can then communicate with the AQ-200 device and receive information by polling from the slave device. The transfer of disturbance recordings is not supported.

NOTE: Once the configuration file has been loaded, the IEC 103 map of the relay can be found in the AQtivate software ($Tools \rightarrow IEC \ 103 \ map$).

The following table presents the setting parameters for the IEC 103 protocol.

Name	Range	Step	Default	Description
Slave address	1254	1	1	Defines the IEC 103 slave address for the unit.

Name	Range	Step	Default	Description
Measurement interval	060 000 ms	1 ms	2000 ms	Defines the interval for the measurements update.

6.3.5 IEC 101/104

The standards IEC 60870-5-101 and IEC 60870-5-104 are closely related. Both are derived from the IEC 60870-5 standard. On the physical layer the IEC 101 protocol uses serial communication whereas the IEC 104 protocol uses Ethernet communication. The IEC 101/104 implementation works as a slave in the unbalanced mode.

For detailed information please refer to the IEC 101/104 interoperability document (<u>www.arcteq.fi/downloads/</u> \rightarrow AQ-200 series \rightarrow Resources \rightarrow "AQ-200 IEC101 & IEC104 interoperability").

IEC 101 settings

Table. 6.3.5 - 67. IEC 101 settings.

Name	Range	Step	Default	Description
Common address of ASDU	065 534	1	1	Defines the common address of the application service data unit (ASDU) for the IEC 101 communication protocol.
Common address of ASDU size	12	1	2	Defines the size of the common address of ASDU.
Link layer address	065 534	1	1	Defines the address for the link layer.
Link layer address size	12	1	2	Defines the address size of the link layer.
Information object address size	23	1	3	Defines the address size of the information object.
Cause of transmission size	12	1	2	Defines the cause of transmission size.

IEC 104 settings

Table. 6.3.5 - 68. IEC 104 settings.

Name	Range	Step	Default	Description		
IEC 104 enable	0: Disabled 1: Enabled	-	0: Disabled	Enables and disables the IEC 104 communication protocol.		
IP port	065 535	1	2404	Defines the IP port used by the protocol.		
Ethernet port	0: All 1: COM A 2: Double Ethernet card	-	0: All	Defines which ethernet ports are available for Modbus connection. Visible if any double ethernet option card is installed in the device.		
Common address of ASDU	065 534	1	1	Defines the common address of the application service data unit (ASDU) for the IEC 104 communication protocol.		

Measurement scaling coefficients

The measurement scaling coefficients are available for the following measurements, in addition to the general measurement scaling coefficient:

Table. 6.3.5 - 69. Measurements with scaling coefficient settings.

Name	Range
Active energy	
Reactive energy	
Active power	0: No scaling
Reactive power	1: 1/10 2: 1/100
Apparent power	3: 1/1000 4: 1/10 000
Power factor	5: 1/100 000 6: 1/1 000 000
Frequency	7: 10
Current	8: 100 9: 1000
Residual current	10: 10 000 11: 100 000
Voltage	12: 1 000 000
Residual voltage	
Angle	

Deadband settings.

Table. 6.3.5 - 70. Analog change deadband settings.

Name	Range	Step	Default	Description
General deadband	0.110.0%	0.1%	2%	Determines the general data reporting deadband settings.
Active energy deadband	0.11000.0kWh	0.1kWh	2kWh	
Reactive energy deadband	0.11000.0kVar	0.1kVar	2kVar	
Active power deadband	0.11000.0kW	0.1kW	2kW	
Reactive power deadband	0.11000.0kVar	0.1kVar	2kVar	
Apparent power deadband	0.11000.0kVA	0.1kVA	2kVA	
Power factor deadband	0.010.99	0.01	0.05	Determines the data reporting deadband settings for this
Frequency deadband	0.011.00Hz	0.01Hz	0.1Hz	measurement.
Current deadband	0.0150.00A	0.01A	5A	
Residual current deadband	0.0150.00A	0.01A	0.2A	
Voltage deadband	0.015000.00V	0.01V	200V	
Residual voltage deadband	0.015000.00V	0.01V	200V	
Angle measurement deadband	0.15.0deg	0.1deg	1deg	
Integration time	010 000ms	1ms	-	Determines the integration time of the protocol. If this parameter is set to "0 ms", no integration time is in use.

6.3.6 SPA

The device can act as a SPA slave. SPA can be selected as the communication protocol for the RS-485 port (Serial COM1). When the device has a serial option card, the SPA protocol can also be selected as the communication protocol for the serial fiber (Serial COM2) ports or RS-232 (Serial COM3) port. Please refer to the chapter "Construction and installation" in the device manual to see the connections for these modules.

The data transfer rate of SPA is 9600 bps, but it can also be set to 19 200 bps or 38 400 bps. As a slave the device sends data on demand or by sequenced polling. The available data can be measurements, circuit breaker states, function starts, function trips, etc. The full SPA signal map can be found in AQtivate ($Tools \rightarrow SPA \ map$).

The SPA event addresses can be found at $Tools \rightarrow Events$ and $logs \rightarrow Event$ list.

Table. 6.3.6 - 71. SPA setting parameters.

Name	Range	Description
SPA address	1899	SPA slave address.
UTC time sync	0: Disabled 1: Enabled	Determines if UTC time is used when synchronizing time. When disabled it is assumed time synchronization uses local time. If enabled it is assumed that UTC time is used. When UTC time is used the timezone must be set at <i>Commands</i> → <i>Set time zone</i> .

NOTE!

To access SPA map and event list, an .aqs configuration file should be downloaded from the relay.

6.3.7 DNP3

DNP3 is a protocol standard which is controlled by the DNP Users Group (www.dnp.org). The implementation of a DNP3 slave is compliant with the DNP3 subset (level) 2, but it also contains some functionalities of the higher levels. For detailed information please refer to the DNP3 Device Profile document (www.arcteq.fi/downloads/ \rightarrow AQ-200 series \rightarrow Resources).

Settings

The following table describes the DNP3 setting parameters.

Table. 6.3.7 - 72. Settings.

Name	Range	Step	Default	Description
Enable DNP3 TCP	0: Disabled 1: Enabled	-	0: Disabled	Enables and disables the DNP3 TCP communication protocol when the Ethernet port is used for DNP3. If a serial port is used, the DNP3 protocol can be enabled from <i>Communication</i> → <i>DNP3</i> .
IP port	065 535	1	20 000	Defines the IP port used by the protocol.
Ethernet port	0: All 1: COM A 2: Double Ethernet card	-	0: All	Defines which ethernet ports are available for Modbus connection. Visible if any double ethernet option card is installed in the device.

Name	Range	Step	Default	Description	
Slave address	165 519	1	1	Defines the DNP3 slave address of the unit.	
Master address	165 534	1	2	Defines the address for the allowed master.	
Link layer time-out	060 000ms	1ms	0ms	Defines the length of the time-out for the link layer.	
Link layer retries	120	1	1	Defines the number of retries for the link layer.	
Diagnostic - Error counter	02 ³² -1	1	-	Counts the total number of errors in received and sent messages.	
Diagnostic - Transmitted messages	02 ³² -1	1	-	Counts the total number of transmitted messages.	
Diagnostic - Received messages	02 ³² -1	1	-	Counts the total number of received messages.	

Default variations

Table. 6.3.7 - 73. Default variations.

Name	Range	Default	Description
Group 1 variation (BI)	0: Var 1 1: Var 2	0: Var 1	Selects the variation of the binary signal.
Group 2 variation (Bl change)	0: Var 1 1: Var 2	1: Var 2	Selects the variation of the binary signal change.
Group 3 variation (DBI)	0: Var 1 1: Var 2	0: Var 1	Selects the variation of the double point signal.
Group 4 variation (DBI change)	0: Var 1 1: Var 2	1: Var 2	Selects the variation of the double point signal.
Group 20 variation (CNTR)	0: Var 1 1: Var 2 2: Var 5 3: Var 6	0: Var 1	Selects the variation of the control signal.
Group 22 variation (CNTR change)	0: Var 1 1: Var 2 2: Var 5 3: Var 6	2: Var 5	Selects the variation of the control signal change.
Group 30 variation (AI)	0: Var 1 1: Var 2 2: Var 3 3: Var 4 4: Var 5	4: Var 5	Selects the variation of the analog signal.
Group 32 variation (Al change)	0: Var 1 1: Var 2 2: Var 3 3: Var 4 4: Var 5 5: Var 7	4: Var 5	Selects the variation of the analog signal change.

Setting the analog change deadbands

Table. 6.3.7 - 74. Analog change deadband settings.

Name	Range	Step	Default	Description
General deadband	0.110.0%	0.1%	2%	Determines the general data reporting deadband settings.
Active energy deadband	0.11000.0kWh	0.1kWh	2kWh	
Reactive energy deadband	0.11000.0kVar	0.1kVar	2kVar	
Active power deadband	0.11000.0kW	0.1kW	2kW	
Reactive power deadband	0.11000.0kVar	0.1kVar	2kVar	
Apparent power deadband	0.11000.0kVA	0.1kVA	2kVA	
Power factor deadband	0.010.99	0.01	0.05	Determines the data reporting deadband settings for this
Frequency deadband	0.011.00Hz	0.01Hz	0.1Hz	measurement.
Current deadband	0.0150.00A	0.01A	5A	
Residual current deadband	0.0150.00A	0.01A	0.2A	
Voltage deadband	0.015000.00V	0.01V	200V	
Residual voltage deadband	0.015000.00V	0.01V	200V	
Angle measurement deadband	0.15.0deg	0.1deg	1deg	
Integration time	010 000ms	1ms	0ms	Determines the integration time of the protocol. If this parameter is set to "0 ms", no integration time is in use.

6.3.8 Modbus I/O

The Modbus I/O protocol can be selected to communicate on the available serial ports. The Modbus I/O is actually a Modbus/RTU master implementation that is dedicated to communicating with serial Modbus/RTU slaves such as RTD input modules. Up to three (3) Modbus/RTU slaves can be connected to the same bus polled by the Modbus I/O implementation. These are named I/O Module A, I/O Module B and I/O Module C. Each of the modules can be configured using parameters in the following two tables.

Table. 6.3.8 - 75. Module settings.

Name	Range	Description
I/O module X address	0247	Defines the Modbus unit address for the selected I/O Module (A, B, or C). If this setting is set to "0", the selected module is not in use.
Module x type	0: ADAM-4018+ 1: ADAM-4015	Selects the module type.
Channels in use	Channel 0Channel 7 (or None)	Selects the number of channels to be used by the module.

Table. 6.3.8 - 76. Channel settings.

Name	Range	Step	Default	Description
Thermocouple type	0: +/- 20mA 1: 420mA 2: Type J 3: Type K 4: Type T 5: Type E 6: Type R 7: Type S	-	1: 420mA	Selects the thermocouple or the mA input connected to the I/O module. Types J, K, T and E are nickel-alloy thermocouples, while Types R and S are platinum/rhodium-alloy thermocouples.
Input value	-101.02 000.0	0.1	-	Displays the input value of the selected channel.
Input status	0: Invalid 1: OK	-	-	Displays the input status of the selected channel.

6.4 Analog fault registers

At $Communication \rightarrow General I/O \rightarrow Analog fault registers$ the user can set up to twelve (12) channels to record the measured value when a protection function starts or trips. These values can be read in two ways: locally from this same menu, or through a communication protocol if one is in use.

The following table presents the setting parameters available for the 12 channels.

Table. 6.4 - 77. Fault register settings.

Name	Range	Step	Default	Description
Select record source	Not in use >, >>, >>> (L1, L2, L3) d>, d>>, d>>>, d>>> (L1, L2, L3) 0>, 0>>, 0>>> (0) 0d>, 0d>>, 0d>>>, 0d>>> (0) FLX (Fault locator)	-	Not in use	Selects the protection function and its stage to be used as the source for the fault register recording. The user can choose between non-directional overcurrent, directional overcurrent, non-directional earth fault, directional earth fault, and fault locator functions.
Select record trigger	TRIP signal START signal START and TRIP signals	-	0: TRIP signal	Selects what triggers the fault register recording: the selected function's TRIP signal, its START signal, or either one.
Recorded fault value	- 1000 000.001 000 000.00	0.01	-	Displays the recorded measurement value at the time of the selected fault register trigger.

6.5 Real-time measurements to communication

With the *Real-time signals to communication* menu the user can report measurements to SCADA in a faster interval. The real measurement update delay depends on the used communication protocol and equipment used. Up to eight (8) magnitudes can be selected. The recorded value can be either a perunit value or a primary value (set by the user).

Measurable values

Function block uses analog current and voltage measurement values. The relay uses these values as the basis when it calculates the primary and secondary values of currents, voltages, powers, impedances and other values.

Table. 6.5 - 78. Available measured values.

Signals	Description
Currents	
IL1 (ff), IL2 (ff), IL3 (ff), I01 (ff), I02 (ff)	Fundamental frequency (RMS) current measurement values of phase currents and residual currents.
IL1 (TRMS), IL2 (TRMS), IL3 (TRMS), I01 (TRMS), I02 (TRMS)	TRMS current measurement values of phase currents and residual currents.
IL1, IL2, IL3, I01, I02 & 2 nd h., 3 rd h., 4 th h., 5 th h., 7 th h., 9 th h., 11 th h., 13 th h., 15 th h., 17 th h., 19 th h.	Magnitudes of the phase current components: 2 nd harmonic, 3 rd harmonic, 4 th harmonic, 5 th harmonic 7 th , harmonic 9 th , harmonic 11 th , harmonic 13 th , harmonic 15 th , harmonic 17 th , harmonic 19 th harmonic current.
11, I2, I0Z	Positive sequence current, negative sequence current and zero sequence current.
I0CalcMag	Residual current calculated from phase currents.
IL1Ang, IL2Ang, IL3Ang, I01Ang, I02Ang, I0CalcAng I1Ang, I2Ang	Angles of each measured current.
Voltages	
UL1Mag, UL2Mag, UL3Mag, UL12Mag, UL23Mag, UL31Mag, U0Mag, U0CalcMag	Magnitudes of phase voltages, phase-to-phase voltages and residual voltages.
U1 Pos.seq V mag, U2 Neg.seq V mag	Positive and negative sequence voltages.
UL1Ang, UL2Ang, UL3Ang, UL12Ang, UL23Ang, UL31Ang, U0Ang, U0CalcAng	Angles of phase voltages, phase-to-phase voltages and residual voltages.
U1 Pos.seq V Ang, U2 Neg.seq V Ang	Positive and negative sequence angles.
Powers	
S3PH P3PH Q3PH	Three-phase apparent, active and reactive power.
SL1, SL2, SL3, PL1, PL2, PL3, QL1, QL2, QL3	Phase apparent, active and reactive powers.
tanfi3PH tanfiL1 tanfiL2 tanfiL3	Tan (ϕ) of three-phase powers and phase powers.
cosfi3PH cosfiL1 cosfiL2 cosfiL3	Cos (ϕ) of three-phase powers and phase powers.
Impedances and admittances	
RL12, RL23, RL31 XL12, XL23, XL31 RL1, RL2, RL3 XL1, XL2, XL3 Z12, Z23, Z31 ZL1, ZL2, ZL3	Phase-to-phase and phase-to-neutral resistances, reactances and impedances.

Signals	Description
Z12Ang, Z23Ang, Z31Ang, ZL1Ang, ZL2Ang, ZL3Ang	Phase-to-phase and phase-to-neutral impedance angles.
Rseq, Xseq, Zseq RseqAng, XseqAng, ZseqAng	Positive sequence resistance, reactance and impedance values and angles.
GL1, GL2, GL3, G0 BL1, BL2, BL3, B0 YL1, YL2, YL3, Y0	Conductances, susceptances and admittances.
YL1angle, YL2angle, YL3angle, Y0angle	Admittance angles.
Others	
System f.	Used tracking frequency at the moment.
Ref f1	Reference frequency 1.
Ref f2	Reference frequency 2.
M thermal T	Motor thermal temperature.
F thermal T	Feeder thermal temperature.
T thermal T	Transformer thermal temperature.
RTD meas 116	RTD measurement channels 116.
Ext RTD meas 18	External RTD measurement channels 18 (ADAM module).

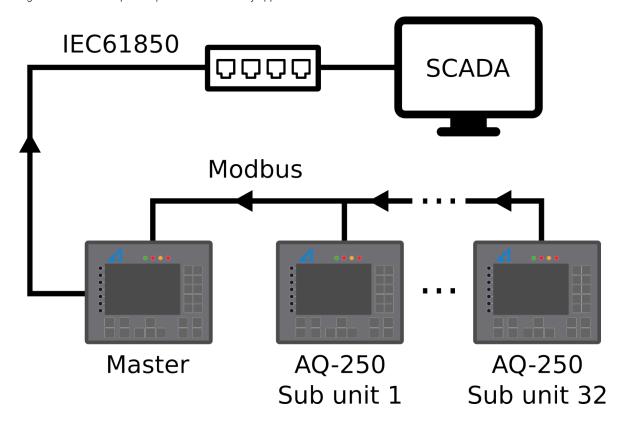

Settings

Table. 6.5 - 79. Settings.

Name	Range	Step	Default	Description
Measurement value recorder mode	0: Disabled 1: Activated	-	0: Disabled	Activates and disables the real-time signals to communication.
Scale current values to primary	0: No 1: Yes	-	0: No	Selects whether or not values are scaled to primary.
Slot X magnitude selection	0: Currents 1: Voltages 2: Powers 3: Impedance (ZRX) and admittance (YGB) 4: Others	-	0: Currents	Selects the measured magnitude catecory of the chosen slot.
Slot X magnitude	Described in table above ("Available measured values")	-	-	Selects the magnituge in the previously selected category.
Magnitude X	-10 000 000.00010 000 000.000	0.001	-	Displays the measured value of the selected magnitude of the selected slot. The unit depends on the selected magnitude (either amperes, volts, or per-unit values).

6.6 Modbus Gateway

Figure. 6.6 - 22. Example setup of Modbus Gateway application.

Any AQ-250 device can be setup as a Modbus Gateway (i.e. master). Modbus Gateway device can import messages (measurements, status signals etc.) from external Arcteq and third-party devices. RS-485 serial communication port. Up to 32 sub units can be connected to an AQ-200 master unit. These messages can then be used for controlling logic in the master device, display the status in user created mimic. Binary signals can be reported forward to SCADA with IEC61850, IEC101, IEC103, IEC104, Modbus, DNP3 or SPA.

Modbus Gateway and its basic settings can be found from $Communication \rightarrow Modbus$ Gateway. General settings-menu displays the health of connection to each sub unit.

Table. 6.6 - 80. General settings

Name	Range	Description
Modbus Gateway mode	0: Disabled (Default) 1: Enabled	Enables or disables Modbus Gateway.
Modbus Gateway reconfigure	0: - 1: Reconfigure	Setting this parameter to "Reconfigure" takes new settings into use. Parameter returns back to "-" automatically.
Quality of Modbus Sub unit 132	0: OK 1: Old data 2: Data questionable 3: Modbus error 4: Send fail 5: Receive fail	Quality of each connected sub unit.

Imported signals

Modbus Gateway supports importing of measurements, bits, double bits, counters and integer signals. Up to 128 signals can be imported of each signal type with the exception of double bits (32).

Table. 6.6 - 81. Imported signals

Name	Range
Imported measurement 1-128	-3.4E+383.4E+38
Imported bit signal 1-128	01
Imported double bit data 1-32	03
Imported counter data 1-128	04294967295
Imported integer signal 1-128	-21474836482147483647

To assign the signals use Modbus Gateway editor ($Tools \rightarrow Communication \rightarrow Modbus Gateway$). Detailed description of this tool can be found in $AQtivate\ 200\ Instruction$ manual (arcteq.fi./downloads/).

All imported signals can be given a description. The description will be displayed in most of menus with the signal (logic editor, matrix, block settings etc.).

Table. 6.6 - 82. Imported signal user description.

Name	Range	Default	Description
Describe measurement x		Acq. Meas x	
Describe bit signal x		Acq. Bit x	
Describe doube bit signal x	131 characters	Acq. Binary x	User settable description for the signal. This description is used in several menu types for easier identification.
Describe counter signal x		Acq. Counter x	
Describe integer signal x		Acq. Integer x	

Events

The Modbus Gateway generates events the status changes in imported bits and double bits. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

Table. 6.6 - 83. Event messages

Event block name	Event names
MGWB1	Bit 1Bit 32 (ON, OFF)
MGWB2	Bit 33Bit 64 (ON, OFF)
MGWB3	Bit 65Bit 96 (ON, OFF)
MGWB4	Bit 97Bit 128 (ON, OFF)
MGWD1	Double Bit 1 Double bit 16 (ON/ON, OFF/OFF, ON/OFF, OFF/ON)
MGWD2	Double Bit 17 Double bit 32 (ON/ON, OFF/OFF, ON/OFF, OFF/ON)

7 Connections and application examples

7.1 Connections of AQ-S254

Figure. 7.1 - 23. AQ-S254 variant without add-on modules.

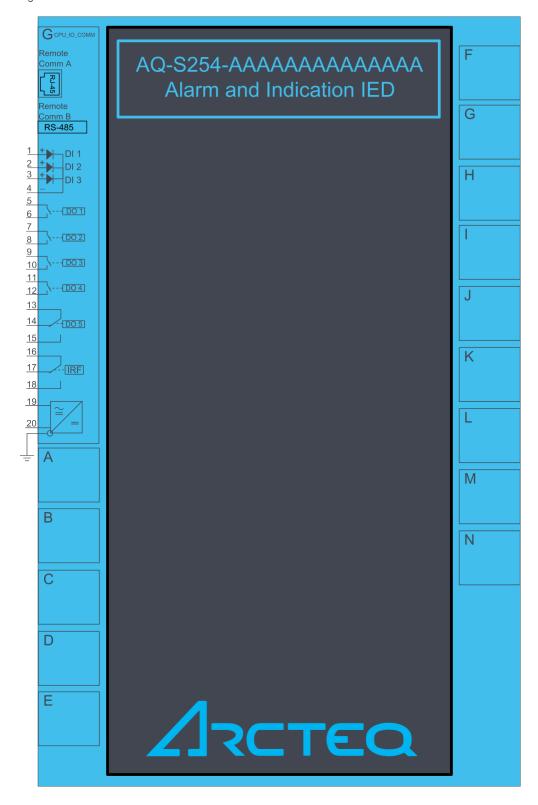


Figure. 7.1 - 24. AQ-S254 variant with digital input and output modules.

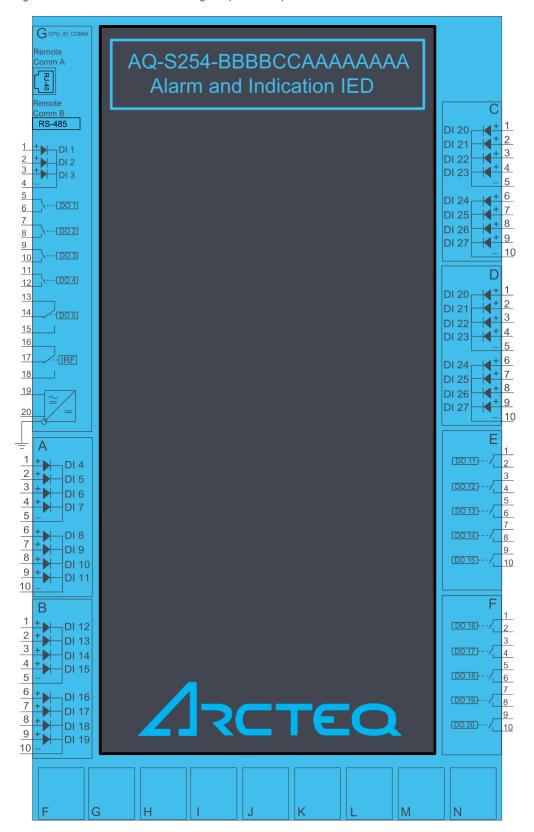
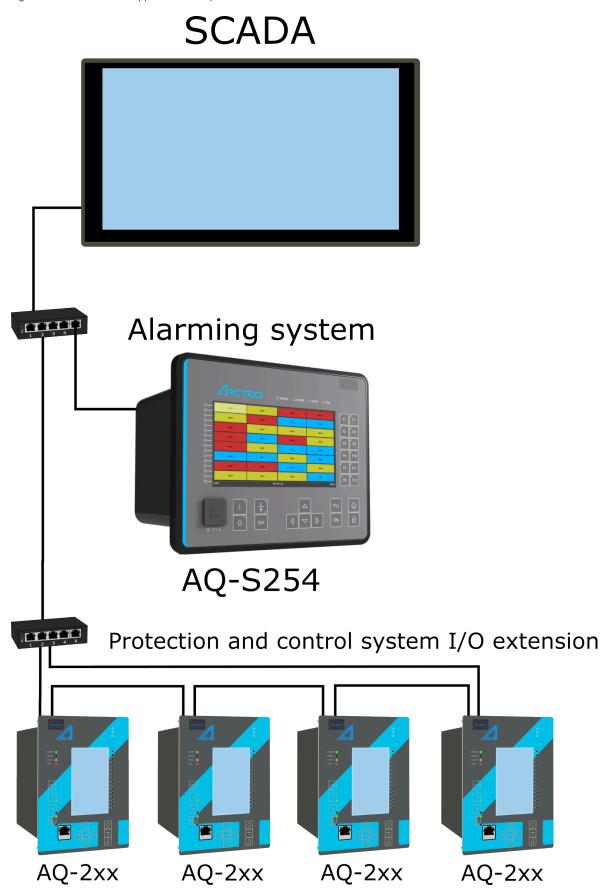



Figure. 7.1 - 25. AQ-S254 application example.

8 Construction and installation

8.1 Construction

AQ-X254 is a member of the modular and scalable AQ-200 series, and it includes 14 configurable and modular add-on card slots. As a standard configuration the device includes the CPU module (which consists of the CPU, a number of inputs and outputs, and the power supply).

The images below present the modules of both the non-optioned model (AQ-X254-XXXXXX-AAAAAAAAAAAA) and the almost fully optioned model (AQ-X254-XXXXXX-BBBBBBBBBBBBBCAJ).

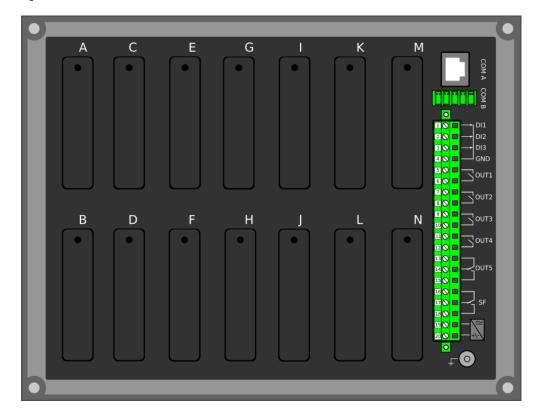
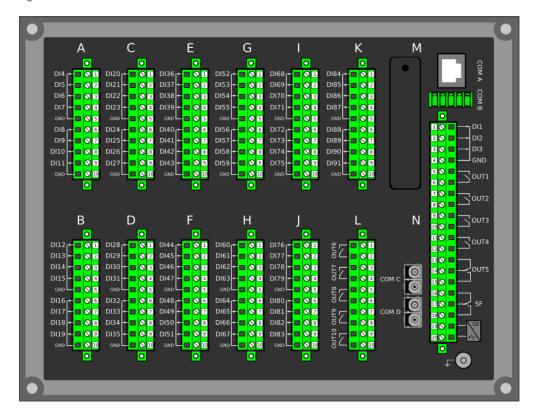
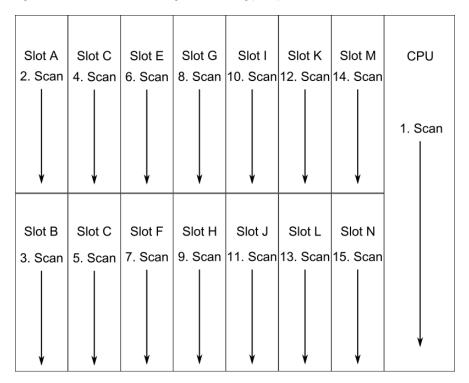



Figure. 8.1 - 27. Modular construction of AQ-X254-XXXXXXX-BBBBBBBBBBBBBCAJ


The modular structure of AQ-X254 allows for scalable solutions for different application requirements. In non-standard configurations Slots A to N accept all available add-on modules, such as digital I/O modules and other special modules. The only difference between the slots affecting device scalability is that Slots M and N also support communication options.

Start-up scan searches for modules according to their type designation code. If the module content is not what the device expects, the IED issues a hardware configuration error message. In field upgrades, therefore, add-on modules must be ordered from Arcteq Relays Ltd. or its representative who can then provide the module with its corresponding unlocking code to allow the device to operate correctly once the hardware configuration has been upgraded.

When an I/O module is inserted into the device, the module location affects the naming of the I/O. The I/O scanning order in the start-up sequence is as follows: the CPU module I/O, Slot A, Slot B, Slot C, and so on. This means that the digital input channels DI1, DI2 and DI3 as well as the digital output channels OUT1, OUT2, OUT3, OUT4 and OUT5 are always located in the CPU module. If additional I/O cards are installed, their location and card type affect the I/O naming.

The figure below presents the start-up hardware scan order of the device as well as the I/O naming principles.

Figure. 8.1 - 28. Hardware scanning and IO naming principle in AQ-X254 IED

1. Scan

The start-up system; detects and self-tests the CPU module, voltages, communication and the I/O; finds and assigns "DI1", "DI2", "DI3", "OUT1", "OUT2", "OUT3", "OUT4" and "OUT5".

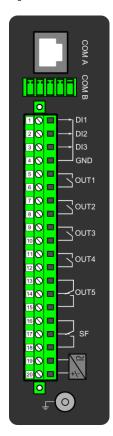
2. Scan

Scans Slot A, and moves to the next slot if Slot A is empty. If the scan finds an 8DI module (that is, a module with eight digital inputs), it reserves the designations "DI4", "DI5", "DI6", "DI7", "DI8", "DI9", "DI10" and "DI11" to this slot. If the scan finds a DO5 module (that is, a module with five digital outputs), it reserves the designations "OUT6", "OUT7", "OUT8", "OUT9" and "OUT10" to this slot. The I/O is then added if the type designation code (e.g. AQ-P215-PH0AAAA-BBC) matches with the existing modules in the device. If the code and the modules do not match, the device issues and alarm. An alarm is also issued if the device expects to find a module here but does not find one.

3. Scan

Scans Slot B, and moves to the next slot if Slot B is empty. If the scan finds an 8DI module, it reserves the designations "DI4", "DI5", "DI6", "DI7", "DI8", "DI9", "DI9", "DI10" and "DI11" to this slot. If Slot A also has an 8DI module (and therefore has already reserved these designations), the device reserves the designations "DI12", "DI13", "DI14", "DI15", "DI16", "DI17", "DI18" and "DI19" to this slot. If the scan finds a 5DO module, it reserves the designations "OUT6", "OUT7", "OUT8", "OUT9" and "OUT10" to this slot. Again, if Slot A also has a 5DO and has therefore already reserved these designations, the device reserves the designations "OUT11", "OUT12", "OUT13", "OUT14" and "OUT15" to this slot.

4. -15. Scan


A similar operation to Scan 3 (checks which designations have been reserved by modules in previous slots and numbers the new ones accordingly).

Thus far this chapter has only explained the installation of I/O add-on cards to the option module slots. This is because all other module types are treated in a same way. For example, when an additional communication port is installed into the upper port of the communication module, its designation is Communication port 3 or higher, as Communication ports 1 and 2 already exist in the CPU module (which is scanned, and thus designated, first). After a communication port is detected, it is added into the device's communication space and its corresponding settings are enabled.

The almost fully optioned example case of AQ-X254-XXXXXXX-BBBBBBBBBBCAJ (the first image pair, on the right) has a total of 91 digital input channels available: three (DI1...DI3) in the CPU module, and the rest in Slots A...K in groups of eight. It also has a total of 10 digital output channels available: five (DO1...DO5) in the CPU module, and five (DO6...DO10) in Slot L. These same principles apply to all non-standard configurations in the AQ-X254 IED family.

8.2 CPU module

Figure. 8.2 - 29. CPU module.

Connector	Description
COM A	Communication port A, or the RJ-45 port. Used for the setting tool connection and for IEC 61850, Modbus/ TCP, IEC 104, DNP3 and station bus communications.
СОМ В	Communication port B, or the RS-485 port. Used for the SCADA communications for the following protocols: Modbus/RTU, Modbus I/O, SPA, DNP3, IEC 101 and IEC 103. The pins have the following designations: Pin 1 = DATA +, Pin 2 = DATA -, Pin 3 = GND, Pins 4 & 5 = Terminator resistor enabled by shorting.
X1-1	Digital input 1, nominal threshold voltage 24 V, 110 V or 220 V.
X1-2	Digital input 2, nominal threshold voltage 24 V, 110 V or 220 V.
X1-3	Digital input 3, nominal threshold voltage 24 V, 110 V or 220 V.
X1-4	Common GND for digital inputs 1, 2 and 3.
X1-5:6	Output relay 1, with a normally open (NO) contact.
X1-7:8	Output relay 2, with a normally open (NO) contact.
X1-9:10	Output relay 3, with a normally open (NO) contact.
X1-11:12	Output relay 4, with a normally open (NO) contact.
X1-13:14:15	Output relay 5, with a changeover contact.
X1-16:17:18	System fault's output relay, with a changeover contact. Pins 16 and 17 are closed when the unit has a system fault or is powered OFF. Pins 16 and 18 are closed when the unit is powered ON and there is no system fault.

Connector	Description
X1-19:20	Power supply IN. Either 85265 VAC/DC (model A; order code "H") or 1875 DC (model B; order code "L"). Positive side (+) to Pin 20.
GND	The relay's earthing connector.

By default, the CPU module (combining the CPU, the I/O and the power supply) includes two standard communication ports and the relay's basic digital I/O.

The current consumption of the digital inputs is 2 mA when activated, while the range of the operating voltage is 24 V/110 V/220 V depending on the ordered hardware. All digital inputs are scannced in 5 ms program cycles. Their pick-up and release thresholds depend on the selection of the order code. Their delays and NO/NC selection, however, can be set with software. The digital output controls are also set by the user with software. By default, the digital outputs are controlled in 5 ms program cycles. All output contacts are mechanical. The rated voltage of the NO/NC outputs is 250 VAC/DC.

The auxiliary voltage is defined in the ordering code: the available power supply models available are A (85...265 VAC/DC) and B (18...75 DC). The power supply's minimum allowed bridging time for all voltage levels is above 150 ms. The power supply's maximum power consumption is 15 W. The power supply allows a DC ripple of below 15 % and the start-up time of the power supply is below 5 ms. For further details, please refer to the "Auxiliary voltage" chapter in the "Technical data" section of this document.

Digital input settings

The settings described in the table below can be found at Control o Device I/O o Digital input settings in the relay settings.

Table. 8.2 - 84. Digital input settings.

Name	Range	Step	Default	Description
Dlx Polarity	0: NO (Normally open) 1: NC (Normally closed)	-	0: NO	Selects whether the status of the digital input is 1 or 0 when the input is energized.
Dlx Activation delay	0.0001800.000 s	0.001 s	0.000 s	Defines the delay for the status change from 0 to 1.
Dlx Drop-off time	0.0001800.000 s	0.001 s	0.000 s	Defines the delay for the status change from 1 to 0.
Dlx AC mode	0: Disabled 1: Enabled	-	0: Disabled	Selects whether or not a 30-ms deactivation delay is added to account for alternating current.

Digital input and output descriptions

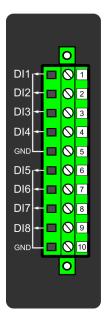
CPU card digital inputs and outputs can be given a description. The user defined description are displayed in most of the menus (logic editor, matrix, block settings etc.).

Table. 8.2 - 85. Digital input and output user description.

Name	Range	Default	Description
User editable description Dlx	131		Description of the digital input. This description is used in several menu types for easier identification.
User editable description OUTx	characters	OUTx	Description of the digital output. This description is used in several menu types for easier identification.

Scanning cycle

All digital inputs are scanned in a 5 ms cycle, meaning that the state of an input is updated every 0...5 milliseconds. When an input is used internally in the device (either in group change or logic), it takes additional 0...5 milliseconds to operate. Theoretically, therefore, it takes 0...10 milliseconds to change the group when a digital input is used for group control or a similar function. In practice, however, the delay is between 2...8 milliseconds about 95 % of the time. When a digital input is connected directly to a digital output (T1...Tx), it takes an additional 5 ms round. Therefore, when a digital input controls a digital output internally, it takes 0...15 milliseconds in theory and 2...13 milliseconds in practice.


i

NOTE!

The mechanical delay of the relay is <u>not</u> included in these approximations!

8.3 Digital input module (optional)

Figure. 8.3 - 30. Digital input module (DI8) with eight add-on digital inputs.

Connector	Description (x = the number of digital inputs in other modules that preceed this one in the configuration)
X 1	Dlx + 1
X 2	Dlx + 2
X 3	Dlx + 3
X 4	Dlx + 4
X 5	Common earthing for the first four digital inputs.
X 6	Dlx + 5
X 7	Dlx + 6
X 8	Dlx + 7
X 9	Dlx + 8
X 10	Common earthing for the other four digital inputs.

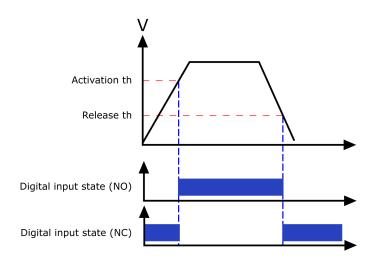
The DI8 module is an add-on module with eight (8) galvanically isolated digital inputs. This module can be ordered directly to be installed into the device in the factory, or it can be upgraded in the field after the device's original installation when required. The properties of the inputs in this module are the same as those of the inputs in the main processor module. The current consumption of the digital inputs is 2 mA when activated, while the range of the operating voltage is from 0...265 VAC/DC. The activation and release thresholds are set in the software and the resolution is 1 V. All digital inputs are scannced in 5 ms program cycles, and their pick-up and release delays as well as their NO/NC selection can be set with software.

For the naming convention of the digital inputs provided by this module please refer to the chapter titled "Construction and installation".

For technical details please refer to the chapter titled "Digital input module" in the "Technical data" section of this document.

Setting up the activation and release delays

The settings described in the table below can be found at Control o Device I/O o Digital input settings in the relay settings.


Table. 8.3 - 86. Digital input settings of DI8 module.

Name	Range	Step	Default	Description		
DIx Polarity	0: NO (Normally open) 1: NC (Normally closed)	-	0: NO	Selects whether the status of the digital input is 1 or 0 when the input is energized.		
DIx Activation threshold	16.0200.0 V	0.1 V	88 V	Defines the activation threshold for the digital input. When "NO" is the selected polarity, the measured voltage exceeding to setting activates the input. When "NC" is the selected polarity, the measured voltage exceeding this setting deactivates the input.		
DIx Release threshold	10.0200.0 V	0.1 V	60V	Defines the release threshold for the digital input. When "NO" is the selected polarity, the measured voltage below this setting deactivates the input. When "NC" is the selected polarity, the measured voltage below this setting activates the input.		
Dlx Activation delay	0.0001800.000 s	0.001 s	0.000 s	Defines the delay when the status changes from 0 to 1.		
Dlx Drop- off time	0.0001800.000 s	0.001 s	0.000 s	Defines the delay when the status changes from 1 to 0.		
Dlx AC Mode	0: Disabled 1: Enabled	-	0: Disabled	Selects whether or not a 30-ms deactivation delay is added to take the alternating current into account. The "DIx Release threshold" parameter is hidden and forced to 10 % of the set "DIx Activation threshold" parameter.		
Dlx Counter	02 ³² –1	1	0	Displays the number of times the digital input has changed its status from 0 to 1.		
Dlx Clear counter	0: - 1: Clear	-	0: -	Resets the DIx counter value to zero.		

The user can set the activation threshold individually for each digital input. When the activation and release thresholds have been set properly, they will result in the digital input states to be activated and released reliably. The selection of the normal state between normally open (NO) and normally closed (NC) defines whether or not the digital input is considered activated when the digital input channel is energized.

The diagram below depicts the digital input states when the input channels are energized and deenergized.

Figure. 8.3 - 31. Digital input state when energizing and de-energizing the digital input channels.

Digital input descriptions

Option card inputs can be given a description. The user defined description are displayed in most of the menus (logic editor, matrix, block settings etc.).

Table. 8.3 - 87. Digital input user description.

Name	Range	Default	Description
User editable description DIx	131 characters	Dlx	Description of the digital input. This description is used in several menu types for easier identification.

Digital input voltage measurements

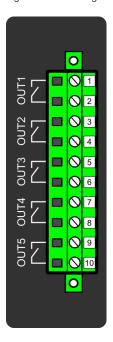

Digital input option card channels measure voltage on each channel. The measured voltage can be seen at Control o Device IO o Digital inputs o Digital input voltages.

Table. 8.3 - 88. Digital input channel voltage measurement.

Name	Range	Step	Description
Dlx Voltage now	0.000275.000 V	0.001 V	Voltage measurement of a digital input channel.

8.4 Digital output module (optional)

Figure. 8.4 - 32. Digital output module (DO5) with five add-on digital outputs.

Connector	Description
X 1–2	OUTx + 1 (1 st and 2 nd pole NO)
X 3-4	OUTx + 2 (1 st and 2 nd pole NO)
X 5–6	OUTx + 3 (1 st and 2 nd pole NO)
X 7–8	OUTx + 4 (1 st and 2 nd pole NO)
X 9–10	OUTx + 5 (1 st and 2 nd pole NO)

The DO5 module is an add-on module with five (5) digital outputs. This module can be ordered directly to be installed into the device in the factory, or it can be upgraded in the field after the device's original installation when required. The properties of the outputs in this module are the same as those of the outputs in the main processor module. The user can set the digital output controls with software. All digital outputs are scanned in 5 ms program cycles, and their contacts are mechanical in type. The rated voltage of the NO/NC outputs is 250 VAC/DC.

For the naming convention of the digital inputs provided by this module please refer to the chapter titled "Construction and installation".

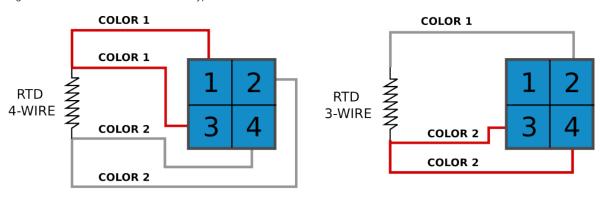
For technical details please refer to the chapter titled "Digital output module" in the "Technical data" section of this document.

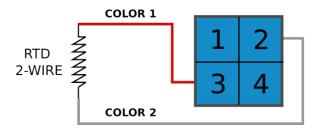
Digital output descriptions

Option card outputs can be given a description. The user defined description are displayed in most of the menus (logic editor, matrix, block settings etc.).

Table. 8.4 - 89. Digital output user description.

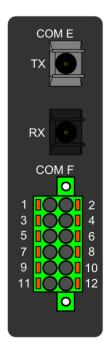
Name	Range	Default	Description
User editable description OUTx	131 characters	()	Description of the digital output. This description is used in several menu types for easier identification.


8.5 RTD input module (optional)


Figure. 8.5 - 33. RTD input module connectors.

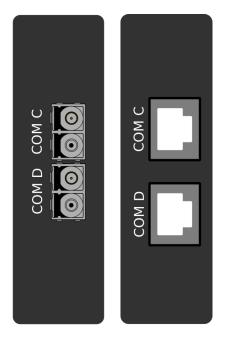
				_)	\vdash				
Channel	Connector				0	Ц	Co	nne	ect	or
1	RTD1-1	1		\bigcup	\bigcirc		2	RT	D1	-2
	RTD1-3	3		\bigcup	Q		4	RT	D1	-4
_	RTD2-1	5		\bigcup	O		6	RT	D2	-2
2	RTD2-3	7		\supseteq	Q		8	RT	D2	-4
3	RTD3-1	9		\supseteq	Q		10	RT	D3	-2
3	RTD3-3	11		\bigcup	Q		12	RT	D3	-4
4	RTD4-1	13		\bigcup	Q		14	RT	D4	-2
4	RTD4-3	15		\bigcup	Q		16	RT	D4	-4
_	RTD5-1	17		\bigcup	Q		18	RT	D5	-2
5	RTD5-3	19		\bigcup	Q		20	RT	D5	-4
6	RTD6-1	21		\bigcup	Q		22	RT	D6	-2
0	RTD6-3	23		\bigcup	Q		24	RT	D6	-4
7	RTD7-1	25		\bigcup	Q		26	RT	D7	-2
/	RTD7-3	27		\bigcup	Q		28	RT	D7	-4
8	RTD8-1	29		\bigcup	Q		30	RT	D8	-2
	RTD8-3	31			O		32	RT	D8	-4
					0					

The RTD input module is an add-on module with eight (8) RTD input channels. Each input supports 2-wire, 3-wire and 4-wire RTD sensors. The sensor type can be selected with software for two groups, four channels each. The card supports Pt100 and Pt1000 sensors


Figure. 8.5 - 34. RTD sensor connection types.

8.6 Serial RS-232 communication module (optional)

Figure. 8.6 - 35. Serial RS-232 module connectors.

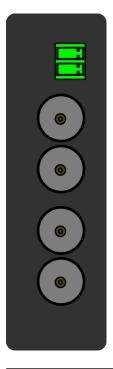

Connector	Name	Description
COM E	Serial fiber (GG/ PP/GP/PG)	 Serial-based communications Wavelength 660 nm Compatible with 50/125 μm, 62.5/125 μm, 100/140 μm, and 200 μm Plastic-Clad Silica (PCS) fiber Compatible with ST connectors

Connector	Name	Description
COM F – Pin 1	+24 V input	Optional external auxiliary voltage for serial fiber
COM F – Pin 2	GND	Optional external auxiliary voltage for serial fiber
COM F – Pin 3	-	-
COM F – Pin 4	-	-
COM F – Pin 5	RS-232 RTS	Serial based communications
COM F – Pin 6	RS-232 GND	Serial based communications
COM F – Pin 7	RS-232 TX	Serial based communications
COM F – Pin 8	RS-232 RX	Serial based communications
COM F – Pin 9	-	-
COM F – Pin 10	+3.3 V output (spare)	Spare power source for external equipment (45 mA)
COM F – Pin 11	-	-
COM F – Pin 12	-	-

The option card includes two serial communication interfaces: COM E is a serial fiber interface with glass/plastic option, COM F is an RS-232 interface.

8.7 LC or RJ45 100 Mbps Ethernet communication module (optional)

Figure. 8.7 - 36. LC and RJ45 100 Mbps Ethernet module connectors.



Connector	Description (LC ports)	Description (RJ45)
COM C:	 Communication port C, 100 MbpsLC fiber connector. 62.5/125 µm or 50/125 µm multimode (glass). Wavelength 1300 nm. 	RJ-45 connectors10BASE-T and 100BASE-TX
COM D:	 Communication port D, 100 Mbps LC fiber connector. 62.5/125 µm or 50/125 µm multimode (glass). Wavelength 1300 nm. 	RJ-45 connectors10BASE-T and 100BASE-TX

Both cards support both HSR and PRP protocols.

8.8 Double ST 100 Mbps Ethernet communication module (optional)

Figure. 8.8 - 37. Double ST 100 Mbps Ethernet communication module connectors.

Connector	Description
Two-pin connector	IRIG-B input
ST connectors	 Duplex ST connectors 62.5/125 µm or 50/125 µm multimode fiber Transmitter wavelength: 12601360 nm (nominal: 1310 nm) Receiver wavelength: 11001600 nm 100BASE-FX Up to 2 km

This option cards supports redundant ring configuration and multidrop configurations. Please note that each ring can only contain AQ-200 series devices, and any third party devices must be connected to a separate ring.

For other redundancy options, please refer to the option card "LC 100 Mbps Ethernet communication module".

The images below present two example configurations: the first displays a ring configuration (note how the third party devices are connected in a separate ring), while the second displays a multidrop configuration.

Figure. 8.8 - 38. Example of a ring configuration.

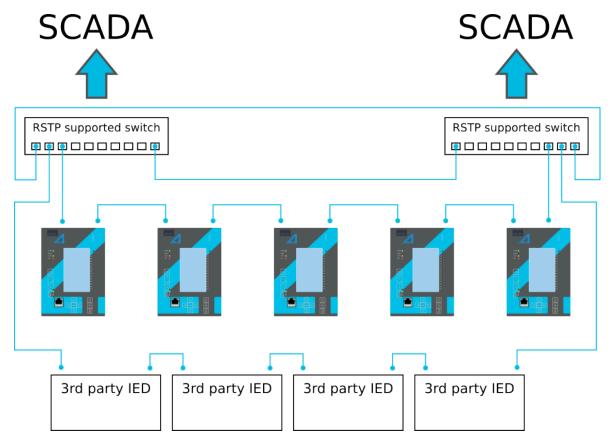
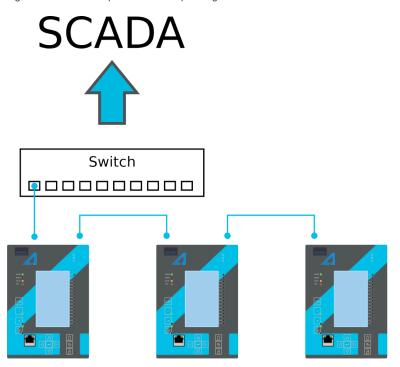
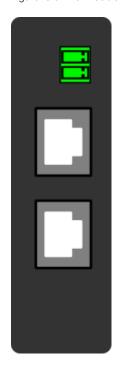
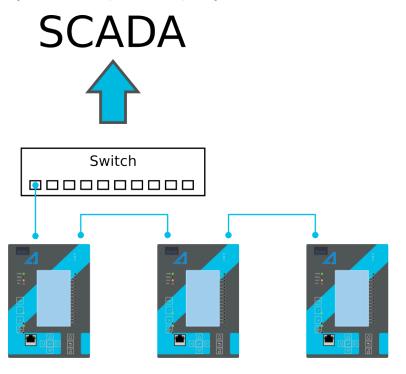




Figure. 8.8 - 39. Example of a multidrop configuration.

8.9 Double RJ45 10/100 Mbps Ethernet communication module (optional)

Figure. 8.9 - 40. Double RJ-45 10/100 Mbps Ethernet communication module.


Connector	Description
Two-pin connector	IRIG-B input

Connector	Description
RJ-45 connectors	Two Ethernet portsRJ-45 connectors10BASE-T and 100BASE-TX

This option card supports multidrop configurations.

For other redundancy options, please refer to the option card "LC 100 Mbps Ethernet communication module".

Figure. 8.9 - 41. Example of a multidrop configuration.

8.10 Dimensions and installation

The device can be installed either to a standard 19" rack or to a switchgear panel with cutouts. The desired installation type is defined in the order code. When installing to a rack, the device takes a half $(\frac{1}{2})$ of the rack's width, meaning that a total of two devices can be installed to the same rack next to one another.

The figures below describe the device dimensions (first figure), the device installation (second), and the panel cutout dimensions and device spacing (third).

Figure. 8.10 - 42. Device dimensions.

Figure. 8.10 - 43. Device installation.

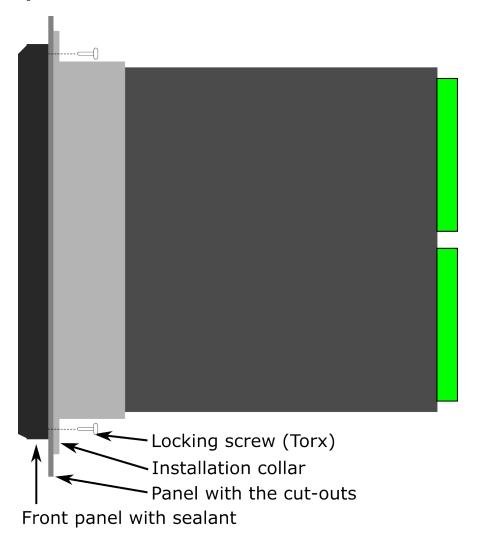
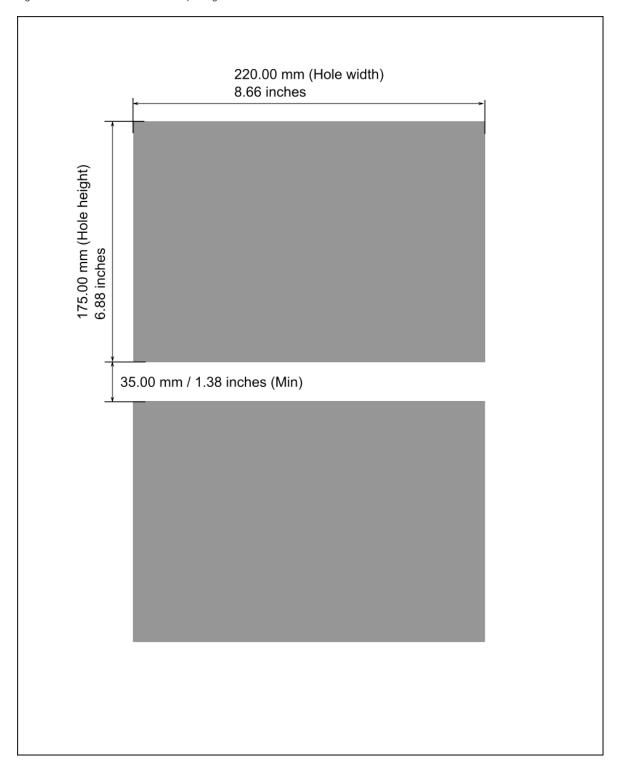



Figure. 8.10 - 44. Panel cut-out and spacing of the IED.

9 Technical data

9.1 Hardware

9.1.1 CPU & Power supply

9.1.1.1 Auxiliary voltage

Table. 9.1.1.1 - 90. Power supply model A

Rated values		
Rated auxiliary voltage	85265 V (AC/DC)	
Power consumption	< 20 W	
	< 40 W	
Maximum permitted interrupt time	< 40 ms with 110 VDC	
DC ripple	< 15 %	
Terminal block connection		
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08	
Solid or stranded wire		
Maximum wire diameter	2.5 mm ²	
Other		
Minimum recommended fuse rating	MCB C2	

Table. 9.1.1.1 - 91. Power supply model B

Rated values		
Rated auxiliary voltage	1872 VDC	
Power consumption	< 20 W	
	< 40 W	
Maximum permitted interrupt time	< 40 ms with 24 VDC	
DC ripple	< 15 %	
Terminal block connection		
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08	
Solid or stranded wire		
Maximum wire diameter	2.5 mm ²	
Other		
Minimum recommended fuse rating	MCB C2	

9.1.1.2 CPU communication ports

Table. 9.1.1.2 - 92. Front panel local communication port.

Port	
Port media	Copper Ethernet RJ-45

Number of ports	1
	PC-protocols
Port protocols	FTP
	Telnet
Features	
Data transfer rate	100 MB
System integration	Cannot be used for system protocols, only for local programming

Table. 9.1.1.2 - 93. Rear panel system communication port A.

Port	
Port media	Copper Ethernet RJ-45
Number of ports	1
Features	
Port protocols	IEC 61850
	IEC 104
	Modbus/TCP
	DNP3
	FTP
	Telnet
Data transfer rate	100 MB
System integration	Can be used for system protocols and for local programming

Table. 9.1.1.2 - 94. Rear panel system communication port B.

Port	
Port media	Copper RS-485
Number of ports	1
Features	
Port protocols	Modbus/RTU
	IEC 103
	IEC 101
	DNP3
	SPA
Data transfer rate	65 580 kB/s
System integration	Can be used for system protocols

9.1.1.3 CPU digital inputs

Table. 9.1.1.3 - 95. CPU model-isolated digital inputs, with thresholds defined by order code.

Rated values	
Rated auxiliary voltage	265 V (AC/DC)
Nominal voltage	Order code defined: 24, 110, 220 V (AC/DC)

Pick-up threshold Release threshold	Order code defined: 19, 90,170 V Order code defined: 14, 65, 132 V	
Scanning rate	5 ms	
Settings		
Pick-up delay	Software settable: 01800 s	
Polarity	Software settable: Normally On/Normally Off	
Current drain	2 mA	
Terminal block connection		
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08	
Solid or stranded wire		
Maximum wire diameter	2.5 mm ²	

9.1.1.4 CPU digital outputs

Table. 9.1.1.4 - 96. Digital outputs (Normally Open)

Rated values		
Rated auxiliary voltage	265 V (AC/DC)	
Continuous carry	5 A	
Make and carry 0.5 s Make and carry 3 s	30 A 15 A	
Breaking capacity, DC (L/R = 40 ms) at 48 VDC at 110 VDC at 220 VDC	1 A 0.4 A 0.2 A	
Control rate	5 ms	
Settings		
Polarity	Software settable: Normally On/Normally Off	
Terminal block connection		
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08	
Solid or stranded wire Maximum wire diameter	2.5 mm ²	

Table. 9.1.1.4 - 97. Digital outputs (Change-Over)

Rated values	
Rated auxiliary voltage	265 V (AC/DC)
Continuous carry	5 A
Make and carry 0.5 s Make and carry 3 s	30 A 15 A
Breaking capacity, DC (L/R = 40 ms) at 48 VDC at 110 VDC at 220 VDC	1 A 0.4 A 0.2 A
Control rate	5 ms
Settings	
Polarity	Software settable: Normally On/Normally Off

Terminal block connection	
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08
Solid or stranded wire Maximum wire diameter	2.5 mm ²

9.1.2 Option cards

9.1.2.1 Digital input module

Table. 9.1.2.1 - 98. Technical data for the digital input module.

Rated values		
Rated auxiliary voltage	5265 V (AC/DC)	
Current drain	2 mA	
Scanning rate Activation/release delay	5 ms 511 ms	
Settings		
Pick-up threshold Release threshold	Software settable: 16200 V, setting step 1 V Software settable: 10200 V, setting step 1 V	
Pick-up delay	Software settable: 01800 s	
Drop-off delay	Software settable: 01800 s	
Polarity	Software settable: Normally On/Normally Off	
Terminal block connection		
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08	
Solid or stranded wire		
Maximum wire diameter	2.5 mm ²	

9.1.2.2 Digital output module

Table. 9.1.2.2 - 99. Technical data for the digital output module.

Rated values	
Rated auxiliary voltage	265 V (AC/DC)
Continuous carry	5 A
Make and carry 0.5 s Make and carry 3 s	30 A 15 A
Breaking capacity, DC (L/R = 40 ms) at 48 VDC at 110 VDC at 220 VDC	1 A 0.4 A 0.2 A
Control rate	5 ms
Settings	
Polarity	Software settable: Normally On/Normally Off
Terminal block connection	
Terminal block	Phoenix Contact MSTB 2,5/5-ST-5,08
Solid or stranded wire Maximum wire diameter	2.5 mm ²

9.1.2.3 RTD input module

Table. 9.1.2.3 - 100. Technical data for the RTD input module.

Channels 1-8	
2/3/4-wire RTD	
Pt100 or Pt1000	

9.1.2.4 RS-232 & serial fiber communication module

Table. 9.1.2.4 - 101. Technical data for the RS-232 & serial fiber communication module.

Ports
RS-232
Serial fiber (GG/PP/GP/PG)
Serial port wavelength
660 nm
Cable type
1 mm plastic fiber

9.1.2.5 Double LC 100 Mbps Ethernet communication module

Table. 9.1.2.5 - 102. Technical data for the double LC 100 Mbps Ethernet communication module.

Protocols		
Protocols	HSR and PRP	
Ports		
Quantity of fiber ports	2	
Communication port C & D	LC fiber connector Wavelength 1300 nm	
Fiber cable	50/125 μm or 62.5/125 μm multimode (glass)	

9.1.2.6 Double ST 100 Mbps Ethernet communication module

Table. 9.1.2.6 - 103. Technical data for the double ST 100 Mbps Ethernet communication module.

General information		
Ports	ST connectors (2) and IRIG-B connector (1)	
Protocols		
Protocols	IEC61850, DNP/TCP, Modbus/TCP, IEC104 & FTP	
ST connectors		
	Duplex ST connectors	
Connector type	62.5/125 μm or 50/125 μm multimode fiber	
	100BASE-FX	
Transmitter wavelength	12601360 nm (nominal: 1310 nm)	
Receiver wavelength	11001600 nm	
Maximum distance	2 km	

IRIG-B Connector	
Connector type	Phoenix Contact MC 1,5/ 2-ST-3,5 BD:1-2

9.1.3 Display

Table. 9.1.3 - 104. Technical data for the HMI TFT display.

Dimensions and resolution		
Number of dots/resolution	800 x 480	
ize 154.08 × 85.92 mm (6.06 × 3.38 in)		
Display		
Type of display	TFT	
Color	RGB color	

9.2 Functions

9.2.1 Control functions

9.2.1.1 Setting group selection

Table. 9.2.1.1 - 105. Technical data for the setting group selection function.

Settings and control modes		
Setting groups	8 independent, control-prioritized setting groups	
Control scale	Common for all installed functions which support setting groups	
Control mode		
Local	Any digital signal available in the device	
Remote	Force change overrule of local controls either from the setting tool, HMI or SCADA	
Operation time		
Reaction time	<5 ms from receiving the control signal	

9.2.1.2 Object control and monitoring

Table. 9.2.1.2 - 106. Technical data for the object control and monitoring function.

Signals	
Input signals	Digital inputs Software signals
Output signals	Close command output Open command output
Operation time	
Breaker traverse time setting	0.02500.00 s, setting step 0.02 s
Max. close/open command pulse length	0.02500.00 s, setting step 0.02 s
Control termination time out setting	0.02500.00 s, setting step 0.02 s
Inaccuracy: - Definite time operating time	±0.5 % or ±10 ms
Breaker control operation time	

External object control time	<75 ms
Object control during auto-reclosing	See the technical sheet for the auto-reclosing function.

9.2.2 Monitoring functions

9.3 Tests and environmental

Electrical environment compatibility

Table. 9.3 - 107. Disturbance tests.

All tests	CE-approved and tested according to EN 60255-26	
Emissions		
Conducted emissions:	450 HIL 20 MIL	
EN 60255-26 Ch. 5.2, CISPR 22	150 kHz30 MHz	
Radiated emissions:	301 000 MHz	
EN 60255-26 Ch. 5.1, CISPR 11		
Immunity		
Electrostatic discharge (ESD):	Air discharge 15 kV	
EN 60255-26, IEC 61000-4-2	Contact discharge 8 kV	
Electrical fast transients (EFT):	Power supply input 4 kV, 5/50 ns, 5 kHz	
EN 60255-26, IEC 61000-4-4	Other inputs and outputs 4 kV, 5/50 ns, 5 kHz	
Surge:	Between wires: 2 kV, 1.2/50 µs	
EN 60255-26, IEC 61000-4-5	Between wire and earth: 4 kV, 1.2/50 µs	
Radiated RF electromagnetic field:	f = 90	
EN 60255-26, IEC 61000-4-3	f = 801 000 MHz, 10 V/m	
Conducted RF field:	f = 150 kHz80 MHz, 10 V (RMS)	
EN 60255-26, IEC 61000-4-6	1 - 130 KHZ00 MITZ, 10 V (NIVIO)	

Table. 9.3 - 108. Voltage tests.

Dielectric voltage test		
EN 60255-27, IEC 60255-5, EN 60255-1	2 kV, 50 Hz, 1 min	
Impulse voltage test		
EN 60255-27, IEC 60255-5	5 kV, 1.2/50 μs, 0.5 J	

Physical environment compatibility

Table. 9.3 - 109. Mechanical tests.

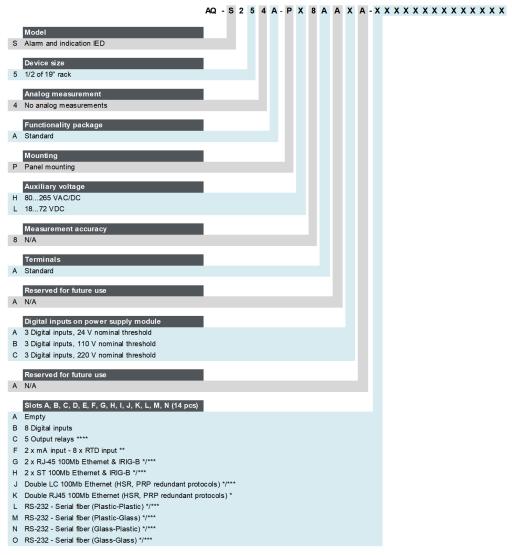
Vibration test	
EN COSES 4 EN COSES 27 JEC COSES 24 4	213.2 Hz, ± 3.5 mm
EN 60255-1, EN 60255-27, IEC 60255-21-1	13.2100 Hz, ± 1.0 g
Shock and bump test	

EN 60255-1, EN 60255-27, IEC 60255-21-2	20 g, 1 000 bumps/dir.
---	------------------------

Table. 9.3 - 110. Environmental tests.

Damp heat (cyclic)		
EN 60255-1, IEC 60068-2-30	C 60068-2-30 Operational: +25+55 °C, 9397 % (RH), 12+12h	
Dry heat		
EN 60255-1, IEC 60068-2-2	Storage: +70 °C, 16 h	
	Operational: +55 °C, 16 h	
Cold test		
EN 60255-1, IEC 60068-2-1	Storage: -40 °C, 16 h	
	Operational: –20 °C, 16 h	

Table. 9.3 - 111. Environmental conditions.


IP classes			
Casing protection class	IP54 (front)		
Casing protection class	IP21 (rear)		
Temperature ranges			
Ambient service temperature range	−35+70 °C		
Transport and storage temperature range	−40+70 °C		
Other			
Altitude	<2000 m		
Overvoltage category	Ш		
Pollution degree	2		

Casing and package

Table. 9.3 - 112. Dimensions and weight.

Without packaging (net)		
Dimensions	Height: 208 mm Width: 257 mm (½ rack) Depth: 165 mm (no cards or connectors)	
Weight	1.5 kg	
With packaging (gross)		
Dimensions	Height: 250 mm Width: 343 mm Depth: 256 mm	
Weight	2.0 kg	

10 Ordering information

^{*} One card at most per IED

Accessories

Order code	Description	Note	Manufacturer
ADAM-4015-CE	External 6-channel 2 or 3 wires RTD Input module, preconfigured	Requires an external power module	Advanced Co. Ltd.
ADAM-4018+- BE	External 8-ch Thermocouple mA Input module, pre- configured	Requires an external power module	Advanced Co. Ltd.
AQX121	Raising frame 120mm		Arcteq Ltd.
AQX122	Raising frame 40mm		Arcteq Ltd.
AQX098	Wall mounting bracket		Arcteq Ltd.

^{**} Two cards at most per IED

^{***} Can only be applied to the last slot

^{****} Six cards at most per IED

11 Contact and reference information

Manufacturer

Arcteq Relays Ltd.

Visiting and postal address

Kvartsikatu 2 A 1

65300 Vaasa, Finland

Contacts

Phone: +358 10 3221 370

Website: arcteq.fi

Technical support: support.arcteq.fi

+358 10 3221 388 (EET 9:00 - 17.00)

E-mail (sales): sales@arcteq.fi